介电型EAP换能器机电耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴智能材料,介电型EAP(Electroactive Polymer,电活性聚合物)具有质量轻、应变大(最大应变380%)、能量密度高(3.4J/g)、效率高、响应速度快、环境适应性好等优点,其综合性能接近于生物肌肉。介电型EAP的研究已经成为国内外智能材料研究领域的热点问题。介电型EAP具有双向工作模式:驱动模式和发电模式,实现电能与机械能之间的相互转换。两种工作模式下的共性问题是电场环境中介电型EAP受力和变形之间的关系,即介电型EAP的机电耦合特性,因此可采用相同的方法对其进行建模分析。本文在国家自然科学基金项目(50975139)资助下深入研究介电型EAP的机电耦合特性,结合材料非线性、几何非线性对介电型EAP换能器进行理论建模与试验研究,为介电型EAP换能器的设计、制作提供依据与指导。
     利用连续介质力学理论,推导出介电型EAP的应力、应变、运动平衡方程表示方法。基于介电型EAP是一种不可压缩材料的假设,分析其在电场环境中的受力情况,利用非线性弹性理论和Maxwell应力张量方法推导了介电型EAP的机电耦合本构方程。
     利用建立的本构方程分析了电场激励下圆形介电型EAP驱动器的变形行为。建立了圆形介电型EAP驱动器的分析模型,利用Matlab求解微分方程边值问题,研究不同激励电压下预拉伸率、主动区域尺寸等因素对圆形驱动器变形的影响,并利用试验对理论分析结果进行验证,说明前面建立的介电型EAP本构方程是合理的。
     应用弹性薄膜理论对锥形驱动器进行建模研究,给出了锥形驱动器的分析模型。结合介电型EAP驱动器工作原理,提出利用力—位移拉伸曲线来设计驱动器的方法。分析了基于正刚度预载荷(压缩弹簧)的锥形驱动器力、位移输出特性,试验结果与理论分析结果较吻合。为提高驱动器的输出位移,设计了一种半菱形式负刚度预载荷机构,对采用该预载荷机构的驱动器输出特性和效率进行详细分析。另外对介电型EAP驱动器的电学模型进行了分析。
     分析了介电型EAP的几种失效模式:机械强度失效、介电击穿、pull-in现象(机电不稳定性)、起皱失效、系统不稳定性。确定各种失效模式的发生条件,并给出理想条件下介电型EAP驱动器工作时的安全区域。同时针对锥形驱动器的失效行为进行了深入讨论。
     研究了介电型EAP的发电机理和工作过程,对恒电荷、恒电压、恒电场三种工作形式进行了详细比较。根据其能量转换原理,分析了介电型EAP的能量转换关系。基于建立的介电型EAP换能器模型,经过数值计算得到换能单元在断电拉伸和通电返回过程中的力—位移曲线,据此计算出介电型EAP换能器的发电量、能量转换效率,确定初始电压、拉伸位移为发电量、能量转换效率的主要影响因素,并通过试验验证了理论分析结果,进而对如何提高机电能量转换效率作了进一步研究,设计了多单元换能器的工作方案。
As a new kind of emerging smart material, dielectric electroactive polymer (EAP) hasdemonstrated low weight, large strain rate (up to380%), high energy density (3.4J/g), good efficiency,fast response and excellent environmental adaptability. The overall performance of dielectric EAP issimilar to that of biological muscle tissue. Nowdays, research on dielectric EAP has been becomingthe focus of intelligent material field wordwidely. It has two working modes including actuator modeand generator mode, which can transform electrical energy directly into mechanical work and viceversa. The common problem of two working modes is the relationship between force and deformationof dielectric EAP in the presence of electric field, named the electromechanical couplingcharacteristic of dielectric EAP. Thus the same method can be used to model dielectric EAPtransducer. Supported by National Natural Science Foundation of China (No.50975139), research onelectromechanical coupling characteristic of dielectric EAP transducer is performed based thematerial and geometrical nonlinearities in this dissertation. Theoretical modeling and experimentalanalysis on dielectric EAP transducer can contribute to the design of dielectric EAP transducer.
     Using a continuum mechanics theory, the stress, strain description and equations of equilibriumof dielectric EAP are deduced. The stress analysis of dielectric EAP activated by electrical field isexecuted. The constitutive equation of the dielectric EAP is determined by a superposition of themechanical stress due to the nonlinear elastic theory and the Maxwell stress due to the electrostaticfield.
