基于实验的反演识别方法与粘接界面力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘接结构广泛应用于工业领域,为进一步满足工程应用中对材料力学特性的分析与评价,需要针对实际粘接结构对其界面力学特性进行表征与预估。现代实验力学的发展,可以为界面力学特性表征实验提供丰富的全场信息,但是难以实现粘接界面参量的直接测量。同时,界面力学模型的发展为粘接界面力学分析提供了理论基础。因此,将实验与力学模型有机结合起来,基于实验测试信息,发展一种新的求解技术,使其能够用于非线性、多参量复杂问题的表征与求解。本文以基于实验的一体化反演识别方法与考虑时间相关效应的粘接界面力学性能表征为主要研究内容。
     本文提出了一种新的基于实验的一体化反演识别技术框架,以实验测试数据为依据,将力学建模以及反演识别技术路线有机结合起来,搭建了从实验数据空间到模型分析的桥梁,实现粘接结构界面力学特性参数的识别与提取。特别是提出一种独立实验验证方法,通过比较独立实验测试结果与基于识别参数的数值模拟结果的一致性,对识别方法解的准确性进行有效地评价。
     本文将这种基于实验的反演识别一体化的技术框架应用于真实金属粘接界面以及软材料粘接界面时间相关的界面力学性能分析中。首先,针对粘接结构中粘接界面具有时间相关的特性,在Needleman内聚力模型的基础上,提出一种新的考虑时间效应的粘接界面力学模型。这一模型通过强度、刚度和粘性系数实现了对复杂粘接结构界面作用区域的参数化表征。基于连续全场实验测试的力学响应数据,结合考虑时间效应的粘接界面理论模型进行有限元数值模拟分析,借助于识别方法,实现了单向拉伸和剪切载荷作用下对粘接件界面相关力学参数的反演识别,有效地解决了粘接结构中对界面力学特性难以实现直接实验测量的困难。最后,通过拉、剪不同加载方式作用下,软硬不同粘接结构界面力学性能结果的综合分析,证明了本文提出的新的粘接界面模型和基于实验的反演识别方法可以有效地表征工程应用中的真实粘接结构。
Adhesive structures have been widely used for technological applications. In order to analyze and estimate the mechanical properties of real adhesive structures, it is necessary to characterize and predict the interfacial mechanical properties. With the development of modern experimental mechanics, the full-field measuring information can be obtained during the interfacial mechanical experiments. However, it is difficult in determining the adhesive interfacial parameters directly from the experimental results. At the same time, based on the development of interfacial mechanical model, theory of the adhesive interfacial mechanical analysis can be provided. Consequently, a new solving technique is developed based on the results of experimental measurement, which can effectively characterize and solve nonlinear, multi-parameter problems, through combining the experimental measurement and numerical simulation. The focus of this paper is to study on the experiment-based inverse/identification method and time-dependent adhesive interfacial mechanical characterization.
     Based on the experimental measurement data, a novel experiment-based inverse/identification technique is presented. Combining the mechanical model and inverse/identification technique, the bridge between the data space with the model analysis is constructed for identifying the complex interfacial mechanical parameters. Finally, independent experimental verification is performed and the accuracy of the identification results can be effectively provided by comparing the independent experimental results with the numerical simulation based on the identification parameters.
     In this paper, the experiment-based inverse/identification technique is applied to the study of time-dependent interfacial mechanical properties in metal adhesive structure and soft material adhesive structure. First, to describe the time-dependent interfacial mechanical properties in adhesive structure, a novel time-dependent adhesive interfacial mechanical model is provided based on the Needleman cohesive zone model. In this model, the complex adhesive interfacial properties can be characterized as three interfacial parameters, such as cohesive strength, cohesive stiffness and vicious coefficient. Meanwhile, based on the real-time full-field experimental results, combing the numerical simulation results on the basis of the time-dependent adhesive interfacial model and identification technique, the interfacial mechanical parameters under the normal tension and shear loading can be identified. As a result, it is easy to overcome the difficulty of measuring the interfacial mechanical properties in adhesive structure experiment directly. Finally, from the general results of interfacial mechanical properties in soft and mental adhesive structures under tension and shear loading respectively, it is verified that the novel adhesive interfacial model proposed in this paper and the experiment-based inverse/identification are effective to characterize the mechanical properties of the real adhesive structures in technological application.
