有相对运动的多体分离过程非定常数值算法研究及实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有相对运动的多体分离问题作为一类特殊的力学问题广泛地存在于航空、航天以及武器系统中。由于其本身的复杂性,不论是采用实验方法还是数值模拟方法都存在或多或少的困难,建立有效、准确解决有相对运动的多体分离问题的数值方法在理论及应用上都很有价值。本文根据这一需求,建立了基于非结构动网格的数值模拟技术,形成了能够应用于求解复杂外形多体分离问题的高效、准确的软件系统。软件系统的可信度得到了数值验证及激波管实验的考核确认,在解决复杂分离问题中取得了良好的效果。
     首先,基于多体分离问题求解时对计算效率及精度的要求,选择ALE描述的Euler方程为流动控制方程,采用VanLeer格式计算通量,采用分段线性重构或MUSCL重构方法得到空间二阶精度,采用限制器抑制激波处的非物理振荡。时间方向的积分采用二阶精度的显式多步Runge-Kutta方法,计算格式满足几何守恒律。此外,本文着重研究了刚体动力学方程与流体方程的松耦合求解方法,实现了气动力与运动轨迹在同一物理时间内的关联求解。
     其次,基于多体分离问题物形复杂、运动位移大的特点,采用非结构动网格技术实现对多体相对运动的描述。动网格方法由网格变形与局部网格重构组成。采用网格变形方法实现动边界周围网格的跟随运动,网格变形采用改进后的弹簧近似模型;当计算区域网格质量变差后采用局部重构的方法,重新生成重构区域的网格。本文计算软件实现了从网格质量判定、重构区域窗口划分、重构区域网格重新生成,到新旧网格关系的建立、新旧网格上物理量的信息传递、分离继续计算的网格自主重构技术,计算过程无需人为干预。针对重构后的插值将引入误差这一问题,本文提出了“移动网格传值方法”,采用动网格方法实现了新旧网格的高精度信息传递,方法应用于一维、二维及三维传值问题取得很好的效果。另外,本文引入“八叉树”数据结构,使得三维新旧网格间的查询效率大大提高。
     再次,基于多体分离问题求解的可信度需求,本文采用民机标模外形及类航天飞机外形进行了数值比对,结果与文献中计算、实验结果吻合较好。同时,本文专门设计了用于验证多体分离问题数值方法的激波管实验。采用数值方法模拟得到的实验模型运动轨迹与激波管实验拍摄得到的运动轨迹吻合很好。简单有效的激波管实验不仅是本文数值方法的验证确认,而且能够为精细验证实验及其他动边界实验提供参考。
     最后,采用非结构动网格方法对多个有相对运动的复杂分离问题进行了研究。①针对动网格技术中的难题——“接触/分离”问题,本文提出“虚拟网格通气技术”,成功地解决了整流罩启动解锁、隐身飞机弹舱舱门开启这些物体由完全接触到开缝而后逐渐远离过程的模拟。计算真实再现了整流罩启动解锁初期气体冲击狭缝带来的气动力波动现象及舱门开启后弹舱空腔流动的压力振荡情况。②整流罩分离设计问题。整流罩分离设计虽然存在一些经验可循,但缺乏通用的“安全分离准则”,本文采用非结构动网格方法对某型整流罩分离过程进行了细致分析,从整流罩外形、质心位置及启动干扰影响等多方面分析分离过程的影响因素,提出“质心后移方法”能够确保整流罩的安全分离,该方法在子母弹抛壳中得到了验证。③子母弹抛撒问题。本文对子母弹飞行过程中旋转、切壳及前后舱数十枚子弹抛撒过程的计算,体现了本文计算软件对复杂多体分离问题的处理能力,也为子母弹的设计检验提供了一条有效的研究途径。
Flow problem about Multi-body with relative movement is a special kind of mechanical problem and it widely exists in the field of aeronautics, astronautics and weapons. Because of its complexity, it is hard to research or analysis whether using experimental or numerical simulation methods. As a result, establishing an effective and accurate numerical simulation method is important both in theory and practice. In this dissertation, a numerical method using dynamic unstructured grid is studied and software system is established, which can efficiently and exactly simulate multi-body flow problems with complex configuration and complicated relative motion. The reliability of the simulation system is proved by numerical and experimental verification and it has achieved good effect in application.
     Firstly, considering the request of efficiency and precision in numerical simulation, the Arbitrary-Lagrangian Eulerian (ALE) framework is chosen to solve 3D time-dependent Euler equations and the Van Leer scheme is applied for spatial discretization. Piecewise linear reconstruction or MUSCL reconstruction is used to obtain second-order spatial accuracy and a multi-stage Runge-Kutta time stepping scheme is adopted for second-order temporal accuracy. To eliminate non-physical oscillations near discontinuities, the limiters of Barth & Jespersen and Venkarakrishnan are employed. Furthermore, the 6DOF (degree of freedom) trajectory equations of rigid body dynamics are coupled in the overall algorithm, in which aerodynamic forces and rigid body movements are updated at the same physics time step with loosing coupling.
