量子点结构与微波烧结粉体ZnO的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
这篇论文“量子点结构与微波烧结粉体ZnO的数值模拟研究”,主要是利用Matlab数值软件编程实现了量子点电子结构的数值求解,模拟结果与相关文献进行对比分析,论证了模型与程序的合理有效性,并结合与量子点性质相关的公式推导进一步给出了应用实例,这里涉及讨论的模型包含金字塔型单量子点结构,垂直对准和水平耦合双量子点系统,引入浸润层,周期型量子阱中点结构等,同时对一些算法也提出了改进与推广。另外,论文还涉及研究了微波烧结主题,通过使用Comsol软件的微波加热模块,实现了三维模拟研究微波炉烧结粉体ZnO过程,并计入保温层的热交互作用,分析讨论了ZnO的电磁场及温场在烧结过程中变化。全文主要由五个部分组成,对应的研究内容以及结论如下:
     1、由于半导体导带具有非抛物性,导致导带电子有效质量与势能相关,通过有限差分格式离散的薛定谔方程并使用通分数值运算,获得了五阶多项式矩阵,为了求解多项式矩阵,我们提出了一个简单的本征能扫描技术,通过数学理论推导以及数值运算验证了该技术的有效性和实用性,同时说明其可扩展应用到求解任意阶多项式矩阵的本征值,利用该方法我们拟在能带非抛物性框架下研究孤立量子点以及垂直对准双量子点系统,通过改变量子点的体积以及双量子点系统的耦合距离等条件,获得了丰富的电子态信息。
     2、利用有限差分法离散求解导带电子的薛定谔方程并证明可有效用于研究真实三维量子阱中点结构,通过有限元格式来自动集成跳跃的界面条件而不是显式强迫赋值,并通过改变边界条件的方法,分别实现了模拟孤立型以及周期阵列型的量子点结构,结合光学跃迁分析讨论了获得的相关本征能谱。
     3、由于量子点生长技术的不断成熟,当前工业以及实验室已经能设计并生长出如将量子点嵌入量子阱中,双量子点耦合等多种量子点结构,我们以金字塔型量子点为基准并计入浸润层来模拟并讨论相关量子点系统的电子能态信息,处于实空间有效的常数单带电子包络函数法被应用,其优势不仅在于可模拟任意形状与结构的量子点,而且通过简单的三角积分,我们可以获得近似解析结果,从而在适中的运算成本下保证了运算结果的精确度。
     4、利用倒易空间的电子包络函数平面波展开法来求解薛定谔方程,模拟并对比了周期势场中嵌入量子阱中不同形状的量子点的电子本征能谱,计算了对应结构的应变情况,并通过假定均匀扩散以及应力平均分布,在傅立叶空间中引入的菲克定律,以减弱因子形式集成到运算中来模拟退火后处理技术导致的互扩散影响,计算了处于不同电场下的导带电子能级变化,讨论了阱中点结构的压电势,初步推导了局域场作用公式,最后分析计算不同掺杂浓度和铟组分对该系统的光学吸收谱的影响。
     5、以ZnO粉体材料为基础,利用Comsol软件根据微波加热初始电场分布确定了ZnO粉体以及波导入口的位置等相关参数值,数值模拟了微波烧结粉体过程中模拟区域的温场变化,通过对比单源与双源微波加热情况,说明了相同功率下应用双源加热更有效,首次模拟了在多孔氧化铝保温层条件下双源微波加热ZnO粉体过程,对比分析了保温层存在与否粉体的相关区域中心同边界点的升温特点,并呈现了微波加热过程保温层的影响。
The dissertation "Numerical simulation of quantum dots'structures and microwave sintering ZnO powder", mainly achieving the numerical solving the electronic structures of quangtum dots by programming with the help of Matlab software. Based on comparing and analyzing the results obtained with other literatures, both the programs and models are reasonable and effective, then combining with the formulas derived which corresponding to the properties of quantum dots, some application examples are shown. These models above include pyramidal pure quantum dot, vertically aligned or/and horizontal coupling quantum dots, the introduced wetting layer, periodical quantum dots-in-a-well and so on. Some algorithms are improved and developed. In addition, the theme of microwave sintering is also studied in this paper, using the Comsol software, realizing the3D simulation of the process of microwave sintering the powder ZnO in furnace, taking the heating exchanging effect from the insulation layer and sintering atmosphere into account, we analyze and discuss the changes of electromagnetic and temperature field during the sintering period. The full text mainly consists of five parts, the corresponding research contents and conclusions are as follows:
     1, As the result of the conduction band non-parabolicity of the semiconductor, the conduction band electronic effective mass is related to the potential energy, discretizing the Schrodinger equation in the finite difference scheme, numerical computation using the common denominator, a fifth-order polynomial matrix is obtained. In order to solve the polynomial matrix, we propose a simple eigen energy scanning technology, based on the mathematics analysis and numerical computing, the effectiveness and practicality of the method is proven, and it can be extended to get the eigenvalues of the arbitrary polynomial matrix. Using this method, under the framework of band non-parabolicity, the isolated dot and the vertical aligned quantum dots system are studied, by changing the size of the quantum dot or/and the coupling distance in the quantum dots system and other conditions, access to a wealth of information on electronic states.