     Based on the proposed electromechanical constitutive equations of dielectric EAP, themechanical behavior of circular dielectric EAP actuator under electrical field is analyzed. With thedeveloped analytical model of circular actuator, the impacting of pre-stretch ratio and area of activeregion to the circular actuator’s deformation under different applied voltages has been achieved bysolving the differential equations with boundary value problem by Matlab. The theoretical results arevalidated by experiments, which verify the of electromechanical constitutive equations of dielectricEAP.
     Using elastic theory of membrane, a model that describing conically-shaped dielectric EAPactuator is founded. Combing the working principle and process of dielectric EAP actuator, a methodof designing actuator is proposed by using the force-displacement curve of actuator. The force outputand displacement output of actuator with positive stiffness preload mechanism (compressive spring) are determined and validated by the experiments. To improve the displacement output, a negativestiffness preload mechanism with half diamond is presented. Actuation characteristics and efficiencyof conically-shaped dielectric EAP actuator with negative stiffness preload mechanism are analyzedin detail. Moreover, the electrical model of dielectric EAP actuator is discussed.
     Several failure mechanisms of dielectric EAP actuator including mechanical strength, dielectricbreakdown, pull-in phenomena (electromechanical instability), wrinkling phenomena and systeminstability are investigated, and the safe working area of ideal dielectric EAP actuator is determined.In addition, the failure behavior of conically-shaped actuator is discussed in detail.
     The energy harvesting mechanisms and working cycles of dielectric EAP transducer areinvestigated. Three different cycles including constant charges, constant electric voltage and constantelectrical field are compared. Based on the working cycles, the energy conversion betweenmechanical energy inputted and electrical energy generated have been studied. With the proposedmodel of dielectric EAP transducer, the force-stroke of generator unit in the stretching process withvoltage on and the retracting process with voltage off are determined. With the force-stroke ofgenerator unit, the energy generated and energy conversion efficiency are calculated. It isdemonstrated that the stretch displacement of dielectric EAP generator and bias voltage are the mainfactors influencing the amount of electrical energy generated and the efficiency of energy conversion.In addition, the theoretical analysis results are validated by the experiments. To improve theefficiency of energy conversion, a scheme of a generator with multiple dielectric EAP units isdeveloped.
引文
[1] Bar-Cohen Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potentialand Challenges [M]. Bellingham, WA, USA: SPIE,2004.
    [2] Madden J D, Vandesteeg N A, Anquetil P A, et al. Artificial Muscle Technology: PhysicalPrinciples and Naval Prospects [J]. IEEE Journal of Oceanic Engineering,2004,29(3):706-728.
    [3] Pelrine R, Kornbluh R, Pei Q B, et al. High-Speed Electrically Actuated Elastomers with StrainGreater Than100%[J]. Science,2000,287(5454):836-839.
    [4] Kornbluh R, Perline R, Pei Q B, et al. Electroelastomers: Applications of Dielectric ElastomerTransducers for Actuation, Generation and Smart Structures [C]. Proceedings of SPIE,2002,4698:254-270.
    [5] Vernon L N, Perry J, Garrett A. Development of useful function in the severely paralyzed hand[J]. Journal of Bone and Joint Surgery,1963,45(5):933-952.
    [6] Hollerbach J, Hunter I, Ballantyne J. The Robotics Review2[M]. Cambridge, MA, USA: MITPress,1992:299.
    [7] Park S, Shrout T. Ultrahigh strain and piezoelectric behavior in relaxor bases ferroelectricsingle crystals [J]. Journal of Applied Physics,1997,82:1804-1811.
    [8] Fu H X, Cohen R E. Polarization rotation mechanism for ultrahigh electromechanical responsein single-crystal piezoectrics [J]. Nature,2000,403:281-283.
    [9] Sunar M, Rao S S. Recent Advances in Sensing and Control of Flexible Structures ViaPiezoelectric Materials Technology [J]. Applied Mechanics Reviews,1999,52(1):1-16.
    [10] Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles [J]. Materials Today,2007,10(4):30-38.
    [11] Kornbluh R, Pelrine R, Prahlad H. Electroactive polymers: An emerging technology forMEMS MEMS/MOEMS Components and Their Applications [C]. Proceedings of SPIE,2004,5344:13-27.
    [12] Palakodeti R, Kessler M R. Influence of frequency and prestrain on the mechanical efficiencyof dielectric electroactive polymer actuators [J]. Materials Letters,2006,60:3437-3440.
