数字化女性盆腔放射治疗模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤放射治疗是目前治疗恶性肿瘤的三大手段之一,其治疗方式是利用电离辐射对生物细胞的杀伤作用进行治疗。所以,作为治疗的各种放射线在杀灭肿瘤细胞的同时,又不可避免损伤部分正常的组织和器官。放射治疗的目标就是在尽可能提高肿瘤的受照射剂量的同时最大限度地保护肿瘤周围的正常组织,从而提高肿瘤的局部控制率,降低正常组织的放疗并发症。人体内器官的空间位置及辐射剂量的分布是无法通过仪表直接测量的,在对医疗仪器科学性、安全性、可操作性的判断过程中,不允许使用活体真人进行试验,因此必须为人类找到一个替身来研究器官在人体中的空间位置以及在医疗照射中器官剂量的分布来避免上述危害。中国数字化人体数据集的建立为放射治疗的剂量学计算提供了中国人人体模型基础,利用中国数字化人体数据集可以建立完整的人体数字化模型库,能更精确地对人体内各个器官的空间位置进行观测和对组织剂量分布进行数字模拟仿真计算,以便获得更合理的放疗方案和更精确的剂量分布,提高肿瘤的疗效,减少放疗并发症,并为制订符合中国人的放射物理模型提供了理论依据和技术平台。
     本实验以标本号为CVH-2的可视化女性人体数据集的原位女性盆腔连续横断层图像(髂嵴至坐骨结节下缘平面)为研究对象,利用Amira 4.1软件进行计算机图像重采样处理,生成多方位的连续薄层断面图像数据集,实现同一例标本的多方位断面图像的观测,在此基础上对常用照射野内的组织器官进行断层解剖学观测。在计算机上利用可视化软件,采用交互式手动分割和自动阈值分割相结合的数据提取方法,进行盆腔内放射治疗敏感器官的图像分割和三维重建,在盆腔器官三维重建的基础上,模拟盆腔常用的外照射射野,使得照射野所包含的组织在三维空间上可以直观地显示出来,并可在各个方位、角度上进行动态观察,讨论各种照射野所包含的解剖结构的空间位置关系以及常规照射野的一些挡铅方式存在的问题。在构建的女性盆腔内部器官结构三维解剖模型基础上,充分利用数字化人体数据的高清晰度、高分辨率、高识别率的优势,结合同一例数据标本的CT数据,探讨不同数据源与标准DICOM数据转换的方法,并将两种类型的数据进行了图像配准和融合,使低识别率的CT数据具有了高识别率的特性,构建临床上通用的女性盆腔数字化放射治疗模拟计算模型,以期实现在数字模型上对妇科肿瘤盆腔放射治疗中肿瘤靶体积和重要器官剂量的评估和放射治疗计划的优化设计,为建立完整的人体数字化辐射模型库方法进行初步探索。其研究成果对于盆腔恶性肿瘤放射治疗剂量的解析计算、临床治疗方案的选择与优化以及放射治疗计划质量保证(quality assurance,QA)具有重要的理论和临床意义。
     本研究的主要结果和结论如下:
     1.在女性数字化可视人体数据集盆腔薄层断面图像数据的基础上,利用Amira 4.1软件的重采样功能生成多方位的连续断面图像数据集,实现同一例标本的多方位断面图像观测,为开展数字解剖学教学与临床影像诊断等提供了全方位的断层解剖学资料。
     2.获得了女性盆腔放射治疗中多种照射野方位的连续断层图像,结合临床照射野的特点,探讨了相关照射野视窗范围内重要器官的断层解剖学结构特点与走行分布规律,为肿瘤影像诊断的准确性和放射治疗方式的正确选择、靶区的正确勾画提供断层解剖学依据。
     3.运用计算机三维重建可视化技术,实现了盆腔照射野的三维可视化,精确模拟了常规照射野的观察视窗,从多方位、多角度立体显示照射野范围内各器官之间的空间结构和毗邻关系,特别是靶器官和危险器官的毗邻关系,为女性盆腔外照射射野方式的选择和降低肿瘤放射治疗中放疗并发症发生的深入研究提供了立体形态学依据。
     4.利用虚拟断层技术和三维照射野视窗的虚拟现实仿真技术,为女性盆腔内器官结构的空间位置理解提供了更直观的显示方式,为照射野解剖学的深入研究提供了相应的技术平台。
     5.首次实现了数字化可视人体分割数据与标准DICOM3.0数据格式的转换,建立了一套符合临床放射治疗系统数据要求的标准DICOM3.0中国可视化人体数据源女性盆腔数据,为数字化可视人体应用于临床影像设备提供完整的技术方案和程序代码,有助于数字化可视人体数据的临床推广应用,为临床影像数据提供了精确而详细的辅助资料。
     6.对不同数据源的医学图像融合方法和融合效果评估进行了探讨,使同一例标本的CT数据源和数字化可视人体数据集的匹配度达到95%以上,并成功实现了同一例标本不同数据源的图像融合,使低分辨率的临床CT具有分割标识,为妇科肿瘤放射治疗过程中靶区勾画、治疗方案优化和剂量评估提供了具有重要器官分割特性的数字模拟计算模型。
     7.成功建立了平均CT值和具有分割特性的CT数据两种女性盆腔放疗模拟计算模型,所建模型符合DICOM3.0数据格式,可作为理想的中国人数字化放疗模拟计算模型,为研究更合理的放疗方案和更精确的剂量分布、寻求更加精确的剂量计算方法提供了理想的活体真人替代品,为建立完整的国人辐射人体数字化模拟计算模型库的方法进行初步探索。
     8.在临床放射治疗计划系统(TPS)上,利用建立的女性盆腔数字化放射治疗模拟计算模型实现了宫颈癌2D-RT、3D-CRT和IMRT剂量分布的模拟计算。在相应的剂量分布断面及三维重建图像上,对2D-RT、3D-CRT和IMRT在宫颈癌的剂量分布进行比较研究,探讨各种照射方式的优势和价值,为宫颈癌的临床放疗计划的设计提供了剂量学的参考依据。
At present, radiotherapy is one of the three major techniques for treating cancer patients ,which causes cell injury when cancer patients were being exposed to the ionizing radiation. The radiation damage to normal tissues and organs of patients with cancer during the radiotherapy are unavoidable when radiation kills tumor cells. The desired therapeutic outcomes of radiotherapy are to maximally improve the tumor radiation dose and to maximally decrease the damage to ambient normal tissues and organs. The final goal of radiotherapy is to improve local control rate and to decrease post radiation complications of the cancer patients. The spatial position relation and the radiation doses distribution of human organ and tissues can not be directly measured and displayed by any apparatus. It is forbidden to use live human in the experiment of evaluating safety and maneuverability of medicinal apparatus. So a substitute for live human must be invented to study human’s organic architecture and radiation doses distribution in radiation instead of. The Chinese Visible Human (CVH) datasets provide the possibility of constructing digital human model and numerical data-base of the Chinese about radiotherapy dose calculation. We can accurately observe human’s organic architecture and calculate radiation doses simulation through digital human model, which would be the standard of the physical radiotherapy model from the Chinese.