     Secondly, considering the request for complex configuration and body motion, the dynamic unstructured grid method is studied. The mesh movement strategy is implemented by the combination of mesh deformation and local remeshing. The improved spring analogy model is used to control mesh deformation, which is sufficient for cases with small relative boundary displacement. For cases with relative large boundary displacement, when the mesh elements are severely deformed, Delaunay remeshing method is used to regenerate mesh. Thereon, an automatic technique is studied, which includes the procedure of checking mesh quality, extracting the reconstructed windows, regenerating meshes, finding relationship between new and old grids and transferring solutions from the old mesh to the new one. The new data transfer method, called "moving mesh transfer method", is innovatively proposed to avoid accumulation of interpolation errors. This highly accurate data transferring is implemented by mesh movement strategy, which succeeds in solving one dimensional, two dimensional and three dimensional problems. The "octree" data structure is also used to accelerate the searching operation during interpolation.
     Thirdly, considering the verification and validation of numerical method, numerical simulation of the flow field around the space shuttle and a civilian aircraft is performed and the results are consistent with the experiment data and CFD results in references. In addition, an experiment is specially designed on shock tube to validate the numerical method. The numerical simulation of Ping-Pong's trajectory agrees well with those obtained in experiment. This simple and effective experiment can present verification and validation of numerical method, and offer reference for further experiment research and moving body experiment.
     Lastly, some multi-body flow problems with complex configuration are studied, such as fairing separation, interior weapon cabin's opening and cluster munitions dispersing. Aimed at the difficulty in simulating the procedure of two bodies separating from tangency to large displacement, a new method called "virtual mesh ventilation method" is introduced, and this method factually reproduces aerodynamic fluctuations at the beginning of fairing separation and flow-induced pressure oscillations in 3D cavity after the weapon cabin's door is open. In the research of fairing separation, after comprehensive analysis of factors such as fairing shape, interfering factors and centroid position, a new separation rule called "centroid backward rule" is proposed according to numerical simulation results with dynamic unstructured grid method, and this rule can be regarded as common criteria to ensure safety in fairing separation. Besides, a cluster munitions dispersing procedure, including cluster munitions rotating, cover ejection and plenty of bullets dispersion, is simulated using dynamic unstructured grid method. Results show that the software is competent for solving extraordinarily complicated problems, and it also offers an effective way to design and validate the cluster munitions.
引文
[1] George F. Orton, Lee F. Scuderi. A Hypersonic Cruiser Concept for the 21st Century [R]. 985525. American Institute of Aeronautics and Astronautics, 1998.
    
    [2] David E. Reubush. Hyper-X Stage Separation-Background and Status [C], AIAA 99-4818,9th International Space Planes and Hypersonic Systems and Technologies conference and 3rd Weakly Ionized Gases Workshop. Norfolk,VA,November 1-5,1999.
    
    [3] Charles R. McClinton, David R. Rausch, Joel Sitz, et al. Hyper-X Program Status [C], AIAA 2001-1910, AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference. Kyoto, Japan,April 24-27,2001.
    
    [4] Robert Mercier, Charles McClinton. Hypersonic Propulsion - Transforming the Future of Flight [C], AIAA 2003-2732, AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Y. Dayton, Ohio, July 14-17, 2003.
    
    [5] Phillip J. Joyce, John B. Pomroy, Laurie Grindle. The Hyper-X Launch Vehicle:Challenges and Design Considerations for Hypersonic Flight Testing [C], AIAA 2005-3333, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technolo, 2005.
    
    [6] C.R. McClinton, S.D. Holland, K.E. Rock, et al. Hyper-X Wind Tunnel Program [R]. American Institute of Aeronautics and Astronautics, 1997.
    
    [7] R.Clayton Rogers, Diego P. Capriotti, R. Wayne Guy. Experimental Supersonic Combustion Research at NASA Langley [C], AIAA 98-2506, 1998.
    
    [8] Luis M. Bermudez, Robert D. Gladden, Michael S. Jeffries, et al. Aerodynamic Characterization of the Hyper-X Launch Vehicle [C], AIAA 2003-7074, 12th AIAA International Space Planes and Hypersonic Systems and Technologies.Norfolk, Virginia, December 15-19, 2003.
    
    [9] Xiaobing Luo, Oktay Baysal. Computational Simulation of Hypersonic Vehicle Separation from Its Booster [C], AIAA 99-4807, 1999.
    
    [10] Pieter G. Buning, Tin-Chee Wong, Arthur D. Dilley, et al. Prediction of Hyper-X Stage Separation Aerodynamics Using CFD [C], AIAA 2000-4009, 2000.
    
    [11] Paul V. Tartabini, David M. Bose, John D. McMinn, et al. Hyper-X Stage Separation Trajectory Validation Studies [C], AIAA 2003-5819, AIAA Modeling and Simulation Technologies Conference and Exhibit. Austin, Texas, August 11-14,2003.
    
    [12] Paresh Parikh, Walter Engelund, Sasan Armand, et al. Evaluation of a CFD Method for Aerodynamic Database Development using the Hyper-X Stack Configuration [C], AIAA 2004-5385, 22nd Applied Aerodynamics Conference and Exhibit. Providence, Rhode Island, August 16-19, 2004.