    [13] O’Halloran A, O’Malley F, Mchugh P. A review on dielectric elastomer actuators, technology,applications, and challenges [J]. Journals of Applied Physics.2008,104:071101.
    [14]党智敏,王岚,王海燕.新型智能材料:电活性聚合物的研究状况[J].功能材料,2005,7(36):981-987.
    [15]李晓峰,梁松苗,李艳芳等.仿生材料电活性聚合物/人工肌肉的研究进展[J].高分子通报,2008,8:134-145.
    [16] Brouchu P, Pei Q B. Advances in Dielectric Eleastomers for Actuators and Artificial Muscles[J]. Macromolecular Rapid Communications,2010,31:10-36.
    [17] Herr H, Kornbluh R. New horizons for orthotic and prosthetic technology: artificial muscle forambulation [C]. Edited by Yoseph Bar-Cohen, Smart Structures and Materials2004:Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, Bellingham,WA, USA: SPIE,2004:5385,1-8.
    [18] Pelrine R, Kornbluh R, Joseph J, et al. High-field deformation of elastomeric dielectrics foractuators [J]. Materials Sciences and Engineering,2000,11:89-100.
    [19] Pelrine R, Kornbluh R, Joseph J. Electrostriction of polymer dielectrics with compliantelectrodes as a means of actuation [J]. Sensors and Actuators,1998,64:77–85.
    [20] Wissler M, Mazza E. Mechanical behavior of an acrylic elastomer used in dielectric elastomeractuators [J]. Sensors and Actuators,2007,134(2):494–504.
    [21] Pei Q B, Pelrine R, Stanford S, et al. Electroelastomer rolls and their application forbiomimetic walking robots [J]. Synthetic Metals,2003,135:129-131.
    [22] Sugimoto T, Ono K, Ando A, et al. Sound generator structure for low-elastic electroactivepolymer [J]. The Acoustical Society of Japan,2010,31(6):411-413.
    [23] Randazzo M, Fumagalli M, Metta G, et al. Closed loop control of a rotational joint driven bytwo antagonistic dielectric elastomer actuators [C]. Electroactive Polymer Actuators andDevices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE, San Diego, California,USA:2010,762422D:1-12.
    [24] Bowes A E, Rossiter J M, Walters P J, et al. Dielectric elastomer pump for artificial organisms[C]. Electroactive Polymer Actuators and Devices (EAPAD). Proceedings of SPIE, San Diego,California, USA:20011,7976(29):1-7.
    [25] Jhong Y Y, Huang C M, Hsieh C C, et al. Improvement of viscoelastic effects of dielectricelastomer actuator and its application for valve devices [C]. Electroactive Polymer Actuatorsand Devices (EAPAD). Proceedings of SPIE, San Diego, California, USA:2007,6524Y:1-7.
    [26] Flitter K, Lotz P, Matssek M, et al. Integrated gas valve array using dielectric elastomeractuators [C]. Electroactive Polymer Actuators and Devices (EAPAD). Proceedings of SPIE,San Diego, California, USA:2009,7287C:1-7.
    [27] Kim H, Park J, Chuc N H, Choi H. R, et al. Development of dielectric elastomer driven microoptical zoom lens system [C]. Electroactive Polymer Actuators and Devices (EAPAD).Proceedings of SPIE, San Diego, California, USA:2007,65241V:1-10.
    [28] Poole A D, Booker J D, Wishart C L, et al. Performance of a prototype traveling-Waveactuator made from a dielectric elastomer [J]. IEEE/ASME Transactions On Mechatronics.2011,99:1-9.
    [29] Jung K, Nam J, Lee Y, et al. Micro inchworm robot actuated by artificial muscle actuator basedon non-prestrained dielectric elastomer [C]. Smart structures and materials, edited by YosephBar-Cohen, Proceedings of SPIE, San Diego, California, USA:2004,5385:357-367.
    [30] Jung K, Koo J C, Nam J, etal. Artificial annelid robot driven by soft actuators [J].Bioinspiration and Biomimetics.2007,2: S42-S49.
    [31] Pioggia G, Ahluwalia A, Carpi F, et al. Face: facial automaton for conveying emotions [J].Applied bionics and biomechanics.2004,1(2):91-100.
