逐孔起爆技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在总结国内外学者对逐孔起爆技术研究现状的基础上,运用爆破理论和振动波的传播规律与特征,分析了爆破振动的影响因素和振动累积效应,结合国内外爆破振动安全判据,提出了爆破振动效应预测与控制的一些有效方法。利用小波包分析理论和傅立叶变换方法,针对现场采集的逐孔起爆振动信号,对地震波不同频带的能量分布特征进行了分析,提出了描述逐孔起爆过程中振动效应的三个主要参数:振速峰值、振动主频和振动持续时间。
     利用神经网络理论,充分考虑了逐孔起爆过程中振动效应的影响因素,建立了振动参数预报的BP网络模型。该模型能够一次输出反映振动效应的三个基本参数,通过模型的应用与对比分析,也证实了该模型比传统经验公式更接近现场实测结果。结合高精度、高强度导爆管雷管的性能,对逐孔起爆网络设计做了分析,提出了几种常用的起爆网络。利用可靠性理论,提出了非电起爆原件可靠性和整个网络传爆可靠度的计算方法。
     利用SPH方法善于计算大变形动力学工程问题的优势,通过有限元分析软件,分单孔起爆、双孔起爆、四孔起爆和双排多孔起爆四种情况,对逐孔起爆的全过程进行了数值模拟。模拟效果再现了岩石介质由损伤至破裂,再到被抛散的整个过程,配合节点位移变化曲线和应力场分布规律,对逐孔起爆破岩机理做了较为深入的分析。
     将逐孔起爆网络设计与振动参数预报方面的研究成果,应用到了矿山生产中,进行了逐孔起爆技术的现场试验研究。针对传统微差起爆技术和逐孔起爆技术,统计二者的各项经济指标,全面比较两种技术产生的综合经济成本,证实采用逐孔起爆技术,不仅很好地控制了爆破振动效应,更重要的是可以给矿山带来更高的经济效益。
This article, based on the summarization of the current research situation of the detonation-by-hole technique by the scholars both at home and abroad, and taking use of the demolition theory and the dissemination rule and characteristic of the vibration wave, carried out an analysis of the influencing factors of the blasting vibration, and the vibration cumulative effect. It also proposed some effective methods for the forecast and control of the demolition jarring effect in combination of demolition vibration security criteria both from domestic and abroad. Using the wavelet packet analysis theory and the Fourier transformation method, and in view of the vibration signal of the denotation-by-hole collected on scene, this article made an analysis of the energy distribution characteristics of the different frequency bands of the earthquake wave. And it proposed the three main parameters that can describe the vibration effect in the process of the detonation by hole, namely: David peak velocity, vibration frequency and duration of shock.
     Using the neural network theory and giving full consideration to the influencing factors of the shocking effects in the process of the detonation by hole, we have established the BP network model for the vibration parameter forecast. This model can output at the same time the three basic parameters that can reflect the shocking effect, so it is more reasonable than the empirical formula. Through the application and contrastive analysis of the BP prediction model, we also confirm that this model is closer to the spot actual result than the tradition empirical formula. In combination of the performance of the detonator with high accuracy, and high strength, we made an analysis to the design of the detonation-by-hole network and proposed several kinds of commonly-used detonation networks. Using the reliability theory, we proposed the computational method for the reliability of the non-electric detonation original part and the entire network detonation reliability.
     Taking using of the superiority of the SPH method in calculating the large deformation dynamics project question, and through the finite element analysis software, we carried on an numerical simulation of the entire denotation-by-hole process under four kinds of situations, namely the single-hole detonation, the double-hole detonation, four-hole detonation and the two-row porous-hole detonation. The simulation effect reappeared the entire process of the rock medium from damage to breakage, and then to be scattered and thrown. Coordinating with the changing curve of the nodal points’displacement and the distribution rule of the stress field, we made an in-depth analysis of the rock-breaking mechanism of the hole-by-hole detonation.
     We applied our research results in network design, vibration parameters prediction, vibration wavelet signal analysis and vibration effect control of the hole-by-hole detonation to the mine production and had a field-test-research to the hole-by-hole detonation technique. In view of the traditional elemental error initiation techniques and the hole-by-hole detonation technology, we counted all the economic indicators and compared fully the comprehensive economic cost of these two technologies. And it confirmed that if we use the hole-by-hole detonation technology, we can not only have a good control of the blasting vibration effects, but more importantly, we can bring a higher economic efficiency to the mine.
引文
[1]毛静民.延迟间隔对微差爆破振动效应的影响[f)l.爆破.1997,14(2):81-84.
    [2]段海峰,候运炳.露天矿微差爆破的机理及微差时间的选取[[J].有色金属.2003,55(6}:24-26.
    [3]哈努卡耶夫.矿岩爆破物理过程[M].北京:冶金工业出版社,1987.