引文
[1] Yang QD, Thouless MD, Mixed-mode fracture analysis of plastically deforming adhesie joints, International Journal of Fracture, 2001, 110: 175-187
    [2] Ferracin T, Landis CM, Delannay F, et al., On the determination of the cohesive zone properties of an adhesive layer from the analysis of the wedge-peel test, International Journal of Solids and Structures, 2003, 40: 2889-2904.
    [3]许金泉,界面力学,北京,科学出版社,2006
    [4] Alfredsson KS, Hogberg JL, Energy release rate and mode-mixity of adhesive joint specimens, International Journal of Fracture, 2007, 144: 267-283.
    [5] You M, Zheng Y, Zheng XL, et al., Effect of metal as part fillet on the tensile shear strength of adhesively bonded single lap joints, International Journal of Adhesion and Adhesives, 2003, 23(5): 365-369.
    [6] Antonio FA, Plinio de OB, Stress analysis on a wavy-lap bonded joint for composites, International Journal of Adhesion and Adhesives, 2004(5), 24: 407-414
    [7] Chai H, Chiang MYM, A crack propagation criterion based on local shear strain in adhesive bonds subjected to shear, Journal of the Mechanics Physics Solids, 1996, 44(10): 1669-1689.
    [8] Jagota A, Bennison SJ, Smith CA, Analysis of a compressive shear test for adhesion between elastomeric polymers and rigid substrates, International Journal of Fracture, 2000, 104: 105-130.
    [9] You M, Zheng Y, Zheng XL, et al., Effect of metal as part of fillet on the tensile shear strength of adhesively bonded sigle lap joints, International Journal of Adhesion & Adhesives, 2003, 23: 365-369.
    [10] Leffler K, Alfredsson KS, Stigh U, Shear behaviour of adhesive layers, International Journal of Solids and Structures, 2007, 44: 530545.
    [11] Pirondi A, Nicoletto G, Mixed mode I/II fracture toughness of bonded joints, International Journal of Adhesion & Adhesives, 2002, 22: 109-117.
    [12] Choupani N, Interfacial mixed-mode fracture characterization of adhesively bonded joints, International Journal of Adhesion & Adhesives, 2008, 28: 267-282.
    [13] Price AJ, Sargent JP, Small scale aluminium/epoxy peel test specimens and measurement of ashesive fracture energy, International Journal of Adhesion & Adhesives, 1997, 17: 27-32.
    [14] Andersson T, Stigh U, The stress-elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces, International Journal of Solids and Sturctures, 2004, 41: 413-434.
    [15] Andersson T, Biel A, On the effective constitutive properties of a thin adhesive layer loaded in peel, International Journal of Fracture, 2006, 141: 227-246.
    [16]税国双,汪越胜,曲建民,材料力学性能退化的超声无损检测与评价,力学进展,2005,35(1):52-68。
    [17] Erdogan F, Sih GC, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 1963, 85: 519-527.
    [18] Maiti SK, Smith RA, Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field, part I: Slit and elliptical cracks under uniaxial tensile loading, International Journal of Fracture, 1983, 23: 281-295.
    [19] Hussain MA, Pu SL, Underwood J, Strain-energy-release rate for a crack under combined mode I and mode II, ASTM-STP-560, 1974: 2-28.
    [20] Cotterrll B, Rice JR, Slightly curved or kinked cracks, International Journal of Fracture, 1980, 16: 155-169.
    [21] Hutchinson JW, Suo Z, Mixed mode cracking in layered materials, Advances in Applied Mechanics 1992, 29: 63-191.
    [22] Jenq YS, Shah SP, Mixed mode fracture of concrete, International Journal of Fracture, 1988, 38: 123-142.