     2, Using the finite difference method, the Schrodinger equation of the electronic conduction band is solved, and it is demonstrated effective for studying the true3D quantum dots-in-a-well structure, based on the finite difference methods having a wide range industrial application of simulation and its finite element format which can be automatically integrated the jump interface condition without the need to explicitly adding to, by changing the boundary conditions, we can calculate isolated and periodic arrayed quantum dots structure, respectively, due to the optical transition, the corresponding eigen-energy spectrum is discussed.
     3, Thanks to the mature technology of the growth of quantum dots, the current industrial and laboratory has been able to design and grow out of such as quantum dots embedded quantum wells, the coupled double quantum dots'structure and so on. Based on the pyramidal quantum dots and taking the wetting layer into account, we simulate and analyze the electronic information of the corresponding quantum dots' system. A constant single-band electronic envelope function method is applied, its advantage lies not only can simulate arbitrary shape and structure of quantum dots, but also can obtain analysis results by a simple triangular integration, then at a moderate cost to guarantee the accuracy of the calculating results.
     4, The electronic envelope function plane wave expansion method is applied to solve the Schrodinger equation in the reciprocal space, simulating and comparing the electronic eigen spectrum from the quantum dots with different shapes (which embedded in quantum well under the periodic potential field, then the distribution of strain in the quantum structure is calculated diffusion. If assuming evenly distributing stress and uniform diffusion, by introducing Fick's law in the Fourier space, in order to weaken the form factor integrated into the computations of simulating annealing post-processing which resulting in the interdiffusion, the electric field effect on electronic energy levels is studied in different electric field and the piezoelectric potential of the quantum dots is discussed, the local field effect formula is preliminarily derived, then analyzing the impact of different doping density and In concentration on the optical obsorption.
     5, We simulates the changes of temperature field (TF) in ZnO powder during the process of microwave sintering. According to the distribution of the electric field (EF) at the initial microwave heating, some parameters of the locations of ZnO powder and the ports of waveguides are fixed. By comparing with the single-source (SS) heating, the application of dual-source (DS) heating with the same power is demonstrated more effective. For the first time to simulate the process of DS microwave heating ZnO powder with the porous alumina insulation layer, and by the way of the comparative analysis of the heating characteristics of the powder's center and boundary points with and without the insulation layer, the effect of the insulation is shown.
引文
[1]Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors. IBM J Res Develop,1970,14(1):61-65
    [2]Ryzhii L. The theory of quantum-dot infrared phototransistors. Semicond Sci Technol,1996, 11(5):759
    [3]Tinga W R, Voss W A G. Microwave power engineering. New York:Academic,1968: 2-16
    [4]Yakimov A, Bloshkin A, et al. Ge/Si quantum dot photodetectors for midinfrared applications. Nanotechnology Conference,2012:1-2
    [5]Stranski I N, Krastanow L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatshefte fur Chemie/Chemical Monthly,1937,71(1):351-364
    [6]Goldstein L, Glas F, Marzin J Y, et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Applied Physics Letters,1985, 47(10):1099-1101
    [7]Leonard D, Krishnamurthy M, Reaves C M, et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters,1993, 63(1):3203
    [8]Xie Q, Madhukar A, Chen P, et al. Vertically self-organized InAs quantum box islands on GaAs (100). Physical review letters,1995,75(13):2542
    [9]Moison J M, Houzay F, Barthe F, et al. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Applied Physics Letters,1994,64(2):196
    [10]Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots:Strain distribution, optical phonons, and electronic structure. Physical Review B,1995,52(16):11969
    [11]Pan D, Zeng YP, Kong MY, et al. Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice. Electron Lett,1996,32(10):1726-1727