     In this study, 386 continuous cross-sections of female pelvic cavity (between slices 1715 and 2100) were chosen from the second datasets of CVH. After being registered accurately, the cross-sections of female pelvic cavity data set were resampled to create the traverse, coronal and sagittal planes images data set with Amira4.1 software on PC. By using the visualizational software, the structures of radiosensitive organs were segmented by interactive and thresholds complex segmentation approach and were reconstructed to get female pelvic 3D model. Using the methods described above, we have reconstructed a numerical model of the inner organs of the female Visible Human pelvis. The important structures in the radiation field for female pelvic cavity including the pelvis, the uterus, the ovary, the ureter, the vesica, the internal iliac vein and artery, external iliac vein and artery were displayed clearly in false color by surface rendering reconstruction. In 3D view, the graphic modeling provides an overview of the pelvic structures and their relationships to each other and other anatomical regions. We can prune, enlarge, and roam the inner organs data in any orientation so that the inner structure of the radiation field for female pelvic cavity can be observed clearly. Then, the color images and the CT DICOM images of female pelvic cavity from CVH data set were registered and fused to construct a physical radiotherapy model of female pelvic cavity. Good image quality can be achieved by processing images of portal field and it is helpful to achieve high anatomy registration accuracy of the color images and CT images. Display of the fused images helps anatomy structure registration. Our rerults show that fusing images with anatomic images can help to obtain a full understanding of the portal field and peripheral structures and can be used as a routine clinical practice. This study have shown that spatial relationships between the anatomy structures are easier to understand when being visualized stereoscopically in 3D environments, and the physical radiotherapy model have therefore the potential to extend the radiotherapy planning process, giving an improved understanding of how the dose is distributed throughout the patient’s body. Also, this report presents a physical radiotherapy model for evaluating radiotherapy treatment plans, developed to improve the understanding of the spatial relationships between the patient anatomy and the calculated dose distribution. A physical radiotherapy model offers visualization through interactive volume rendering of radiotherapy dose distribution and computed tomography (CT) and surface and line rendering of radiotherapy structures such as target volumes and organs at risk. A physical radiotherapy model has been installed and networked in a hospital room used for the daily radiotherapy conferences, making stereoscopic viewing of treatment planning data for clinical cases possible.