    [23] Chiu WC, Thouless MD, Analysis of chipping in brittle materials, International Journal of Fracture, 1998, 90: 287-298.
    [24] Chen B, Dillard DA, Dillard JG, et al., Crack path selection in adhesively-bonded joints: The role of material properties, Journal of Adhesion, 2001, 75: 405-434.
    [25] Chen B, Dillard DA, Dillard JG, et al., Crack path selection in adhesively bonded joints: The roles of external loads and speciment geometry, International Journal of Fracture, 2002, 114: 167-190.
    [26] Ioka S, Masuda K, Kubo S, Singular stress field near the edge of interface of bonded dissimilar materials with an interlayer, International Journal of Solids and Structures, 2007, 44: 6232-6238.
    [27] Barenblatt GI, The formation of equilibrium cracks during brittle fracture: general ideals and hypothese, axially symmetric crack, Applied Mathematics and Mechanics, 1959, 23: 622-636.
    [28] Dugdale DS, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 1960, 8: 100-104.
    [29] Needleman A, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, 1987, 54: 525-531.
    [30] Ungsuwarungsri T, Knauss WG, Role of damage-softened material behavior in the fracdture of composites and adhesives, International Journal of Fracture, 1987, 35(3): 221-241.
    [31] Tvergaard V, Hutchinson JW, The relation between crack growth resistance and fracture parameters in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 1992, 40: 1377-1397.
    [32] Zavattieri PD, Espinosa HD, Grain lever analysis of crack initiation and propagation in brittle materials, Acta Materialia, 2001, 49 (20): 4291-4311.
    [33] Rahulkmar P, Jagota A, Bennison SJ, et al., Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers, International Journal of Solids and Sturctures, 2000, 37: 1873-1897.
    [34] Tijssens MGA, Giessen EVD, Sluys LJ, Simulation of mode I crack growth in polymers by crazing, International Journal of Solids and Sturctures, 2000, 37: 7307-7327.
    [35] Shahwan K, Waas AM, Non-self-similar decohesion along a finite interface of unilaterally constrained delaminations, Proceeding of the Royal Society, 1997, 453A: 515-550.
    [36] Song SJ, Waas AM, An energy based model for mixed mode failure of laminated composites, AIAA Journal, 1995, 33: 739-745.
    [37] Song SJ, Waas AM, Modeling crack growth in laminates via a novel strength criterion, ASME Transactions, Journal of Engineering Materials and Technology, 1994, 116: 512-516.
    [38] Yang QD, Thouless MD, Ward SM, Numerical simulation of adhesively bonded beams failing with extensive plastic deformation, Journal of the Mechanics and Physics of Solids, 1999, 47: 1337-1353.
    [39] Yang QD, Thouless MD, Ward SM, Elastic-plastic mode-II fracture of adhesive joints, International Journal of Solids and Structures, 2001, 38: 3251-3262.
    [40] Yang QD, Thouless MD, Mixed-mode fracture analysis of plastically-deforming adhesive joints, International Journal of Fracture, 2001, 110: 175-187.
    [41] Thouless MD, Yang QD, A parametric study of the peel test, International Journal of Adhesion & Adhesives, 2008, 28: 176-184.
    [42] Kafkalidis MS, Thouless MD, The effects of geometry and material properties on the fracture of single lap-shear joints, International Journal of Solids and Structures, 2002, 39: 4367-4383.
    [43] Hogberg JL, Mixed mode cohesive law, International Journal of Fracture, 2006, 141: 549-559.
    [44]牛文鑫,冷晔,丁祖泉等,小肠黏膜下层单轴拉伸参考状态的选取及其应力应变关系,中国生物医学工程学报,2007,26(2):265-269.
    [45]张朝志,金属焊接接头疲劳裂纹萌生寿命估算方法的研究,机械设计与制造,2005,3:16-17.
    [46]喻炳,施绍裘,PP/PA共混高聚物在冲击载荷下的热粘弹性力学响应,宁波大学学报(理工版),2005,18(2):163-169.