    [32] Carpi F, Rossi D D. Contractile dielectric elastomer actuator with folded shape [C].Electroactive Polymer Actuators and Devices (EAPAD). Proceedings of SPIE, San Diego,California, USA:2006,61680D:1-6.
    [33] Sawin J L. Mainstreaming Renewable Energy in the21st Century, Worldwatch Paper.2004,169:1-73.
    [34] Waki M, Chiba S, Korbluh R, et al. Electric power form artificial muscles [J]. Oceans'08MTS/IEEE KOBE-Techno-Ocean, Kobe,2008:1-3.
    [35] Chiba S, Waki M, Kornbluh R, et al. Innovative power generators for energy harvesting usingelectroactive polymer artificial muscles [C]. Electroactive Polymer Actuators and Devices(EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE, San Diego, California, USA:2008,6927:15-1-15-9.
    [36] Anton S R, Sodano H A. A Review of Power Harvesting Using Piezoelectric Materials(2003-2006)[J]. Smart Materials and Structures.2007(16): R1-R21.
    [37] Lynch J P, Loh K J. A Summary Review of Wireless Sensors and Sensor Networks forStructural Health Monitoring [J]. The Shock and Vibration Digest.2006,38:91-128.
    [38] Bar-Cohen Y, Zhang Q. Electroactive Polymer Actuators and Sensors [J]. MRS Bulletin,2008,33:173-181.
    [39] Vinogradov A M. Accomplishments and Future Trends in the Field of Electroactive Polymers
    [C]. Electroactive Polymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen,Proceedings of SPIE, San Diego, California, USA:2008,6927M:1-11.
    [40] Galhardi M A, Guilherme T H, Junior V L. A review of power harvesting on mechanicalvibration using piezoelectric materials and applications [C]. The7th brazilian conference ondynamics, control and applications. Fct-Unesp at Predidente Prudente, SP, Brazil,2008:1-9.
    [41] Pelrine R, Kornbluh R, Eckerle J, et al. Dielectric elastomer: Generator mode fundamentals andapplications [C]. Edited by Yoseph Bar-Cohen, Smart Structures and Materials2001:Electroactive Polymer Actuators and Devices (EAPAD), Proceedings of SPIE, Bellingham,WA, USA: SPIE,2001:4329,148-156.
    [42] Price A K. Development of integrated dielectric elastomer actuators (IDEAS): trendingtowards smarter and smaller soft microfluidic systems [PhD dissertation]. Manhattan, Kansas,Kansas state university,2010.
    [43] Chiba S, Waki M, Kornbluh R, et al. Extending applications of dielectric elastomer artificialmuscle [C]. Electroactive Polymer Actuators and Devices (EAPAD), edited by YosephBar-Cohen, Proceedings of SPIE, San Diego, California, USA:2007,652424:1-5.
    [44] Kornbluh R, Pelrine R, Joseph J. Elastomeric Dielectric Artificial Muscle Actuators for SmallRobots [C]. Proceedings of the Materials Research Society Symposium,1995,600:119-130.
    [45] McKay T, O'Brien B, Calius E, et al. Realizing the potential of dielectric elastomer generators[C]. Electroactive Polymer Actuators and Devices (EAPAD). Proceedings of SPIE, San Diego,California, USA:2011,79760B:1-8.
    [46] Roentgen W C. About the Changes in Shape and Volume of Dielectrics Caused by Electricity[J]. Annual Physics and Chemistry Series, Vol.11, sec III, G. Wiedemann, Eds, J. A. BarthLeipzig, Germany1880, p.771.
    [47] Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliantelectrodes as a means of actuation [J]. Sensors and Actuators A.1998,64:77-85.
    [48] Kofod G, Sommer-Larsen P. Silicone dielectric elastomer actuators: Finite elasticity model ofactuation [J]. Sensors and Actuators A.2003.122:273-283.
    [49] Kofod G. Dielectric elastomer actuators [PhD. thesis]. Copenhagen: The Technical Universityof Denmark,2001.
    [50] Kofod G, Kornbluh R, Pelrine R, et al. Actuation response of polyacrylate dielectric elastomer[J]. Journal of Intelligent Material Systems and Structures.2003,14:787-793.
    [51] Carpi F, Rossi D D. Dielectric elastomer cylindrical actuators: electromechanical modeling andexperimental evaluation [J]. Material science and Engineering.2004,24:555-562.
    [52] Goulbourne N C. A mathematical model for cylindrical, fiber reinforced electro-pneumaticactuators [J]. International Journal of Solids and Structures.2009,46:1043-1052.