    [13] Peter A. Liever, Sami D. Habchi, Walter C. Engelund, et al. Stage Separation Analysis of the X-43A Research Vehicle [C], AIAA 2004-4725, 22nd Applied Aerodynamics Conference and Exhibit. Providence, Rhode Island, August 16-19,2004.
    [14] Paul V. Tartabini, David M. Bose, Mark N. Thornblom, et al. Mach 10 Stage Separation Analysis for the X43-A [C], AIAA 2006-1038,44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 9-12, 2006.
    [15] Christopher D. Karlgaard, Paul V. Tartabini, Robert C. Blanchard, et al. Hyper-X Post-Flight Trajectory Reconstruction [C], AIAA 2004-4829,AIAA Atmospheric Flight Mechanics Conference and Exhibit. Providence, Rhode Island, August 16-19,2004.
    [16] Christopher D. Karlgaard, John G. Martin, Paul V. Tartabini, et al. Hyper-X Mach 10 Trajectory Reconstruction [C], AIAA 2005-5920,AIAA Atmospheric Flight Mechanics Conference and Exhibit. San Francisco, California, August 15-18,2005.
    [17] K.K. Gupta, L.S. Voelker, C. Bach, et al. CFD-Based Aeroelastic Analysis of the X-43 Hypersonic Flight Vehicle [C], A01-16549,39th Aerospace Sciences Meeting & Exhibit. Reno, Nevada, January 8-11, 2001.
    [18] T. J. Bogar, E. A. Eiswirth, L. M. Couch, et al. Conceptual Design of a Mach 10,Global Reach Reconnaissance Aircraft [C], AIAA 96-2894 , 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Lake Buena Vista, FL,July 1-3, 1996.
    [19] Lawrence Resch, Leonard Zentz, John Allwine. Hypersonic Shroud Separation Testing and Modelling Capabilities at the Naval Surface Warfare Center Hypervelocity Wind Tunnel 9 [C], AIAA 94-2495, 18th AIAA Aerospace Ground Testing Conference. Colorado Springs, CO, June 20-23,1994.
    [20] L. Resch, E. Hedlund, C. Decesaris. Hypersonic Shroud Separation Testing at the Naval Surface Warfare Center Hypervelocity Wind Tunnel 9 [C], AIAA 92-2757, AIAA SDIO Annual Interceptor Technology Conference. Huntsville,AL,May 19-21, 1992.
    [21] S.B. Lumb, Robert W. Cayse. Transient Aerodynamics of a High Dynamic Pressure Shroud Separation for a Ground-Based Interceptor Missile [C],AIAA-92-2820, AIAA SDIO Annual Interceptor Technology Conference.Huntsville, AL, May 19-21,1992.
    [22] R. Chamberlain. Time Accurate Calculation of the HEDI Shroud Separation Event [C], AIAA 92-2775, AIAA SDIO Annual Interceptor Technology Conference. Huntsville, AL, May 19-21, 1992.
    
    [23] R. Chamberlain, J. Baltar. Time Accurate Calculation of Hypersonic Shroud Separation[C],AIAA 93-0317,31st Aerospace Sciences Meeting & Exhibit.Reno,NV,January 11-14,1993.
    [24]S.M.Dash,E.R.Perrell,A.Hosangaditt,et al.Missile Flowfield Modeling Advances and Data Comparisons[C],AIAA-2000-0940,38th Aerospace Sciences Meeting & Exhibit.Reno,NV,January 10-13,2000.
    [25]P.A.Cavallo,S.M.Dash.Aerodynamics of Multi-Body Separation Using Adaptive Unstructured Grids[C],AIAA-2000-4407,18th AIAA Applied Aerodynamics Conference.Denver,CO,August 14-17,2000.
    [26]赵忠良,龙尧松,余立等.高超声速风洞子母弹分离干扰测力试验技术[J].流体力学实验与测量,Vol.18,No.3,P32-35,Sep.,2004.
    [27]雷娟棉,吴甲生,肖雅彬.布撒器—子弹气动干扰风洞实验研究[J].兵工学报,Vol.26 No.4,P535-539,Jul.,2005.
    [28]孙新利,蔡星会,王少龙.子母弹静态开舱抛射实验[J].兵工学报,Vol.23,No.2,P258-260,May.2002.
    [29]陈少松,丁则胜.旋转子母弹后抛撒风洞试验研究[J].流体力学实验与测量,Vol.18,No.2,P43-46,Jun.2004.
    [30]M.Lasek,W.Buler,L.Loroch,et al.Aircraft-Bomb with Wing Adapter Kit Separation Analysis-Summary of the Risk-Reduction Phase Program[C],41st Aerospace Sciences Meeting and Exhibit.Reno,Nevada,January 6-9 2003.
    [31]Michael S.Holden,John Harvey,Matthew Maclean,et al.Development and Application of a New Ground Test Capability to Conduct Full-Scale Shroud and Stage Separation Studies at Duplicated Flight Conditions[C],AIAA 2005-696,43rd AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada,January,2005.
    [32]Michael S.Holden,Timothy P.Wadhams,Gregory J.Smolinski,et al.Experimental and Numerical Studies on Hypersonic Vehicle Performance in the LENS Shock and Expansion Tunnels[C],AIAA 2006-0125,44th AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada,January 9-12,2006.