    [47]陈瑞芳,花银群,蔡兰,激光冲击波诱发的钢材料残余应力的估算,中国激光,2006,33(2):278-282.
    [48] Grediac M, Toussaint E, Pierron F, Special virtual fields for the direct determination of material parameters with the virtual fields method. 1- Principle and definition. International Journal of Solids and Structures, 2002, 39: 2691-1705.
    [49] Avril S, Grediac M, Pierron F, Sensitivity of the virtual fields method to noisy data. Computational Mechanics, 2004, 34: 439-452.
    [50] Grediac M, Toussaint E, Pierron F, Special virtual fields for the direct determination of material parameters with the virtual fields method. 3– Application to the bending rigidities of anisotropic plates. International Journal of Solids and Structures, 2003, 40 (10): 2401-2419.
    [51] Syed-Muhammad K, Toussaint E, Grediac M, et al., Characterization of composite plates using the virtual fields method with optimized loading conditions, Composite Structures, 2008, 85: 70-82.
    [52] Avril S, Pierron F. Sutton MA, et al., Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method, Mechanics of Materials, 2008, 40: 729-742.
    [53] Kim JH, Pierron F, Wisnom MR, et al., Identitication of the local stiffness reduction of a damaged composite plate using the virtual fields method, Compositers: Part A, 2007, 38: 2065-2075.
    [54] Bui HD, Constantinescu A, Spatial localization of the error of constitutive law for the identification of defects in elastic solids, Archives of Mechanics, 2000, 52: 511-522.
    [55] Geymonat G, Hild F, Pagano S, Identification of elastic parameters by displacement field measurement, Comptes Rendus Mecanique, 2002, 330: 403-408.
    [56] Ikehata M, Inversion formulas for the linearzed problem for an inverse boundary value problem in elastic prospection, SIAM Journal on Applied Mathematics, 1990, 50: 1635-1644.
    [57] Claire D, Hild F, Roux S, Identification of damaged fields using kinematic measurements, Comptes Rendus Mecanique, 2002, 330 (11): 729-734.
    [58]李晓奇,数字图像处理在实验力学中的应用:[硕士学位论文],天津;天津大学,2007.
    [59] Coker EG, Filon LNG, A treatise on photoelasticity, Cambridge Uni. Press, London, 1931, 143-145.
    [60] Frocht MM, Photoelasticity, John Wiley & Sons, New York, 1941, 1: 252-286.
    [61] Kobayashi AS, Hybrid experimental-numerical stress analysis, Experimental Mechanics, 1983, 23 (3): 338-347.
    [62] Chandrashekhara K, Jacobs KA, Experimental-numerical hybrid technique for two-dimensional stress, Strain, 1977 13(4): 25-31.
    [63] Chandrashekhara K, Jacobs KA, An experimental-numerical hybrid technique for three-dimensional stress analysis, International Journal for Numerical Methods in Engineering, 1977, 11 (12): 1845-1863.
    [64] Laermann KH, Recent developments and further aspects of experimental stress analysis in the Federal Republic of Germany and Western Europe, Experimental Mechanics, 1981, 21: 49-57.
    [65] Laermann KH, Hybrid analysis of plate problems, Experimental Mechanics, 1981, 21: 386-388.
    [66] Cardon AH, Sol H, Wilde DWP, et al., Mixed numerical-experimental techniques: past, present and future. Recent Advances in Experimental Mechanics, Kulwer Academic Publishers, Netherlands, 2002, 551-560.
    [67] Laermann KH, Hybrid analysis of two- and three- dimensional solids composd of different materials, Optics and Lasers in Engineering , 1999, 32: 183-203.
    [68] Kang YL, Laermann KH, Jia YQ, Experimental analysis for bonded biomaterial beam under bending load, Measurement, 1995, 15: 85-90.
    [69]亢一澜,贾有权,Laermann KH,异质双材料粘接梁的界面端部应力吉端部龟裂破坏的实验应力分析,固体力学学报,1995,16 (2):140-146.