    [53] Goulbourne N C. Cylindrical dielectric elastomer actuators reinforced with inextensible fibers[C]. Electroactive Polymer Actuators and Devices (EAPAD). Proceedings of SPIE, San Diego,California, USA:2006,61680A:1-12.
    [54] Goulbourne N C. Electro-elastomers: Large deformation analysis of silicone membranes [J].International Journal of Solids and Structures.2007,44:2609-2626.
    [55] Mockensturm E, Goulbourne N. Dynamic response of dielectric elastomers [J]. InternationalJournal of Non-Linear Mechanics.2006,41:388–395.
    [56] Yang E, Frecker M, Mockensturm E. Finite element and experimental analysis ofnon-axisymmetric dielectric elastomer actuators [C]. Electroactive Polymer Actuators andDevices (EAPAD). Proceedings of SPIE, San Diego, California, USA:2006,6188H:1-9.
    [57] Yang E, Frecker M, Mockensturm E, et al. Analytical model and experimental characterizationof a dielectric elastomer annulus actuator undergoing large quasi-static deformation [C]. SmartStructures and Materials: Smart Structures and Integrated Systems, edited by Alison B. Flatau,Proceedings of SPIE, Bellingham, WA,USA:2004,5390:183-193.
    [58] Yang E. Phenomenological constitutive models for dielectric elastomer membranes for artificalmuscle applications [PhD.thesis]. Pennsylvania: The Pennsylvania State University,2001.
    [59] Wissler M, Mazza E, Kovacs G. Circular pre-strained dielectric elastomer actuator: modeling,simulation and experimental verification [C]. Electroactive Polymer Actuators and Devices(EAPAD). Proceedings of SPIE, Bellingham, WA, USA:2005,5759:182-193.
    [60] Wissler M, Mazza E. Modeling and simulation of dielectric elastomer actuators [J]. Smartmaterials and structures.2005,14:1396-1402.
    [61] Wissler M, Mazza E. Modeling of a pre-strained circular actuator made of dielectric elastomers[J]. Sensors and Actuators A.2005,120:184-192.
    [62] Wissler M, Mazza E. Mechanical behavior of an arylic delastomer used in dielectric elastomeractuators [J]. Sensors and Actuators A.2007,134:494-504.
    [63] Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable dielectrics [J].Journal of The Mechanics and Physics of Solids.2008,56:467-486.
    [64] He T H, Zhao X H, Suo Z G. Dielectric elastomer membranes undergoing inhomogeneousdeformation[J]. Journal of Applied Physics,2009, v106, n8, p083522(7pp.).
    [65] Zhao X H, Suo Z G. Method to analyze electromechanical stability of dielectric elastomers [J].Applied Physics Letters.2007,91:061921-1-061921-3.
    [66] Díaz-Calleja R, Riande E, Sanchis M J. On electromechanical stability of dielectric elastomers[J]. Applied Physics Letters.2008,93:101902-1-101902-3.
    [67] Díaz-Calleja R, Sanchis M J, Riande E. Effect of an electric field on the bifurication of abiaxially stretched incompressible slab rubber [J]. The European Physical Journal E.2009,30:417-426.
    [68] Liu Y J, Liu L W, Sun S H, et al. Electromechanical stability of a Mooney-Rivlin-typedielectric elastomer with nonlinear variable permittivity [J]. Polymer international.2010,59(3):371-377.
    [69] Liu Y J, Liu L W, Yu K, et al. An investigation on electromechanical stability of dielectricelastomers undergoing large deformation [J]. Smart materials and structures.2009,18:095040.
    [70] Liu Y J, Liu L W, et al. Dielectric elastomer film actuators: characterization, experiment andanalysis [J]. Smart Materials and Structures,2009,18:095024.
    [71] Eckerle J, Stanford J S, Marlow J, et al. A biologically inspired hexapedal robot usingfield-effect electroactive elastomer artificial muscles [C]. Proc. SPIE, Smart Structures andMaterials2001: Industrial and Commercial Applications of Smart Structures Technologies.2001,4332(269):1-10.
    [72] Pelrine R E, Kornbluh R D, Pei Q B, et al. Dielectric elastomer artificial muscle actuators:toward biomimetic motion [C]. Proceeding of SPIE Smart Structures and Materials,2002,4695:126-137.