    [12]Li Y, Voskoboynikov O, Lee C P, et al. Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots. Computer Physics Communications,2001,141(1):66-72
    [13]Bryant G W, Jaskolski W. Tight-binding theory of quantum-dot quantum wells: Single-particle effects and near-band-edge structure. Physical Review B,2003,67(20): 205320
    [14]Chelikowsky J R, Louie S G. First-principles linear combination of atomic orbitals method for the cohesive and structural properties of solids:Application to diamond. Physical Review B,1984,29(6):3470
    [15]Li J, Wang L W. First principle study of core/shell structure quantum dots. Applied physics letters,2004,84(18):3648-3650
    [16]Wang L W, Zunger A. Pseudopotential calculations of nanoscale CdSe quantum dots. Physical Review B,1996,53(15):9579
    [17]Banin U, Lee C J, Guzelian A A, et al. Size-dependent electronic level structure of InAs nanocrystal quantum dots:Test of multiband effective mass theory. The Journal of chemical physics,1998,109(9):2306
    [18]Klappenberger F, Kuhne D, Krenner W, et al. Tunable quantum dot arrays formed from self-assembled metal-organic networks. Physical Review Letters,2011,106(2):026802
    [19]Miyazawa T, Nakaoka T, Usuki T, et al. Exciton dynamics in current-injected single quantum dot at 155 um. Applied Physics Letters,2008,92(16):161104-161107
    [20]Harrison P. Quantum wells, wires and dots:theoretical and computational physics of semiconductor nanostructures. New York:John Wiley & Sons,2005:10-20
    [21]Ramaniah L M, Nair S V. Optical absorption in semiconductor quantum dots:A tight-binding approach. Physical Review B,1993,47(12):7132
    [22]Baskoutas S, Terzis A F. Size-dependent band gap of colloidal quantum dots. Journal of applied physics,2006,99(1):013708-013712
    [23]Burt M G. Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. Journal of Physics Condensed Matter,1999,11(9):53
    [24]Foreman B A. Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Physical Review B,1993,48(7):4964
    [25]Pokatilov E P, Fonoberov V A, Fomin V M, et al. Development of an eight-band theory for quantum dot heterostructures. Physical Review B,2001,64(24):245328
    [26]Kun H, Ruqi H. Fundamental of Semiconductor Physics. Beijing:Science Press,1979: 125-127
    [27]Xia J B. Γ-X mixing effect in GaAs/AlAs superlattices and heterojunctions. Physical Review B,1990,41(5):3117
    [28]Li S S, Xia J B, Yuan Z L, et al. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Physical review B,1996,54(16):11575
    [29]Metaxas A C and Meredith R J. Industry Microwave Heating. London:Peter Peregrinus Ltd, 1983:10-14
    [30]Veltl G, Petzoldt F, Pueschner P A. Effects of microwaves on sintering processes. Proc PM2004:World Congress,2004:17-21
    [31]Osepchuk J M. A History of Microwave Heating Applications. IEEE Transactions on Microwave Theory and Techniques,1984,32(9):1200-1224
    [32]Kim Y, Mitsugi F, Ueda T, et al. Characteristics of ZnO thin films fabricated by shock-consolidated ZnO target. Ceramics International,2011,37(7):2921-2925
    [33]Fischer P. Numerical Simulation of Microwave Sintering of Zinc Oxide. America:Virginia Polytechnic Institute and State University,1997:6-18
    [34]Jolly P, Turner I. Non-linear field solutions of one-dimensional microwave heating. International Journal of Microwave Power and Electromagnetic Energy,1990,25(1):4-15
    [35]Alpert Y, Jerby E. Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media. IEEE Trans Plasma Science,1999,27(2):555-562
    [36]Soriano V, Devece C, De los Reyes E. A finite element and finite difference formulation for microwave heating laminar material. International Journal of Microwave Power and Electromagnetic Energy,1998,33(1):67-76
    [37]Sekkak A, Pichon L, Razek A.3D FEM magneto-thermal analysis in microwave ovens. IEEE Transactions on Magnetics,1994,30(7):3347-3350
    [38]Iskander M D, Andrade A O. FDTD simulation of microwave sintering of ceramics in multimode cavities. IEEE Trans Microwave Theory and Techniques,1994,42(3):793-799
    [39]Lasri J, Ramesh P D, Schachter L. Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor. J Am Ceram Soc,2000,83(6):1465-1468
    [40]Duan Y, Sorescu D C, Johnson J K. Finite element approach to microwave sintering of oxide materials. America:Proceedings of the COMSOL Conference,2006:10-12
    [41]Bouvard D, Charmond S, Carry C P. Multiphysics Simulation of Microwave Sintering in a Monomode Cavity. Proc 12th Seminar Computer Modeling in Microwave Engineering & Applications:Advances in Modeling of Microwave Sintering,2010:8-9