    [70] Lin ST, Rowlands RE, Hybrid stress anslysis, Optics and Lasers in Engineering, 1999, 32: 257-298.
    [71] Kobayashi AS, Hybrid method in elastic and elastoplastic fracture mechanics, Optics and Lasers in Engineering, 1999, 32: 299-323.
    [72] Nishioka T, Hybrid numerical methods in static and dynamic fracdture mechanics, Optics and Lasers in Engineering, 1999, 32: 205-255.
    [73] Woo SLY, Kobayashi AS, Schlegel WA, et al., Nonlinear material properties of intact cornea and sclera, Experimental Eye Research, 1972, 14 (1): 29-39.
    [74]方如华,王冬梅,瓷修复体界面断裂行为的模拟实验研究,力学季刊,2002, 23 (3): 302-310.
    [75] Liu G.R., Han X., Computational inverse techniques in nondestructive evaluation, 2003, CRC Press LLC.
    [76]解可新,韩健,林友联,最优化方法,天津:天津大学出版社,2004.
    [77]姚姚,蒙特卡洛非线性反演方法。北京:冶金工业出版社,1997.
    [78]蒋龙聪,刘江平,模拟退火算法及其改进,工程地球物理学报,2007,4(2):135-140.
    [79]王登刚,刘迎曦,李守巨。非线性最优化问题的一种混合解法。工程力学,2001,18(3):61-66 .
    [80]尤勇,王孙安,盛万兴,新型混沌优化方法的研究及应用,西安交通大学学报,2003,37(1):69-72 .
    [81]陶厚鑫,陈立,神经网络控制及BP算法,技术与市场,2008,1:43-44.
    [82] Liu GR, Chen SC, Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm, Computer Methods in Applied Mechanics and Engineering, 2001,190 (42): 5505-5514.
    [83] Lin XH, Kang YL, Qin QH, et al., Identification of interfacial parameters in a particle reinforced metal matrix composite Al6061-10%Al2O3 by hybrid method and genetic algorithm, Computational Materials Science, 2005, 32 (1): 47-56.
    [84] Vishnuvardhan J, Krishnamurthy CV, Balasubramaniam K, Determination of material symmetries from ultrasonic velocity measurements: A genetic algorithm based blind inversion method, Composites Science and Technology, 2008, 68 (3-4): 862-871.
    [85] Salomonsson K, Andersson T, Modeling and parameter calibration of an adhesive layer at the meso level, Mechanics of Materials, 2008, 40 (1-2): 48-65.
    [86] Holland JH, Adaptation in nature and artificial systems, 1992, MIT Press.
    [87] De Jong KA, An analysis of the behavior of a class of genetic adaptive systems, Ph.D Dissertation, University of Michigan, No. 76-9381, 1975.
    [88] Goldberg DE, Genetic algorithms in search, Optimization and machine learning, Adhesion-Wesley, 1989.
    [89]黄文虎,马兴瑞,陶良等,弹性动力学反问题的研究进展,哈尔滨工业大学学报,1997,29(1):1-5.
    [90]刘家琦,数学物理方程反问题的分类及不适定问题求解,计算数学和应用数学,1983,4:43-64.
    [91]杨文采,地球物理反演理论与方法,北京:地质出版社,1997.
    [92] Ge L, Song TT, Damage identification through regularization method. I: theory, Journal of Engineering Mechanics, 1998, 124(1): 103-108.
    [93] Ge L, Song TT, Damage identification through regularization method. II: applications, Journal of Engineering Mechanics, 1998, 124(1): 109-116.
    [94] Galvetti D, Morigi S, Reichel L, et al., Tikhonov regularization and the L-curve for large discrete ill-posed problems, Journal of Computational and Applied Mathematics, 2000, 123: 423-446.
    [95] Law SS, Chen THT, Zhu QX, et al., Regularization in moving force identification, Journal of Engineering Mechanics, 2001, 127(2): 136-148.