    [73] Pelrine R E, Kornbluh R D, Pei Q B, et al. Dielectric elastomer artificial muscle actuators:toward biomimetic motion [C]. Proceeding of SPIE,2002,4695:126-137.
    [74] Zhang R, Kunz A, Lochmatter P, et al. Dielectric Elastomer Spring Roll Actuators for aPortable Force Feedback Device [C]. Smart Structures and Materials2006: ElectroactivePolymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE.2006,61681T,1-11.
    [75] Jung M Y, Chuc N H, Kim J W, et al. Fabrication and characterization of linear motiondielectric elastomer actuators [C]. Smart Structures and Materials2006: Electroactive PolymerActuators and Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE.2006,616824:1-7.
    [76] Plante J S, Devita L M, Dubowsky S. A Road to Practical Dielectric Elastomer ActuatorsBased Robotics and Mechatronics: Discrete Actuation[C]. Electroactive Polymer Actuators andDevices(EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE.2007,6524(06):1-15.
    [77] Lochmatter P, Kovacs G. Design and characterization of an actively deformable shell structurecomposed of interlinked active hinge segments driven by soft dielectric EAPs [J]. Sensors andActuators A,2008,141:588-597.
    [78] Jordi C, Michel S, Dürager C, et al. Large planar dielectric elastomer actuators for fish-likepropulsion of an airship [C]. Electroactive Polymer Actuators and Devices (EAPAD)2010,edited by Yoseph Bar-Cohen, Proceedings of SPIE.2010,764223:1-12.
    [79] Anderson I A, Hale T, Gisby T, et al. A thin membrane artificial muscle rotary motor [J].Applied Physics A.2010,98:75-83.
    [80]李刚,冯敏亮,吕新生等.基于电场活化聚合物的一维伸缩致动器设计[J].设计计算,2007,8:100-102.
    [81]刘亚东.电场活化聚合物(DE)平面弯曲致动器设计[硕士学位论文].合肥:合肥工业大学,2009.
    [82] Liu Y J, Shi L L, Liu L W, et al. Inflated dielectric elastomer actuator for eyeball’s movementsfabrication, analysis and experiments [C]. Electroactive Polymer Actuators and Devices(EAPAD), Proceedings of the SPIE,2008,69271A:1-8.
    [83]王化明,朱剑英,何均.菱形介电弹性体驱动器预载荷分析[J].机器人,2008,30(6):572-576.
    [84]王化明,朱剑英,叶克贝等.介电弹性体线性驱动器研究[J].机械工程学报,2009,45(7):291-296.
    [85] Wang Huaming, Li Chenggang, A Linear Dielectric EAP Actuator with Large DisplacementOutput [C]. International Conference on Measuring Technology and Mechatronics Automation(ICMTMA2009),2009:73-76.
    [86]吴孟,王化明,朱银龙等.圆柱形介电弹性体驱动器的试验与分析[J].机器人,2010,32(6):754-758.
    [87] Wang Huaming, Zhu Yinlong, Zhao Dongbiao, et al. Performance Investigation of ConeDielectric Elastomer Actuator Using Taguchi Method [J]. Chinese Journal of MechanicalEngineering,2011,24(4):685-692.
    [88] Prahlad H, Kornbluh R, Pelrine R.,et al. Polymer Power Dielectric Elastomers and TheirApplications in Distributed Actuation and Power Generation [C]. Proceedings of ISSS2005International Conference on Smart Materials Structures and Systems, Bangalore, India,2005,SA-13.
    [89] Pelrine R, Kornbluh R, Eckerle J, et al. DielectricElastomers: Generator Mode Fundamentalsand Applications [C]. Smart Structures and Materials2011: Electroactive Polymer Actuatorsand Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE.2001,4329:148-156.
    [90] Chiba S, Pelrine R, Kornbluh R, et al. Power Generation Using Electroactive PolymerArtificial Muscle (EPAM)[C]. Proceedings of the Conference of the Japan Institute ofEnergy, at Kogakuin University, Tokyo.2006, pp.297–298.
    [91] Brochu P, Li H F, Niu X F, et al. Factors influencing the performance of dielectric elastomerenergy harvesters [C]. Electroactive Polymer Actuators and Devices (EAPAD)2010, edited byYoseph Bar-Cohen, Proc. of SPIE Vol.2010,76422J,1-12.