    [33]James C.Newman,Oktay Baysal.Transonic Solutions of a Wing/Pylon/Finned Store Using Hybrid Domain Decomposition[C],AIAA 1992-4571-CP,1992.
    [34]Lawrence E.Lijewski,Norman E.Suhs.Chimera-Eagle Store Separation[C],AIAA 92-4569,AIAA Atmospheric Flight Mechanics Conference.Hilton Head Island,SC,August 10-12,1992.
    [35]Robert L.Meakin.Computations of the Unsteady Flow About a Generic Wing/Pylon/Finned-Store Configuration[C],AIAA 1992-4568-CP,1992.
    [36]J.U.Ahmad,S.P.Shanks,P.G.Buning.Aerodynamics of Powered Missile Separation from F/A-18 Aircraft[C],AIAA-93-0766,31st Aerospace Sciences Meeting and Exhibit.Reno,NV,January 11-14,1993.
    [37] Marnix F. E. Dillenius, Daniel J. Lesieutre, C. Helen Whittaker, et al. New Applications of Engineering Level Missile Aerodynamics and Store Separation Prediction Methods [C], A1AA 1994-0028, 32nd Aerospace Sciences Meeting and Exhibit. Reno, NV, January 10-13,1994.
    [38] William C. Riner, Bruce A. Jolly, Denise M.Cline, et al. Verification of Transonic Euler Solutions of an F-16 Aircraft with Stores Using a Chimera Grid Scheme [C], 26th Fluid Dynamics Conference. San Diego, June 19-22, 1995.
    [39] Chris Baird, Eric Koper. Seek Eagle F-15E Mixed Loads Certification [R],975521, U.S.Air Force, 1997.
    [40] Robert L. Meakin. Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations [C], AIAA 1993-3350-CP, 1993.
    [41] Robert L. Meakin, Andrew M. Wissink. Unsteady Aerodynamic Simulation of Static and Moving Bodies Using Scalable Computers [C], AIAA 1999-3302,1999.
    [42] Davy M. Belk, Raymond C. Maple. Automated Assembly of Structured Grids for Moving Body Problems [C], AIAA 1995-1680-CP, 1995.
    [43] Magdi Rizk, Steven Ellison, Nathan C. Prewitt. Beggar - a Store Separation Predictive Tool [C], AIAA 2002-3190, 32nd AIAA Fluid Dynamics Conference and Exhibit. St. Louis, Missouri, June 22-26,2002.
    [44] Magdi Rizk, Jae M. Lee. Beggar Code Implementation of the (6+)DOF Capability for Stores with Moving Components [C], AIAA 2004-1251, 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 5-8,2004.
    [45] Capt Jacob A. Freeman. Applied Computational Fluid Dynamics for Aircraft-Store Design, Analysis and Compatibility [C], AIAA 2006-0456, 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 9-12,2006.
    [46] Magdi Rizk, Bruce Jolly. Aerodynamic Simulation of Bodies with Moving Components Using CFD Overset Grid Methods [C], AIAA 2006-1252, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 9-12,2006.
    [47] Richard C. Snyder, William E. Roberts. Application of Platform Knowledge and Adaptation of Store Separation Analysis and Testing to Multiple-Carriage Weapon Suspension Systems: A Case Study in F-16 /BRU-57 [C], AIAA 2006-454, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,January 9-12, 2006.
    [48] Lawrence E. Lijewski. Comparison of Transonic Store Separation Trajectory Predictions Using the PEGASUS/DXEAGLE and BEGGAR Codes [C], AIAA 1997-2202, 1997.
    [49] Jae M. Lee, Kevin S. Dunworth, Donald J. Atkins. Studies of Combined Use of CFD and Wind Tunnel Test Approaches to Simulate a Store Separation from F-15E Using Efficient CFD Database Generation [C], AIAA 2004-4724, 22nd Applied Aerodynamics Conference and Exhibit. Providence, Rhode Island,August 16-19,2004.
    [50] W. L. Sickles, A. G. Denny, R. H. Nichols. Time-Accurate CFD Predictions of the JDAM Separation from an F-18C Aircraft [C], AIAA 2000-0796, 37th Aerospace Sciences Meeting and Exhibit. Reno, NV, January 10-13, 2000.
    [51] H. Ozgur Demir, Nafiz Alemdaroglu. Trajectory Calculation of a Store Released from a Fighter Aircraft [C], AIAA 2005-847, 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 10-13, 2005.
    [52] L.H. Hall, V. Parthasarathy. Validation of an Automated Chimera/6-DOF Methodology for Multiple Moving Body Problems [C], 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, January 12-15, 1998.
    [53] Karnakhya P. Singh, James C. Newman III, Oktay Baysal. Dynamic Unstructured Method for Flows Past Multiple Objects in Relative Motion [C],AIAA 1994-0058, 32nd Aerospace Sciences Meeting and Exhibit. Reno, NV,January 10-13,1994.
    [54] Yen Tu, Ralph W. Noack, David G. Bishop. Three-Dimensional Euler Solutions on Wing-Pylon-Store Configuration with Unstructured Tetrahedral Meshes [C],AIAA 1992-4574-CP, 1992.