    [4]冯叔瑜.爆破工程【M].北京:铁道出版社,1980
    [5]吴腾芳,王凯.微差爆破技术研究现状[fJl.爆破.1997,14(1): 53-57
    [6]李翼棋,马素贞.爆炸力学.北京:科学出版社,1992. 441-516
    [7] Thoenen J R, Windes S L. Seismic effects of quarry blasting. US Bureau of Mines Bull, 1942. 442
    [8] Devine J R, Beck R H, Meyer A V C. Effect of charge weight on vibration levels from quarry blasting·Washington:US Bureau of Mines Report Investigation, 1966. 6774
    [9] Edwards A T, Northwood T D. Experimental studies of the effects of blasting on structures. The Engineering, 1960,210: 538-546
    [10] Wiss J F. Effect of blasting vibration on building and people. Civil" Eng",1968,7: 46-48
    [11] Guowei Ma, Hong Hao, Yingxin Zhou. Assessment of structure damage to blasting induced. Engineering Structures, 2000 (22):1378-1389
    [12]李宏男,王丙乾,林皋.爆破地震效应若干问题的研究.爆炸与冲击,1996 16(1): 61-67
    [13]娄建武,龙源,方向,等.基于反应谱值分析的爆破振动破坏评估研究.爆炸与冲击,2003, 23 (1): 41-46
    [14] Dhakal R P, Pan T C. Response characteristics of structures subjected to blasting-induced ground motion. International Journal of Impact Engineering 2003,(28):913-828
    [15]李国豪主编.工程结构抗爆动力学.上海:上海科学技术出版社,1989
    [16]王前信,王孝信著.工程结构地震力理论.北京:地震出版社
    [17] M.D Trifunac,A.G. Brady.A study of duration of strong earthquake ground motion. BSSA,1975,65(3)
    [18] H.B. Seed.Characteristics of Rock Motion during Earthquakes.Proc.ASSCE,SM5,1969
    [19] H.B. SeedAnalysis of Earthquakes Ground Motions at Japanese Sites. BSSA,1970(6)
    [20] H.B. Seed.Influence of Soil conditions on ground motions during earthquakes. Proc. ASSCE,SM1,1969
    [21] H.B. Seed.Modification of seismograph records for effects of local soil conditions. BSSA, 1972(6)
    [22]周锡元.土质条件对建构筑物所受地震荷载的影响.中国科学院工程力学研究所地震工程研究报告集(第二集),北京:科学出版社,1965
    [23]唐中华.爆破地震频率对建构筑物破坏的影响.建筑安全.1998(11):14-16
    [24] David E.S.,Steven V.C.Blast vibration and other potential cause of damage in homes near a large surface coal mine inidiana [C].(U.S.)Bureau of Mines,Minneapolis,MN.1993
    [25]刘殿中.工程爆破使用手册.北京:冶金工业出版社,1999
    [26]汪旭光,徐天瑞,张正宇等.GB6722-2003. 2003.出版社.中华人民共和国国家质量监督检验检疫局.爆破安全规程.北京:中国标准2004:42~43
    [27] H. Y. Fang,R. M. Koerner,H. Sutherland. Instrumentation and Monitoring Criteria to Determine Structural Response from Blasting[A].In:Louisville, Kentucky. Proceedings of the Second Conference on Explosives and Blasting Techniques[C],1976,148~154
    [28]赵炳祁,红透山铜矿爆破振动测试与分析:〔硕士学位论文〕,沈阳:东北大学,2003
    [29]言志信,结构拆除及爆破振动效应研究:[博士学位论文],重庆:重庆大学,2002
    [30]焦永斌.爆破振动安全评定标准初探,爆破,1995, 12 (3):45~47
    [31]陈寿如,宋光明,史学志等.近河堤采矿爆破的振动监测与控制〔J}.中国有色金属学报,2000, 10(1):136~139
    [32]卢文波,Hustrulid W.质点峰值振动速度衰减公式的改进,工程爆破,2002,8 (3):1~4
    [33] G.卢宾等.哈尔滨玻璃钢研究所译.增强塑料手册.北京:中国建筑出版社,1975.3
    [34]钱知勉.塑料性能应用手册.上海:上海科学技术文献出版社,1980.2
    [35]张丽叶.挤出成型.北京:化学工业出版社,2002.7
    [36]《煤矿火工技术丛书》编写组.炸药爆炸理论基础.北京:煤炭工业出版社,1997.7
    [37]刘自铴蒋荣光.工业火工品.北京:兵器工业出版社,2003.1
    [38]张世胜史成军.起爆药和火工品.北京:国防工业出版社,1983.2
    [39] Tatsuya Heshibo, et al., Optimizing Design of Millisecond Blasting Interval Time. The Inter. J. For Blasting and Fragmentation. 2000, 4(2)
    [40] A.H哈努卡耶夫.矿岩爆破物理过程,北京:冶金工业出版社,1980.