    [92] McKay T, O’Brien B, Calius E, et al. An integrated dielectric elastomer generator model [C].Electroactive Polymer Actuators and Devices (EAPAD)2010, edited by YosephBar-Cohen,Proc. of SPIE.2010,764216,1-11.
    [93] McKay T, O’Brien B, Calius E, et al. An integrated, self-priming dielectric elastomer generator[J]. Applied Physics Letters.2010,97:062911.
    [94] McKay T, O’Brien B, Calius E, et al. Self-priming dielectric elastomer generators [J]. SmartMaterials and Structures.2010,19:055025.
    [95]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1989.
    [96]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [97] Bergstr m J, Boyce M. Constitutive Modeling of the Large Strain Time-Dependant Behaviorof Elastomers [J]. Journal of Mechanics and Physics of Solids.1998,46(5):931-954.
    [98] Holzapfel G A. Nonlinear Solid Mechanics [M]. Chichester, UK: John Wiley&Sons,2000.
    [99] Ogden R W. Non-Linear Elastic Deformations, New York [M]: Dover Publications,1984.
    [100]黄筑平.连续介质力学基础[M].北京:高度教育出版社,2003.
    [101] Truesdell C, Noll W. The Non-Linear Field Theories of Mechanics [M].3rd ed, ed. S.S.Antman.1965: Berlin; New York: Springer,2004.
    [102] Mooney M. A theory of large elastic deformation [J]. Journal of Applied Physics.1940.11:582-592.
    [103] Rivlin R S, Thomas A G. Large elastic deformations of isotropic materials. VIII. Straindistribution around a hole in a sheet [J]. Philosophical Transactions of the Royal Society ofLondon. Series A, Mathematical and Physical Sciences.1951,243(865):289-298.
    [104] Ogden R W. Large deformation isotropic elasticity-on the correlation of theory andexperiment for incompressible rubberlike solids [C]. Proceedings of the Royal Society ofLondon.1972, A326:565–584.
    [105] Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates [J].Rubber Chem Technol.1990,63:792–805.
    [106] Fung Y C. Biomechanics. Mechanical properties of living tissues [M].2nd edn, New York:Springer-Verlag,1993. p.277.
    [107]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000.
    [108] He T H, Zhao X H, Suo Z. G. Dielectric elastomer membranes undergoing inhomogeneousdeformation [J]. Journal of Applied Physics.2009,106(8):083522-083529.
    [109]匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社,2002.
    [110] Melcher J R. Continuum Electromechanics [M]. MIT, Cambridge, MA,1981, Chap.3.
    [111] Haus H A, Melcher J R. Electromangetic fields and energy [M]. Engewood cliffs, NJ: PrenticeHall,1991.
    [112] McFee S. A Classical Virtual Work Force Method for Time harmonic Eddy current Analysis[J]. IEEE Trans. Magnetics.1996,32(3):1673–1676.
    [113] Lee S H, He X W, Kim D K, et al. Evaluation of the mechanical deformation in incompressiblelinear and nonlinear magnetic materials using various electromagnetic force density methods[J]. Journal Of Applied Physics.2005,97,10E108:1-3.
    [114] Akbay M C. Performance of Compliant Electrodes in Electro Active Polymer (EAP)[Phddissertation]. North Carolina: North Carolina State University,2004.
    [115] Yuan W, Lam T, Biggs J, et al. New Electrode Materials for Dielectric Elastomer Actuators [J].Electroactive Polymer Actuators and Devices (EAPAD) Proc. of SPIE,2007,6524:1-12.
    [116]叶克贝.介电弹性体线性驱动器研究[硕士论文].南京:南京航空航天大学,2009.
    [117]徐芝纶.弹性力学[M].第2版.北京:高等教育出版社,1982.
    [118] Winter F. J, Blair D. G. A long-period vertical vibration isolator for gravitational wavedetection [J]. Physics Letter A,1998,243(1):1-6.
    [119]朱银龙,王化明,赵东标.基于负刚度预载荷机构的锥形介电型EAP驱动器研究[J].航空学报.2011,32(9):1746-1754.
    [120] Kaal W, Herold S. Modeling Approaches for Electroactive Polymers [C]. ElectroactivePolymer Actuators and Devices (EAPAD)2010, Proc. of SPIE2010,764211:1~11.
    [121] Plante J, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators [J]. Int. J.Solids Struct.43(2006)7727–7751.
    [122] Kaltenbrunner M, Keplinger C, Arnold N, et al. Analysis of safe and failure mode regimes ofdielectric elastomer actuators [C]. IEEE SENSORS2008Conference.2008,156-159.