    [55] Bruce D. Fairlie, Regina H. Caldeira. Prediction of JDAM Separation Characteristics from the F/A-18C Aircraft [C], AIAA 1999-0126, 37th AIAA Aerospace Sciences Meeting and Exhibit. Rena, NV, January 11-14, 1999.
    [56] Udo Tremel, Stephan M. Hitzel, Kaare A. S(?)rensen, et al. JDAM-Store Separation from an F/A-18C An Application of the Multidisciplinary SimServer-System [C], AIAA 2005-5222, 23rd AIAA Applied Aerodynamics Conference. Toronto, Ontario Canada, June 6-9, 2005.
    [57] Joseph D. Baum, Rainald Lohner. Numerical Simulation of Pilot/Seat Ejection from an F-16 [C], AIAA 1993-0783, 31 st Aerospace Sciences Meeting and Exhibit. Reno, NV, January 11-14, 1993.
    [58] Joseph D. Baum, Rainald Lohner, Thomas J. Marquette, et al. Numerical Simulation of Aircraft Canopy Trajectory [C], AIAA 1997-1885, 1997.
    [59] Dmitri Sharov, Hong Luo, Joseph D. Baum, et al. Implementation of Unstructured Grid GMRES+LU-SGS Method on Shared-Memory, Cache-Based Parallel Computers [C], AIAA 2000-0927, 38th Aerospace Sciences Meeting and Exhibit. Reno, NV, January 10-13, 2000.
    
    [60] Ravi Ramamurti, Rainald Lohner, William Sandberg. Simulation of a Torpedo Launch Using a 3-D Incompressible Finite Element Solver and Adaptive Remeshing [C], AIAA-95-0086, 33rd Aerospace Sciences Meeting and Exhibit.Reno, NV, January 9-12, 1995.
    [61] O.Hassan, E J. Probert, N.P.Weatherill, et al. The Numerical Simulation of Viscous Transonic Flows Using Unstructured Grids [C], AIAA-94-2346, 25th AIAA Fluid Dynamics. Colorado Springs, CO, June 20-23,1994, 1994.
    [62] Mark E. Braaten, Stuart D. Connell. A 3D Unstructured Adaptive Multigrid Scheme for the Navier-Stokes Equations [C], AIAA 1995-1728-CP, 1995.
    [63] Hong Luo, Dmitri Sharov, Joseph D. Baum. Development and Application of Unstructured-Grid Methodologies for Turbulent Flows [C], AIAA 2003-277,41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 6-9,2003.
    [64] Hong Luo, Dmitri Sharov, Joseph D. Baum, et al. Parallel Unstructured Grid GMRES+LU-SGS Method for Turbulent Flows [C], AIAA 2003-273, 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 6-9,2003.
    [65] Eric Loth, Steve Sivier, Joseph Baum. Dusty Detonation Simulation with Unstructured Adaptive Finite Elements [C], AIAA 1997-0805,1997.
    [66] J.M. Weiss, J.Y. Murthy. Computation of Reacting Flowfields Using Unstructured Adaptive Meshes [C], AIAA 1995-0870, 33rd Aerospace Sciences Meeting and Exhibit. Reno, NV, January 9-12, 1995.
    [67] Joseph D. Baum, Hong Luo, Rainald Lohner. Application of Unstructured Adaptive Moving Body Methodology to the Simulation of Fuel Tank Separation from an F-16 Fighter [C], AIAA-97-0166, 1997.
    [68] Hong Luo, Joseph D. Baum, Rainald Lohner. An Accurate, Fast, Matrix-Free Implicit Metho for Computing Unsteady Flows on Unstructured Grids [C],AIAA-99-0937, 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11-14,1999.
    [69] Joseph D. Baum, Hong Luo, Rainald Lohner. The Numerical Simulation of Strongly Unsteady Flows with Hundreds of Moving Bodies [C], AIAA 1998-0788,1998.
    [70] Joseph D. Baum, Hong Luo, Eric L. Mestreau, et al. A Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Fragmentation [C], AIAA 99-0794, 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV,January 11-14,1999.
    [71] Joseph D. Baum, Hong Luo, Rainald Lohner. Numerical Simulation of Blast in the World Trade Center [C], AIAA 1995-0085, 33rd Aerospace Sciences Meeting and Exhibit. Reno, NV, January 9-12, 1995.
    [72] Joseph D. Baum, Hong Luo, Rainald Lohner, et al. A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck [C], AIAA 1996-0795,34th Aerospace Sciences Meeting and Exhibit. Reno, NV, January 15-18, 1996.
    [73] Rainald Lohner, Chi Yang, Juan Cebral, et al. Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids [C],AIAA 1998-2419,1998.
    [74] Joseph D. Baum, Hong Luo, Eric L. Mestreau, et al. New Coupled CFD/CSD Methodology for Modeling Weapon-Target Interaction [C], AlAA 1999-3442,36th Plasmadynamics and Lasers Conference. Norfolk, VA, June 28-July 1,1999.
    [75] Joseph D. Baum, Hong Luo, Eric L. Mestreau, et al. Recent Developments of a Coupled CFD/CSD Methodology [C], AIAA 2001-2618, 15th AIAA Computational Fluid Dynamics Conference. Anaheim, CA, June 11-14,2001.