    [41]熊代余等,岩石爆破理论与技术新进展,北京:冶金工业出版社,2002.
    [42]张立国等.导爆管复式交叉起爆网络可靠性分析及应用,爆破,2003.9:5~7.
    [43]叶海旺.房泽法.孔内外微差爆破网路及其可靠度分析,爆破增刊,1999(16):85~89.
    [44]王斌.非电接力式单孔单响起爆网路的分析,爆破,2001.18(增刊):83~87.
    [45]张训诰,卢德辉,可靠性及其应用,北京:兵器工业出版杜,1991
    [46]钟冬望,等,非电起爆系统可靠性分析与计算,工程爆破,1999,5(1),71-75
    [47]马建军,等,楼房爆破拆除起爆网络的设计与可靠性计算,矿业研究与开发,2002,22(2),36-40
    [48]范大茵,陈永华,概率论与数理统计,杭州:浙江大学出版社,1996
    [49]陈家鼎,等,概率统计讲义,北京:高等教育出版社,1980
    [50]张立群,张敢生,露天矿导爆管起爆系统可靠性分析,工程爆破文集[5]武汉:中国地质大学出版杜,1993, 324-329
    [51]钮强,张敢生,常用几种非电起爆元件及传爆结点可靠度的确定,爆破器材,1991(3),5-7
    [52]谢高第,火工品可靠性评估,兵工学报(火化工分册),1982(1)
    [53]张敢生,露天非电起爆网络系统可靠性的研究,硕士论文,东北工学院,1990
    [54]张承福.神经网络系统[J].力学进展,1988,18(2):145-159
    [55] D.E.Rumelhart and R.J.Williams.Learning Representation by Back-Propagation Errors[J]. Nature,1986:533-536
    [56]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992:43-60 [57 ] Duan Baofu, Wang Xuguang and Song Jinquan.An Optimizing Selection Model in Preparation of PEE[J].Journal of University of Science and Technology Beijing, 2004, 11(1):1-4
    [58] Young, Melanie T.; Blanchard, Susan M.; White, Mark W.; Johnson, Eric E.; Smith, William M.; et. al. Neural networks with robust backpropagation learning algorithm[J]. Computers and Biomedical Research, 2000, 33(1):43-58
    [59] Arimoto S, Murakami A. Characteristics of localized behavior of saturated soil by EFG[A]. Proceedings of 1st International Workshop on New Frontiers in Computational Geomechanics[C], Banff, Alberta, Canada, 2002
    [60]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [60]刘鹏,刘更,刘天祥等.光滑粒子动力学方法及其应用[[J].机械科学与技术.2005, 24(9):1126-1130.
    [60]刘瑛琦.基于SPH方法的数值波浪水槽研究[D].南京:河海大学. 2006.
    [60]王刚.中小尺度海冰动力学的粘弹——塑性本构模型及SPH数值模拟[[D].大连:大连理工大学. 2006.
    [60]娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用[J].塑性工程学报.2001,8(3): 1-5.
    [60] Mizuno H, Mizuyama T, Minami N, Kuraoka S. Analysis of simulating debris flow captured by permeable type dam using Distinct Element Method[J], Journal of the Japanese Society of Erosion Control Engineering, 2000,52(6): 4-11.
    [60] Sasaki T, Ohnishi Y, Yohinaka R. Discontinues Deformation Analysis and it's application to rock mechanics problems[J]. Journal of Geotechnical Engineering, JSCE, 1994,III-27: 11-20.
    [60] Askes H, Bode L and Sluys L J. ALE analyses of localization in wave propagation problems[J], Mech. Cohes.-Frict. Mater.,1998,3: 105-125.
    [60] Monaghan J J. Implicit SPH Drag and Dusty Gas Dynamics[J]. Journal of Computational Physics. 1997, 138(2): 801-820.
    [60] Cleary P W, Monaghan J J. Conduction Modeling Using Smoothed Particle Hydrodynami-cs [J]. Journal of Computational Physics. 1999(148): 227-264.
    [60] Liu G R, Liu M B. Smoothed Particle Hydrodynamics-a meshfree particle method[M]. New Jersey, London, Singapore, Shanghai, Hong Kong, Tai Pei, Bangalore. World Scientific Publishing Company, 2003.
    [61]刘鹏,刘更,刘天祥等.光滑粒子动力学方法及其应用[[J].机械科学与技术.2005, 24(9):1126-1130.
    [62]刘瑛琦.基于SPH方法的数值波浪水槽研究[D].南京:河海大学. 2006.
    [63]王刚.中小尺度海冰动力学的粘弹——塑性本构模型及SPH数值模拟[[D].大连:大连理工大学. 2006.