    [1]Morpurgo G. Is a non-relativistic approximation possible for the internal dynamics of elementary particles. Genoa:Univ,1965:6-12
    [2]Combes J M, Duclos P, Seiler R. The Born-Oppenheimer approximation, Rigorous atomic and molecular physics. Berlin:Springer,1981:185-213
    [3]Kitaura K, Morokuma K. A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. International Journal of Quantum Chemistry,1976, 10(2):325-340
    [4]Zak J. Dynamics of electrons in solids in external fields. Physical Review,1968,168(3): 686
    [5]Bastard G. Theoretical investigations of superlattice band structure in the envelope-function approximation. Physical Review B,1982,25(12):7584
    [6]Dresselhaus G. Effective mass approximation for excitons. Journal of Physics and Chemistry of Solids,1956,1(1):14-22
    [7]Harrison P. Quantum wells, wires and dots:theoretical and computational physics of semiconductor nanostructures. US:John Wiley & Sons,2005:12-16
    [8]Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ—Ⅴ compound semiconductors and their alloys. Journal of applied physics,2001,89(11):5815-5875
    [9]Voon L C L Y, Willatzen M. Confined states in lens-shaped quantum dots. Journal of Physics Condensed Matter,2002,14(49):13667
    [10]Herman M A, Richter W, Sitter H. Epitaxy:physical principles and technical implementation. Berlin:Springer,2004:3-6
    [11]Chow P P. Molecular beam epitaxy. USA:Academic Press Inc Thin Film Processes Ⅱ,1991: 133-175
    [12]Seifert W, Carlsson N, Johansson J, et al. In situ growth of nano-structures by metal-organic vapour phase epitaxy. Journal of crystal growth,1997,170(1):39-46
    [13]Woll A R, Rugheimer P, Lagally M G. Self-organized quantum dots. International journal of high speed electronics and systems,2002,12(1):45-78
    [14]Demas J N, Crosby G A. The measurement of photoluminescence quantum yields. A review J Phys Chem,1971,75(8):991-1024
    [15]Monemar B. Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra. Physical Review B,1973,8(12):5711
    [16]Lowe-Webb R R, Yang W, Lee H, et al. Size-selective photoluminescence studies of InAs/GaAs quantum dot structures. APS March Meeting Abstracts,1997,1(1):1304
    [17]Faix O. Fourier transform infrared spectroscopy. Springer Berlin Heidelberg:Methods in lignin chemistry,1992:83-109
    [18]Rugar D, Hansma P. Atomic force microscopy. Phys Today,1990,43(10):23-30
    [19]Stein D F. Microwave Processing of Materials. Committee on Microwave Processing of Materials:National Materials Advisory Board,1994:3-5.
    [20]Gronwald F, Nitsch J. The structure of the electromagnetic field as derived from first principles. Antennas and Propagation Magazine IEEE,2001,43(4):64-79
    [21]German R M. Sintering theory and practice. New York:John Wiley & Sons Inc,1996:6-8
    [22]Chamberlain C S, Connell G, LePere P H, et al. Microwave heatable composites. US:Patent 5446270[P],1995:8-29
    [23]Hong J S. Effect of a modulated source on a multimode cavity. IEEE Microwave and Guided Wave Letters,1994,4(1):43-44
    [24]Outifa L, Delmotte M, Jullien H. Dielectric and geometric dependence of electric field and power distribution in a waveguide heterogeneously filled with lossy dielectric. IEEE Trans Microwave Theory and Techniques,1997,45(7):1154-1161
    [25]Dominguez-Tortajada E, Monzo-Cabrera J, Diaz-Morcillo A. Uniform electric field distribution in microwave heating applicators bymeans of genetic algorithms optimization of dielectricmultilayer structures. IEEE Trans Microwave Theory and Techniques,2007, 55(1):85-91
    [26]Romano V R, Marra F, Tammaro U. Modeling of microwave heating of foodstuff:study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 2005,71(2):233-241
    [27]Arkhangelskiy Y S, Deviatin Ⅱ. Ultrahigh Frequency Heating Systems for Intensification of Technological Processes. Saratov in Russian:Saratov University Issue,1983:4-9
    [28]Jolly P, Turner I. Non-linear field solutions of one-dimensional microwave heating. International Journal of Microwave Power and Electromagnetic Energy,1990,25(1):4-15
    [29]Komarov V V. Investigation of microwave heating processes taking into account convection heat exchange:theory and experiment. Prikladnaya Fizika Applied Physics in Russian,2006, 4(1):34-41
    [30]Volakis J L, Chatterjee A, Kempel L C. Finite Element Method for Electromagnetics. New York:IEEE Press,1998:10-13
    [1]Keshavarz A, Zamani N. Optical properties of spherical quantum dot with position-dependent effective mass. Superlattices Microstruct,2013,58(2):191-197