    [123] Koh S J A, Keplinger C, Li T F, et al. Dielectric elastomer generators: how much energy canbe converted [J]. IEEE/ASME transactions on mechatronics.2011,16(1):33-41.
    [124] Díaz-Calleja R, Sanchis M J, Riande E. Effect of an electric field on the deformation ofincompressible rubbers: bifurcation phenomena [J]. Journal of Electrostatics.2009,67:158-166.
    [125] Zhao X H, Wei H, Suo Z G. Electromechanical hysteresis and coexistent states in dielectricelastomers [J]. Physical Riview B.2007,76:134113.
    [126] Tommasi D D, Puglisi G, Saccomandi G, et al. Pull-in and wrinkling instabilities ofelectroactive dielectric actuators [J]. Journal of Physics D.2010,43:325501.
    [127] Kollosche M, Stoyanov H, Best S, et al. Parameter dependence of an electro-mechanicalbreakdown model for insulating elastomeric films [C]. Electroactive Polymer Actuators andDevices (EAPAD)2011, edited by Yoseph Bar-Cohen, Federico Carpi, Proc. of SPIE.2011,79760S:1-6.
    [128] Kollosche M, Melzer M, Beker A, et al. The influence of mechanical properties in the electricalbreakdown in poly-styrene-ethylene-butadiene-styrene thermoplastic elastomer [C].Electroactive Polymer Actuators and Devices (EAPAD)2009, edited by Yoseph Bar-Cohen,Proc. of SPIE.2009,728729:1-9.
    [129] Wagner H. Flat sheet metal girders with very thin metal web [R]. Flugtechn.Motorluftschiffahrt20,8-12(translation into English, NACA TM604~606),1929.
    [130] Wong Y W, Pellegrino S. Wrinkled membranes I: experiments. J. of Mechanics of Materialsand Structures [J].2006,1:2-23.
    [131] Miller R K, Hedgepeth J M. An algorithm for finite element analysis of partyly wrinkledmembranes [J]. AIAA Journal.1982,20:1761-1763.
    [132] Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: PartI-Theory [J]. Journal of Applied Mechanical.1987,54:884-887.
    [133] Liu X, Jenkins C H, Schur W W. Large deflection analysis of pneumatic envelopes using apenalty parameter modified material model [J]. Finite Elements in Analysis and Design,2001,37:233-251.
    [134] Czech B, Kessel R V, Bauer P, et al. Energy harvesting using dielectric elastomers [C].14thInternational power electronics and motion control conference.2010, S4-18-S4-23.
    [135] Graf C, Maas J. Evaluation and optimization of energy harvesting cycles using dielectricelastomers [C]. Electroactive Polymer Actuators and Devices (EAPAD), edited by YosephBar-Cohen, Federico Carpi. Proc. of SPIE.2011,79760H:1-12.
    [136] Iskandarani Y H, Jones R W, Villumsen E. Modeling and experimental verification ofadielectric polymer energy scavenging cycle [C]. Electroactive Polymer Actuators and Devices(EAPAD)2009, edited by Yoseph Bar-Cohen, Thomas Wallmersperger, Proc.SPIE.2009,72871Y:1-12.
    [137] Craf C, Mass J, Schapeler D. Optimized energy harvesting based on electro active polymers
    [C].2010International Conference on Solid Dielectrics, Potsdam, Germany.2010.
    [138] Mistral C J, Basrour S, Chaillout J J, et al. A complete study of electroactive polymers forenergy scavenging: Modeling and Experiments [C]. EDA publishing, DTIP, Stresa, Italiy.2007:301-305.
    [139] Anderson I A, Ieropoulos I, Mckay T, et al. A hybrid microbial dielectric elastomer generatorfor autonomous robots [C]. Electroactive Polymer Actuators and Devices (EAPAD)2010,edited by Yoseph Bar-Cohen. Proc. of SPIE.2010,76421Y:1-11.
    [140] Brochu P, Niu X F, Pei Q B. Acrylic interpenetrating polymer network dielectric elastomers forenergy haversting [C]. Electroactive Polymer Actuators and Devices (EAPAD)2011, edited byYoseph Bar-Cohen, Federico Carpi. Proc. of SPIE.2011,797606:1-8.
    [141]赵俊.介电型EAP发电能量转换研究[硕士学位论文].南京:南京航空航天大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700