    [76] Dmitri Sharov, Kazuhiro Nakahashi. Hybrid Prismatic/Tetrahedrai Grid Generation for Viscous Flow Applications [C], AIAA 96-2000, 27th AIAA Fluid Dynamics Conference. New Orleans, LA, June 17-20,1996.
    [77] Ralph W. Noack, John P. Steinbrenner. A Three-Dimensional Hybrid Grid Generation Technique [C], AIAA 1995-1684-CP, 1995.
    [78] D. J Mavriplis. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes [C], 1997.
    [79] Dartzi Pan, Maw-Jyi Chao. Hybrid Octree/Advancing-Front Mesh Generation and Implicit Agglomeration Multigrid Euler Solver [C], AIAA 1999-0918, 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, January 11-14, 1999.
    [80] S.Stokes, J.A.Chappell, M.Leatham. Efficient Numerical Store Trajectory Prediction for Complex Aircraft/Store Configurations [C], AIAA 1999-3712,30th AIAA Fluid Dynamics Conference. Norfolk, VA, June 28-July 1, 1999.
    [81] C. Gao, S. Luo, F. Liu. Calculation of Unsteady Transonic Flow by an Euler Method with Small Perturbation Boundary Conditions [C], AIAA 2003-1267,41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, January 6-9, 2003.
    [82] Darren L.De Zeeuw. A Quadtree Based Adaptively Refined Cartesian-Grid Algorithm for Solution of the Euler Equations [D]. The University of Michigan (Doctor of Philosophy), 1993.
    [83] William John Coirier. An Adaptively-Refined, Cartesian, Cell Based Scheme for the Euler and Navier-Stokes Equations [D]. The University of Michigan (Doctor of Philosophy), 1994.
    [84] Eric Frederick Charlton. An Octree Solution to Conservation-Laws over Arbitrary Regions (OSCAR) with Applications to Aircraft Aerodynamics [D].The University of Michigan (Doctor of Philosophy), 1997.
    [85] Jason Daniel Hunt. An Adaptive 3D Cartesian Approach for the Parallel Computation of Inviscid Flow About Static and Dynamic Configurations [D]:The University of Michigan (Doctor of Philosophy), 2004.
    [86]M.J.Aftosmis,M.J.Berger,S.M.Murman.Applications of Space-Filling Curves to Cartesian Methods for CFD[C],AIAA 2004-1232,42nd Aerospace Sciences Meeting and Exhibit.Reno NV,January 5-8,2004.
    [87]Leonardo Costa Scalabrin,Joao Luiz F.Azevedo.Finite Volume Launch Vehicle Flow Simulations on Unstructured Adaptive Meshes[C],AIAA 2003-0601,41st Aerospace Sciences Meeting and Exhibit,January 6-9,2003.
    [88]M.Madson,S.Moyer,A.Cenko.TranAir Computations of the Flow About a Genetic Wing/Pylon/Finned Store Configuration[C],A1AA 1994-0155,32nd Aerospace Sciences Meeting and Exhibit,January 10-13,1994.
    [89]Paulus R.Lahur,Yoshiaki Nakamura.Simulation of Flow around Moving 3D Body on Unstructured Cartesian Grid[C],AIAA 2001-2605,15th AIAA Computational Fluid Dynamics Conference.Anaheim,California,June 11-14,2001.
    [90]Hong Luo,Joseph D.Baum,Rainald L(o|¨)hner.A Hybrid Cartesian Grid and Gridless Method for Compressible Flows[C],AIAA 2005-492,43rd AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada,January 10-13,2005.
    [91]Hong Luo,Joseph D.Baum,Rainald L(o|¨)hner.A Hybrid Building-Block and Gridless Method for Compressible Flows[C],AIAA 2006-3710,36th AIAA Fluid Dynamics Conference and Exhibit.San Francisco,California,June 5-8,2006.
    [92]G.Harish,M.Pavanakumar,K.Anandhanarayanan.Store Separation Dynamics Using Grid-Free Euler Solver[C],AIAA 2006-3650,24th Applied Aerodynamics Conference.San Francisco,California,June 5-8,2006.
    [93]刘刚,朱国林.亚声速外挂物分离轨迹计算[C],第七届全国计算流体力学会议论文集,P282-285,1994.
    [94]胡汉东,杨其德,马明生.关于机弹干扰下外挂物气动力系数及投放轨迹的数值模拟[C],第九届全国计算流体力学会议论文集.P408-413,1998.
    [95]杨永建,张鲁民.应用重叠网格技术求解复杂组合体无粘流场[J].空气动力学学报,1991,第一期.
    [96]江雄.直升机旋翼/机身干扰流场数值模拟方法研究[D]:中国空气动力研究与发展中心(博士论文),2001.
    [97]招启军,徐国华.计入桨叶运动的旋翼CFD网格设计技术[J].南京航空航天大学学报,Vol.36,No.3,June.2004.
    [98]招启军,徐国华.使用高阶逆风通量差分裂格式的悬停旋翼流场数值模拟[J].航空动力学报,Vol.20,No.2,Apr.2005.
    [99]招启军,徐国华.直升机旋翼前飞流场的高阶格式数值模拟[C],第十二届全国计算流体力学会议.西安,8月,2004.