    [2]Michler P. Single Semiconductor Quantum Dots. Berlin:Springer,2009:9-10
    [3]Baruffa F, Stano P, Fabian J. Theory of anisotropic exchange in laterally coupled quantum dots. Phys Rev Lett,2010,104(13):126401
    [4]Li S, Gong Q, Cao C, et al. Multi-spectral lasing characteristics of InAs/GaAs quantum dot laser. Superlattices Microstruct,2013,59(1):97-105
    [5]Keizer J G, Bocquel J, Koenraad P M, et al. Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl Phys Lett,2010,96(10): 062101
    [6]Chang C -C et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett,2010,10(5):1704-1709
    [7]Xue C, Deng S. Numerical calculation of electronic states in ellipsoidal finite-potential quantum dots with an off-centered impurity. Physica E,2011,43(6):1118-1126
    [8]Bouazra A, Nasrallah S A -B, Poncet A, et al. Numerical simulation of a coupling effect on electronic states in quantum dots. Superlattices Microstruct,2010,48(1):1-8
    [9]Amtout A, Raghavan S, Rotella P, et al. Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector. J Appl Phys,2004,96(8): 3782
    [10]Roy M, Maksym P A, Bruls D, et al. Generalized effective-mass theory of subsurface scanning tunneling microscopy:application to cleaved quantum dots. Phys Rev B,2010, 82(16):195304
    [11]Gaan S, He G, Feenstra R M, et al. Electronic states of InAs/GaAs quantum dots by scanning tunneling spectroscopy. Applied Physics Letters,2010,97(12):123110
    [12]Seguin R, Schliwa A, Rodt S, et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys Rev Lett,2005,95(20):257402
    [13]Eyink K G, Grazulis L, Twyman M, et al. Study of the driving force for the self-assembly of heterojunction quantum dots (zero d molecules) using finite element analysis. J Vac Sci Technol B,2010,28(3):33
    [14]Cooper J D, Valavanis A, Ikonic Z, et al. Finite difference method for solving the Schrodinger equation with band nonparabolicity in mid-infrared quantum cascade lasers. J Appl Phys,2010,108(11):113109
    [15]Pokatilov E P, Fonoberov V A, Fomin V M, et al. Development of an eight-band theory for quantum dot heterostrucrures. Phys Rev B,2001,64(19):245328
    [16]Kane E O. Band structure of indium antimonide. J Phys Chem Solids,1957,1(3):249-261
    [17]Bastard G. Wave Mechanics Applied to Semiconductor Heterostructures. New York:John Wiley and Sons,1991:20-25
    [18]Wang W C, Hwang T, Jang J C. A second-order finite volume scheme for three dimensional truncated pyramidal quantum dot. Comput Phys Commun,2006,174(3):371-385
    [19]Hwang T M, Lin W, Wang W C, et al. Numerical simulation of three dimensional pyramid quantum dot. J Comput Phys,2004,196(3):208-232
    [20]Lehoucq R, Meerbergen K. Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J Matrix Anal Appl,1998,20(2):131-148
    [21]Sleijpen G, Booten A, Fokkema D, et al. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT,1996,36(3):595-633
    [22]El-Moghraby D, Johnson R, Harrison P. Calculating modes of quantum wire and dot systems using a finite differencing technique. Comput Phys Commun,2003,150(2): 235-246
    [23]Cusack M, Briddon P, Jaros M. Electronic structure of InAs/GaAs self-assembled quantum dots. Phys Rev B,1996,54(8):2300-2303
    [24]Levinshtein M, et al. Handbook Series on Semiconductor Parameters. Singapore:World Scientific,1999:40-56
    [25]Steer M, Mowbray D J, Tribe W R, et al. Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. Phys Rev B,1996,174(15): 17738-17744
    [26]Guasch C, Torres C S, Ledentsov N, et al. Resonant photoluminescence from modulation-doped InAs/GaAs quantum dots. Superlattices Microstruct,1997,21(6): 509-516
    [27]Fricke M, et al. Shell structure and electron-electron interaction in self-assembled InAs quantum dots. Europhys Lett,1996,36(1):197
    [28]El-Moghraby D, Johnson R, Harrison P. The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput Phys Commun, 2003,155(3):236-243
    [29]Li Y, Voskoboynikov O, Lee C, et al. Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots. Comput Phys Commun,2001, 141(1):66-72
    [30]El-Moghraby D, Johnson R, Harrison P. The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput Phys Commun, 2003,150(3):235-246
    [31]Li Y, Voskoboynikov O, C. Lee C, et al. Dependence of energy gap on magnetic field in semiconductor nano-scale quantum rings. Comput Phys Commun,2003,141(1):66-72
    [1]Stiff-Roberts A D. Quantum-dot infrared photodetectors:a review. J Nanophoton,2009, 3(26):031607