    [96] Dong ZF, Wu YL, Micromechanics analysis of particulate-reinforces composites and their failure mechanics, Journal of Materials Science, 1996, 31: 4401-4405.
    [97]陈陆平,潘敬哲,钱令希,复合材料纤维/基体界面失效问题的参变量有限元数值模拟,复合材料学报,1993,3:71-75.
    [98]叶碧泉,弈旭明,靳胜勇等,用界面单元法分析复合材料界面力学性能,应用数学和力学,1996,17:343-348.
    [99] Needleman A, An analysis of decohesion along an imperfect interface, International Journal of Fracture, 1990, 42: 21-40.
    [100]周储伟,杨卫,方岱宁,内聚力界面单元与复合材料的界面损伤分析,力学学报,1999,31(3):372-377.
    [101]牛鑫瑞,余寿文,冯西桥,含圆形夹杂两相材料界面变形与损伤特性的数值模拟,机械强度,2005,27(5):681-686.
    [102] Lin XH, Kang YL, Qin QH, et al., Identification of interfacial parameters in a particle reinforced metal matrix composite Al6061-10%Al2O3 by hybrid method and genetic algorithm, Computational Materials Science, 2005, 32: 47-56.
    [103] Schapery RA, Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage, International Journal of Fracture, 1999, 97: 33-66.
    [104] Allen DH, Searcy CR, A micromechanical model for a viscoelastic cohesie zone, International Journal of Fracture, 2001, 107(2): 159-176.
    [105] Landis CM, Pardoen T, Hutchinson JW, Crack velocity dependent toughness in rate dependent materials, Mechanics of Materials, 2000, 32: 663-678.
    [106] Corigliano A, Michele R, Rate-dependent interface models: formulation and numerical applications, International Journal of Solids and Structures, 2001, 38: 547-576.
    [107] Chaboche JL, Feyel F, Monerie Y, et al., Interface debonding models: a viscous regularization with a limited rate dependency, International Journal of Solids and Structures, 2001, 38: 3127-3160.
    [108] Lee Y, Prakash V, Dynamic brittle fracture of high strength structural steel under conditions of plane strain, International Journal of Solids and Structures, 1999, 36: 3293-3337.
    [109] Li YN, Bazant ZP, Cohesive crack model with rate-dependent opening and viscoelasticity: II. Numerical algorithm, behavior and size effect, International Journal of Fracture, 1997, 86: 267-288.
    [110] Costanzo F, Walton JR, A study of dynamic crack growth in elastic materials using a cohesive zone model, International Journal of Engineering Science, 1997, 35: 1085-1114.
    [111] Liechti KM, Wu JD, Mixed-mode, time-dependent rubber/metal debonding, Journal of the Mechanics and Physics of Solids, 2001, 49: 1039-1072.
    [112] Xu CC, Siegmund T, Ramani K, Rate-dependnet crack growth in adhesives I. Modeling approach, International Journal of Adhesion & Adhesives, 2003, 23: 9-13.
    [113] Xu CC, Siegmund T, Ramani K, Rate-dependnet crack growth in adhesives II. Experiments and analysis , International Journal of Adhesion & Adhesives, 2003, 23: 15-22.
    [114] ABAQUS/Standard User's Manual for Version 6.2, vol. I, II and III, Hibbitt, Karlsson & Sorensen, Inc.2001
    [115] Anon., ASTM D3433-Standard test method for fracture strength in cleavage of adhesives in bonded metal joints. Philadelphia, PA, USA: American Society for Testing and Material, 1999 (Reapproved 2005).
    [116] Kadioglu F, Adams RD, Guild FJ, The shear stress-strain behaviour of low-modulus structural adhesives, Journal of Adhesion, 2000, 73 (2-3): 117-133.
    [117] Alfredsson KS, On the determination of constitutive properties of adhesive layers loaded in shear- an inverse solution, International Journal of Fracture, 2003, 123 (1-2): 49-62.
    [118]肖霞,橡胶类大变形材料断裂问题的数值研究:[硕士学位论文],天津;天津大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700