    [100]Xu Guo-Hua,Zhao Qi-Jun,Gao Zheng,et al.Prediction of Aerodynamic Interactions of Helicopter Rotor on Its Fuselage[J].中国航空学报(英文版)Vol.15,No.1,Feb,2002.
    [101]徐国华,招启军.直升机旋翼计算流体力学的研究进展[J].南京航空航天大学学报,Vol.35,No-3,June.2003.
    [102]叶靓,招启军,徐国华.基于非结构嵌套网格的旋翼悬停流场计算[C],第十三届计算流体力学会议.辽宁丹东,7月,2007.
    [103]杨爱明,翁培奋,乔志德.用多重网格方法计算旋翼跨声速无粘流场[J].空气动力学学报,Vol.22,No.3,Sep.2004.
    [104]杨爱明,翁培奋,乔志德.悬停旋翼跨声速无粘流场计算中的多重网格方法[C],第十二届全国计算流体力学会议.西安,8月,2004.
    [105]许和勇,叶正寅,王刚等.用非结构嵌套网格方法计算旋翼前飞流场[C],第十三届计算流体力学会议.辽宁丹东,2007.
    [106]李彬,唐志共,邓有奇等.用非结构重叠网格数值模拟外挂投放[C],第十三届计算流体力学会议.辽宁丹东,2007.
    [107]李孝伟,范绪箕.基于动态嵌套网格的飞行器外挂物投放的数值模拟[J].空气动力学学报,Vol.22,No.1,Mar.2004.
    [108]李孝伟,赵小辉.飞行器外挂物投放的数值模拟[C],第十二届全国计算流体力学会议.西安,8月,2004.
    [109]李孝伟,范绪箕,乔志德.嵌套网格技术中的Collar网格和虚拟网格方法[J].计算物理,Vol.20,No.2,Mar.2003.
    [110]祁洋,范绪箕.飞机安全性设计的外挂物投放数值方法[J].上海交通大学学报,Vol.39,No.5,May.2005.
    [111]张震霖,高超,李育斌等.外挂物投放技术的数值方法研究[C],第十二届全国计算流体力学会议.西安,8月,2004.
    [112]张玉东,纪楚群.子母弹分离过程的数值模拟方法[J].空气动力学学报,Vol.21,No.1,Mar.2003.
    [113]李亭鹤,阎超,李跃军.重叠网格技术中割补法的研究与改进[J].北京航空航天大学学报,Vol.31,No.4,Apr.2005.
    [114]杨春信,韩海鹰,龚洁等.弹射过程座舱盖抛放轨迹的预测[J].空气动力学学报,Vol.23,No.1,Mar.2005.
    [115]韩海鹰,杨春信,杨新明等.座舱盖抛放过程中的非定常气动特性研究[J].航空学报,Vol.26,No.16,Nov.2005.
    [116]韩海鹰,杨春信,杨新明等.飞机应急抛盖技术研究[C],中国第一届近代空气动力学与气动热力学会议.绵阳,8月,2006.
    [117]张来平,杨永健,张涵信.子母弹分离数值模拟[C],第十二届全国流体力学会议.西安,8月,2004.
    [118]常兴华,段旭鹏,张来平等.三鱼群游流动干扰的数值模拟[C],第十三届计算流体力学会议.辽宁丹东,7月,2007.
    [119]雷娟棉,苗瑞生,居贤铭.战术火箭子母战斗部第一次抛撒分离多体干扰流场数值模拟[J].北京理工大学学报,Vol.24,No.9,Sep.2004.
    [120]张军,谭俊杰,耿继辉.含运动边界二维多体干扰流场的数值模拟[J].空气动力学学报,Vol.21,No.4,Dec.2003.
    [121]谭俊杰,张军,耿继辉.激波诱导圆柱运动数值模拟[J].南京理工大学学报,Vol.27,No.5,Oct.2003.
    [122]张军,耿继辉,谭俊杰.三维非结构运动网格的生成[J].弹道学报,Vol.16,No.1,Mar.2004.
    [123]郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].湖南长沙:国防科学与技术大学(博士),2002.
    [124]肖涵山,陈作斌,刘刚等.基于Euler方程的三维自适应笛卡尔网格应用研究[J].空气动力学学报,Vol.21,No.2,June.2003.
    [125]黄明恪,陈红全.用非结构直角网格和欧拉方程计算运载火箭绕流[J].宇航学报,Vol.23,No.5,Sep.2002.
    [126]黄明恪.用非结构直角网格和欧拉方程计算飞机绕流[J].航空学报,Vol.23,No.6.Nov.2002.
    [127]桑为民,李凤蔚,鄂秦.三维直角叉树切割网格Euler方程自适应算法[J].空气动力学学报,Vol.20,No.4,Dec.2004.
    [128]桑为民,李凤蔚,鄂秦.应用笛卡尔非结构切割网格进行外挂物投放的数值模拟[J].计算物理,Vol.19,No.3,May.2002.
    [129]Joseph D.Baum,Hong Luo,Rainald L(o|¨)hner.Application of Unstructured Adaptive Moving Body Methodology to the Simulation of Fuel Tank Separation from an F-16 Fighter[C],AIAA 97-0166,1997.