    [2]Jolley G, Fu L, Tan H H, et al. The influence of doping on the device characteristics of In05Ga05As/GaAs/A102Ga08As quantum dots-in-a-well infrared photodetectors. Nanoscale, 2010,2(6):1128-1133
    [3]Li K, Zhang J. Optical and electronic properties of GaAsn/InAsn 001 superlattices: Lmto-asa approach. Superlattices Microstruct,2007,43(1):53-62
    [4]Lam A, Ng T. Electronic confinement in self-assembled quantum dots (SAQD) modeled with a new interfacial capping layer. Comput Mater Sci,2010,49(1):S54-S59
    [5]Xia J -B, Chang K, Li S -S. Electronic structure and optical property of semiconductor nanocrystallites. Comput Mater Sci,2004,30(2):274-277
    [6]Amtout A, Raghavan S, Rotella P, et al. Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector. J Appl Phys,2004,96(5): 3782
    [7]Li S, Xia J. Intraband optical absorption in semiconductor coupled quantum dots. Phys Rev B,1997,55(16):15434
    [8]Peeters F, Schweigert V. Two-electron quantum disks. Phys Rev B,2009,53(8):1468-1474
    [9]Shumway J, Fonseca L, Leburton J, et al. Electronic structure of self-assembled quantum dots:comparison between density functional theory and diffusion quantum Monte Carlo. Physica E,2000,8(2):260-268
    [10]Williamson A, Zunger A. InAs quantum dots:predicted electronic structure of free-standing versus GaAs-embedded structures. Phys Rev B,1999,59(15):15819-15824
    [11]Hwang T -M, Lin W -W, Wang W -C, et al. Numerical simulation of three dimensional pyramid quantum dot. J Comput Phys,2004,196(2):208-232
    [12]Cusack M, Briddon P, Jaros M. Electronic structure of InAs/GaAs self-assembled quantum dots. Phys Rev B,1996,54(9):2300-2303
    [13]Li S, et al. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys Rev B,1996,54(12):11575
    [14]Bastard G. Wave Mechanics Applied to Semiconductor Heterostructures. New York:John Wiley and Sons,1991:63-68
    [15]Wang W, Hwang T -M, Jang J -C. A second-order finite volume scheme for three dimensional truncated pyramidal quantum dot. Comput Phys Commun,2006,174(3): 371-385
    [16]Jacak L, Hawrylak P, Wojs A. Quantum Dots. Berlin:Springer,1998:19-26
    [17]Han X, Li J, Wu J, et al. Intersubband optical absorption in quantum dots-in-a-awell heterostructures. J Appl Phys,2005,98(32):053703
    [18]El-Moghraby D, Johnson R, Harrison P. Calculating modes of quantum wire and dot systems using a finite differencing technique. Comput Phys Commun,2003,150(3): 235-246
    [19]Li Y, Voskoboynikov O, Lee C, et al. Computer simulation of electron energy levels for different shape InAs/GaAs semiconductor quantum dots. Comput Phys Commun,2003, 141(1):66-72
    [20]EI-Moghraby D, Johnson, R, Harrison P. The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput Phys Commun, 2003,155(3):236-243
    [21]Harrison P. Quantum Wells, Wires and Dots:Theoretical and Computational Physics of Semiconductor Nanostructures. UK:John Wiley Sons,2006:60-63
    [1]Wang J, Mao H, Yu J, et al. Electrically tunable electron g factors in coupled inas/gaas pyramid quantum dots. Appl Phys Lett,2010,96(42):062108
    [2]Sheng W, Wang J. Anisotropic hole spins in single and coupled selfassembled quantum dots. Phys Rev B,2010,82(65):073308
    [3]Gershoni D. Quantum data processing:Pyramidal quantum dots. Nature Photonics,2010, 96(2):271-272
    [4]Surrente A, Gallo P, Felici M, et al. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra. Nanotechnology,2009,20(36):415205
    [5]Leonard D, Pond K, Petroff P M. Critical layer thickness for selfassembled inas islands on gaas. Phys Rev B,1994,50(26):11687-11692
    [6]Ustinov V, Zhukov A. GaAs-based long-wavelength lasers. Semicond Sci Technol,2000, 15(1):R14
    [7]Liu H, Hopkinson M, Harrison C, et al. Optimizing the growth of 1 3 um InAs/InGaAs dots-in-a-well structure. J Appl Phys,2003,93(9):2931
    [8]Solomon G, Larson M, Harris J. Electroluminescence in vertically aligned quantum dot multilayer lightemitting diodes fabricating by growth-induced islanding. Appl Phys Lett, 1996,69(6):1897
    [9]Bimberg D, Grundmann M, Ledentsov N. Quantum dot heterostructures. New York:John Wiley and Sons,1998:102-105
    [10]Stiff-Roberts A. Quantum-dot infrared photodetectors:a review. Journal of Nanophotonics, 2009,3(36):031607
    [11]Rafailov E, Cataluna M, Avrutin E. Ultrafast lasers based on quantum dot structures: Physics and Devices. New York:John Wiley and Sons,,2011:10-18
    [12]Yiming L, etal. Computer simulation of electron energy levels for different shape inas/gaas semiconductor quantum dots. Comput Phys Commun,2001,141(1):66-72