    [64]娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用[J].塑性工程学报.2001,8(3): 1-5.
    [65] Mizuno H, Mizuyama T, Minami N, Kuraoka S. Analysis of simulating debris flow captured by permeable type dam using Distinct Element Method[J], Journal of the Japanese Society of Erosion Control Engineering, 2000,52(6): 4-11.
    [66] Sasaki T, Ohnishi Y, Yohinaka R. Discontinues Deformation Analysis and it's application to rock mechanics problems[J]. Journal of Geotechnical Engineering, JSCE, 1994,III-27: 11-20.
    [67] Askes H, Bode L and Sluys L J. ALE analyses of localization in wave propagation problems[J], Mech. Cohes.-Frict. Mater.,1998,3: 105-125.
    [68] Monaghan J J. Implicit SPH Drag and Dusty Gas Dynamics[J]. Journal of Computational Physics. 1997, 138(2): 801-820.
    [69] Cleary P W, Monaghan J J. Conduction Modeling Using Smoothed Particle Hydrodynami-cs [J]. Journal of Computational Physics. 1999(148): 227-264.
    [70] Liu G R, Liu M B. Smoothed Particle Hydrodynamics-a meshfree particle method[M]. New Jersey, London, Singapore, Shanghai, Hong Kong, Tai Pei, Bangalore. World Scientific Publishing Company, 2003.
    [71] Liu G R, Liu M B. Smoothed Particle Hydrodynamics-a meshfree particle method[M]. New Jersey, London, Singapore, Shanghai, Hong Kong, Tai Pei, Bangalore. World Scientific Publishing Company, 2003.
    [72] Chaubal C V, Leal L G. Smoothed particle妙drodynamics techniques for the solution of kinetic theory problems: Part 2. The effect of flow perturbations on the simple shear behavior of LCPs[J]. Journal of Non-Newtonian Fluid Mechanics. 1999, 82(1): 25-55. [ 73 ] Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics. 2003, 191(2): 448-475.
    [74] Tartakovsky A M, Meakin P. A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Ravleigh-Taylor instability[J]. Journal of Computational Physics. 2003, 207(2): 610-621.
    [75] Johnson A F, Holzapfel M. Modelling soft body impact on composite structures[J]. Composite Structures. 2003, 61(1-2): 103-113.
    [76] J. W Swegle, S. W. Attaway, M. W. Heinstein, etc, An Analysis of Smoothed Particle Hydrodynamics, Sandia Report SAND93-2513, Sandia National Laboratories, Albuquerque, NM, 1994.
    [77] D. L. Hicks, J. W. Swegle and S. W. Attaway, Conservative Smoothing Stabilizes Discrete-Numerical Instabilities in SPH Material Dynamics Computations, Applied Mathematics and Computation, 1997, 85: 209-226.
    [78] D. L. Hicks and L. M. Liebrock, Conservative smoothing with B-splines stabilizes SPH material dynamics in both tension and compression, Applied Mathematics and Computation, 2004, 150: 213-234.
    [79] G. R. Johnson and S. R. Beissel, Normalized Smoothed Functions for Impact Computations[J], Int. J. Numer. Methods Engrg., 1996, 39: 2725-2741.
    [80] G.R.Liu. Smoothed Particle Hydrodynamics-A Meshfree Method, 2002
    [81] P W Randles, L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering, 1996, 139: 375-408.
    [82] G. R. Liu, M. B. Liu, Smoothed Particle Hydrodynamics: A meshfree particle method, World Scientific Publishing Co. Pte. Ltd., 2003
    [83] Petschek A q Libersky L D. Cylindral Smoothed Particle Hydrodynamics. J Comput Phys, 1993,109: 76-83
    [84] Randles P W, Libersky L D. Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications. Comput Meth Appl Mech Engng, 1996,139: 375-408
    [85] Johnson G R, Holmquist T J. Evalution of Cylinder-impact Test Data for Constitutive Model Constants. J Appl Phys,1988,64(8):15
    [86] Monaghan JJ. Smoothed Particle Hydrodynamics. Annual Review Astronomies andAstro-physics, l992, 30:543-574
    [87] Brian Schlatter. A Pedagogical Tool Using Smoothed Particle Hydrodynamics to Model Fluid Flow Past a System of Cylinders. Thesis of Master degree, 1999
    [88] Monaghan J J. Simulating Free Surface Flows with SPH. J.Comput.Phys, 1994: 399-406
    [89] Morris, Modeling Low Reynolds Number Incompressible Flow Using SPH. J. Comaut. Phvs., 1997. 136: 214-226
    [90]王仲琦,张奇,白春华.孔深影响爆炸应力波特性的数值分析.岩石力学与工程学报. 2002, 21 (4): 550-553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700