    [130]王巍,刘君,白晓征等.非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用[J].空气动力学学报,Vol.26,No.1,2008.
    [131]J.Blazek.Computational Fluid Dynamics:Principles and Applications[J].ELSEVIER,2001.
    [132]范晶晶,袁武,康宏琳等.上风格式熵条件和捕捉间断的性能分析[C],第十三届计算流体力学会议.辽宁丹东,7月,2007.
    [133]周禹,阎超,康宏琳.上风格式数值耗散性研究[C],第十三届计算流体力学会议.辽宁丹东,7月,2007.
    [134]Hong Luo,Joseph D.Baum,Rainald L(o|¨)hner.Numerical Solution of the Euler Equations for Complex Aerodynamic Configurations Using an Edge-Based Finite Element Scheme[C],AIAA 1993-2933,AIAA 24th Fluid Dynamics Conference.Orlando,FL,July 6-9,1993.
    [135]I.H.Tristanto,Q.Li,G.J.Page,et al.On the Effect of Convective Flux Formulation for LES of Compressible Flows Using Hybrid Unstructured Meshes [C],AIAA 2006-3739,36th AIAA Fluid Dynamics Conference and Exhibit.San Francisco,California,June 5-8,2006.
    [136]Barth.T J,Jespersen.D C.The Design and Application of Upwind Schemes on Unstructured Meshes[C],AIAA 89-0366,1989.
    [137]V.Venkatakrishnan.On the Accuracy of Limiters and Convergence to Steady State Solutions[C],AIAA 93-0880,31st Aerospace Sciences Meeting & Exhibit.Reno,NV,January 11-14,1993.
    [138]Jameson A,Schmidt W,Turkel E.Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes[C].AIAA 1981-1259,1981.
    [139]刘君,王巍,白晓征.多体相对运动非定常流动的高精度数值模拟技术及实验验证[C],空天飞行器的若干重大基础问题——2007年度学术交流会文集,2008.
    [140]朱培烨,王红建,王继新.三维复杂域的delaunay三角剖分[J].航空计算技术,第30卷,第1期:P1-5,2000.
    [141]张军,谭俊杰.三维非结构网格的生成及优化[J].航空计算技术,Vol.33,No.4,P31-34,Dec.2003.
    [142]刘学强,伍贻兆.三维复杂外形非结构网格的生成及应用[J].南京航空航天大学学报,Vol.32,No.3,P533-538,Oct.2000.
    [143]Green P J,Sibson R.Computing the Dirichlet Tessellation in the Plane[J].The Computer J.,1977,21(1977),P168-173.
    [144]Bowyer A.Computing Dirichlet Tessellations[J].The Computer J.,1981,24(1981),P162-166.
    [145]Waston D F.Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes[J].The Computer J.,1981,24(1981),P167-172.
    [146]Miller G L,Talmor D,Teng S H,et al.A Delaunay Based Numerical Method for Three Dimensions:Generation,Formulation,and Partition[C],Proceeding of 27th Annual ACM Symposium on the Theory of Computing.P683-692,May,1995.
    [147]Bonet J.An Alternating Digital Tree(Adt)Algorithm for 3d Geometric Searching and Intersection Problems[J].international Journal of Numerical Methods in Engineering,1991(31),P1-17.
    [148]Pendergraft O C,Re R J,Kariya T T.Installation Effects of Wing-Mounted Turbofan Nacelle-Pylons on a 1/17-Scale,Twin-Engine,Low-Wing Transport Model[R].National Aeronautics and Space Administration,1992.
    [149]陈坚强,赫新,张毅峰等.跨大气层飞行器rcs干扰数值模拟研究[C],第十二届全国计算流体力学会议论文.陕西西安,8月,2004.
    [150]白晓征,刘君,郭正等.冲压发动机进气道压力振荡过程的数值研究[J].推进技术(录用),2008.
    [151]Neal T.Frink.Recent Progress toward a Three-Dimensional Unstructured Navier-Stokes Flow Solver[C],32nd Aerospace Sciences Meeting.Reno,Nevada,1994,January 10-13,1994.
    [152]Maccormack R W.A Perspective on a Quarter Century of Cfd Research[C],AIAA-93-3291-CP,1993.
    [153]邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认[J].力学进展,Vol.37,No.2,May.2007.
    [154]徐光宝,姜东焕.自适应多尺度Canny边缘检测[J].山东建筑大学学报,Vol.21,No.4,Aug.2006.
    [155]候中喜,易仕和,王承尧.超声速开式空腔流动的数值模拟[J].推进技术,22(5),P400-403,2001.
    [156]罗柏华.二维高亚音速空腔流激振荡的数值模拟研究[J].空气动力学学报,Vol.20,No.1,Mar.2002.
    [157]史爱明,张黎,杨永年.飞机内埋式弹舱的复杂流场数值模拟[C],第十二届计算流体力学会议.陕西西安,8月,2004.
    [158]刘君,王巍,郭正等.稠密大气层内火箭头罩动态分离过程数值模拟[J].弹道学报,Vol.18,No.3,P34-38.,2006.
    [159]王巍,刘君,郭正.子母弹抛壳过程非定常流动的数值模拟[J].空气动力学学报,Vol.24,No.3,P285-288,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700