    [13]Yiming L. Numerical calculation of electronic structure for three dimensional nanoscale semiconductor quantum dots and rings. J Comput Electron,2003,2(1):49-57
    [14]Hwang T -M, Lin W -W, Wang W -C, et al. Numerical simulation of three dimensional pyramid quantum dot. J Comput Phys,2004,196(2):208-232
    [15]Voss H. Numerical calculation of the electronic structure for three-dimensional quantum dots. Comput Phys Commun,2006,174(3):441-446
    [16]Steer M, Mowbray D J, Tribe W R, et al. Electronic energy levels and energy relaxation mechanisms in self-organized inas/gaas quantum dots. Phys Rev B,1996,174(17): 17738-17744
    [17]Guasch C, Torres C S, Ledentsov N, et al. Resonant photoluminescence from modulation-doped inas/gaas quantum dots. Superlattices and Microstructures,1997,21(5): 509-516
    [18]Fricke M, et al. Shell structure and electron-electron interaction in self-assembled inas quantum dots. Europhys Lett,1996,36(2):197
    [19]Califano M, Harrison P. Presentation and experimental validation of a single-band constant-potential model for self-assembled inas/gaas quantum dots. Phys Rev B,2000, 61(10):10959
    [20]Han X, Li J, Wu J, et al. Intersubband optical absorption in quantum dots-in-a-well heterostructures. Journal of Applied Physics,2005,98(36):053703
    [1]Lifshits I M, Rozentsveig L N. On construction of the Green tensor for the main equilibrium of the elasticity theory in the case of an unbounded elastic anisotropic medium. Zhurn Eksper Teor Phiz,1947,17(5):783-791
    [2]Eshelby J D. The elastic model of lattice defects. Annalen der Physik,1957,456(1-3): 116-121
    [3]Keyes R W. Elastic properties of diamond-type semiconductors. Journal of Applied Physics, 1962,33(8):3371
    [4]Mathine D L, Krishnan Myjak S, Maracas G N. A computational Fourier series solution of the BenDaniel-Duke Hamiltonian for arbitrary shaped quantum wells. IEEE Journal of Quantum Electronics,1995,31(7):1216-1222
    [5]Potz W, Porod W, Ferry D K. Theoretical study of subband levels in semiconductor heterostructures. Physical Review B,1985,32(6):3868
    [6]Nygaard O, Vergard L. Accurate Determination of the Lattice Dimensions of the Au-Ag Alloys. Skrifter Norske Videnskaps-Akad Oslo Mat Natur Klasse,1947,2(1):37-40
    [7]McKitterick J B. First-principles calculation of the dielectric properties of GaAs:Dielectric constant, effective charges, and piezoelectric constant. Physical Review B,1983,28(12): 7384
    [8]Ando T, Mori S. Electronic Properties of a Semiconductor Superlattice, Ⅰ-Self-Consistent Calculation of Subband Structure and Optical Spectra. Journal of the Physical Society of Japan,1979,47(5):1518-1527
    [9]Ando T. Density-functional calculation of sub-band structure in accumulation and inversion layers. Physical Review B,1976,13(8):3468
    [10]Esaki L, Chang L L. New Transport Phenomenon in a Semiconductor Superlattice. Physical Review Letters,1974,33(8):495
    [11]Weiner J S, Pearson D B, Miller D A B, et al. Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures. Appl Phys Lett,1986,49(9):531-533
    [12]Weber M J, Milam D, Smith W L. Nonlinear refractive index of glasses and crystals. Opt Eng,1978,17(5):463
    [13]Friberg S R, Smith P W. Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron,1987, QE(23):2089-2094
    [14]Adsir R, Chase L L, Payne S A. Nonlinear refractive-index measurements of glasses using three-wave frequency mixing. J Opt Soc Am B,1987,4(5):875-881
    [15]Owoug A. Ellipse rotation studies in laser host materials. IEEE J Quantum Electron,1973, QE(9):1064-1069
    [16]Williams W E, Soileau M J, Van Stryland E W. Optical switching and n2 measurements in CS2.Opt Commun,1984,50(4):256-260
    [17]Ma J, Wang S M, Shen D Z. The study of third order nonlinearities in ZnCdSe-ZnSe/GaAs MQWs using Z-scan. Solid State Commun,1996,97(11):961-963
    [18]Petrov D V, Gomes A S L, Araujo C B. Reflection Z-scan technique for measurements of optical properties of surfaces. Appl Phys Lett,1994,65(29):1067-1069
    [19]Petrov D V, Gomes A S L, Araujo C B. Reflection of a Gaussian beam from a saturable absorber. Optics Communications,1996,123(4):637-641
    [20]Butcher P N, Cotter D. The Elements of Nonlinear Optics. Cambridge Univ:Press,1990: 14-18
    [21]Nagarajan R, Kamiya T, Kurobe A. Band filling in GaAs-AlGaAs multiquantum well lasers and its effect on the threshold current. IEEE J Quantum Electron,1989,25(6):1161-1170
    [22]Sturge M D. Optical absorption of Gallium Arsenide between 0 6 and 2 75 eV. Phys Rev, 1962,127(3):768-773
    [1]Oghbaei M, Mirzaee O. Microwave versus conventional sintering:A review of fundamentals, advantages and applications. Journal of Alloys and Compounds,2010,494(1): 175-189
    [2]Bykov Y V, Rybakov K I, Semenov V E. Microwave sintering of nanostructured ceramic materials. Nanotechnologies in Russia,2011,6(9-10):647-661
    [3]Yamanoglu R, Bradbury W L, Olevsky E A, et al. Comparative evaluation of densification and grain size of ZnO powder compacts during microwave and pressureless spark plasma sintering. Advances in Applied Ceramics,2012,111(7):422-426
    [4]Jolly P, Turner I. Non-linear field solutions of one-dimensional microwave heating. International Journal of Microwave Power and Electromagnetic Energy,1990,25(1):4-15
    [5]Alpert Y, Jerby E. Coupled thermal-electromagnetic model for microwave heating of temperature-dependent dielectric media. IEEE Trans Plasma Science,1999,27(6):555-562
    [6]Soriano V, Devece C, De los Reyes E. A finite element and finite difference formulation for microwave heating laminar material. International Journal of Microwave Power and Electromagnetic Energy,1998,33(1):67-76
    [7]Sekkak A, Pichon L, Razek A.3D FEM magneto-thermal analysis in microwave ovens. IEEE Transactions on Magnetics,1994,30(13):3347-3350
    [8]Iskander M D, Andrade A O. FDTD simulation of microwave sintering of ceramics in multimode cavities. IEEE Trans Microwave Theory and Techniques,1994,42(5):793-799
    [9]Lasri J, Ramesh P D, Schachter L. Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor. J Am Ceram Soc,2000,83(8):1465-1468
    [10]Duan Y, Sorescu D C, Johnson J K. Finite element approach to microwave sintering of oxide materials. Proceedings:the COMSOL Conference,2006:5-9
    [11]Bouvard D, Charmond S, Carry C P. Multiphysics Simulation of Microwave Sintering in a Monomode Cavity. Proc:12th Seminar Computer Modeling in Microwave Engineering & Applications Advances in Modeling of Microwave Sintering,2010:8-9
    [12]Dibben D C, Metaxas A C. Finite element time domain analysis of multimode applicators using edge elements. International Journal of Microwave Power and Electromagnetic Energy,1994,29(4):242-251
    [13]Savary E, Marinel S, Gascoin F, et al. Peculiar effects of microwave sintering on ZnO based varistors properties. Journal of Alloys and Compounds,2011,509(21):6163-6169
    [14]Kim Y, Mitsugi F, Ueda T, et al. Characteristics of ZnO thin films fabricated by shock-consolidated ZnO target. Ceramics International,2011,37(7):2921-2925
    [15]Fischer P. Numerical Simulation of Microwave Sintering of Zinc Oxide. US:Virginia Polytechnic Institute and State University,1997:13-16
    [16]Komarov V V. Formulations of the coupled mathematical models of microwave heating processes. International Journal of Applied Electromagnetics and Mechanics,2011,36(4): 309-316
    [17]Dadon D, Gershon D, Carmel Y, et al. Observation of an electromagnetically driven temperature wave in porous Zinc Oxide during microwave heating, MRS Proceedings Cambridge University Press,1996,430(1):12-16
    [18]Hutcheon R, de Jong M, Adams F, et al. A system for rapid measurements of RF and microwave properties up to 1400℃, II:Description of apparatus, data collection techniques and measurements on selected materials. Journal of microwave power and electromagnetic energy,1992,27(2):93-102
    [19]Touloukian Y S, Powell R W, Klemens Ho C Y P G. Thermophysical Properties of Matter. IFI:[J],1970:16-29
    [20]Birman A. Modeling of multi-frequency microwave sintering of ZnO ceramic. Microwaves Theory and Application in Materials Processing,1995,3(2):305
    [21]Olorunyolemi T, Birnboim A, Carmel Y, et al. Thermal conductivity of zinc oxide:from green to sintered state. Journal of the American Ceramic Society,2002,85(5):1249-1253
    [22]Shukla A K, Mondal A, Upadhyaya A. Numerical modeling of microwave heating. Science of Sintering,2010,42(1):99-124
    [23]Outifa L, Delmotte M, Jullien H. Dielectric and geometric dependence of electric field and power distribution in a waveguide heterogeneously filled with lossy dielectrics. Microwave Theory and Techniques IEEE Transactions on,1997,45(8):1154-1161
    [24]Ehlers R A, Metaxas R A C. An investigation on the effect of varying the load, mesh and simulation parameters in microwave heating applications. Journal of Microwave Power and Electromagnetic Energy,2007,40(4):251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700