     The main results and conclusions were as follows:
     1. The continuous cross-sections of female pelvic cavity chosen from the second datasets of CVH were resampled afterbeing registered accurately. The thin sectional anatomy data set from multidirectional planes were obtained on the same individual. It can help to promote image diagnosis and anatomical studies of digital visible human.
     2. The cross-sectional anatomic characteristics and distribution of the internal structure were observed in the radiation field in female pelvic cavity. The cross-sectional anatomic characteristics of the radiation field in female pelvic cavity can be effectively used to recognize medical automatic images and get target therapy areas’image drawings in radiotherapy. It can help to choose optimal radiotherapy methods and to provide anatomical basis for the radiotherapy.
     3. By using visualizational software, the structures of radiosensitive organs were segmented by interactive and thresholds complex segmentation approach and were reconstructed to get female pelvic 3D model. We can prune, enlarge, and roam the inner organs data in any orientation so that the inner structure of the radiation field for female pelvic cavity can be observed clearly.
     4. Based on the digital medical image resampling techniques and virtual-reality technology, an intuitively understandable manner was provided to study the inner anatomic structure of the radiation field in female pelvic cavity. It provided a technology platform for research on anatomy of radiation field.
     5. This trial transformed the CVH color images to the DICOM files for the first time. The CVH color cross-sectional images of female pelvic cavity were transformed to DICOM3.0 images with Amira4.1 and Matlab software. A dataset of female pelvic DICOM files from CVH was set up to apply in radiation therapy system.
     6. This trial discussed the fusion method and efficiency evaluation for the multimodality medical image information. The pelvic cavity structures of Chinese Virtual Human dataset were segmented using image transparency method at first and each image was smoothed by eroding and dilating, and then fused successfully with CT of the same sample. The registration accuracy of CVH/CT was more than 95%. The digital radiotherapy model of female pelvic cavity with important organs segmented can well reflect the exposure doses of patients, so it is of important value to get target therapy areas’image drawings, forecast radiotherapy side effects, optimize radiotherapy plan and improve curative effect.
     7. This trial presented a digital physical radiotherapy model with the mean CT values and a model with the segmented CT data of female pelvic cavity for the first time. The color images and the CT DICOM images of female pelvic cavity from CVH were registered and fused to construct a physical radiotherapy model of female pelvic cavity. We can accurately observe human’s organic architecture and calculate radiation doses simulation in radiation therapy for patients with gynecological malignancies through the digital model, which would be the standard of the physical radiotherapy model from the Chinese. The methods of founding integrated numeric radiotherapy model were initially studied.
     8. The physical radiotherapy model of female pelvic cavity was imported in the radiotherapy planning system for the first time. The dose distribution of 2D-RT、3D-CRT and IMRT on the physical radiotherapy pelvic model from CVH2 was transferred and superimposed onto the sectional anatomy images and anthropomorphic pelvic phantom. The differences with target dose and normal tissue absorb dose by the DVHs were compared. Much more information about clinical dose distribution was obtained on anatomy images than that on CT images. The physical radiotherapy model on the TPS system has great value in the study of fine anatomy and clinical images. It provides technology platform for research and radiotherapy training.
引文
1.杨玲,皇甫小梅,张思维,等.中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势[J].中国医学科学院学报, 2003, 25(4):386-390.
    2. Papp Z, Csapo Z, Mayer A, et al. Wertheim-operation: 5-year survival of 501 consecutive patients with cervical cancer [J]. Orv Hetil,2006,147(12):537-545.
    3. Matsuura K, Tanimoto H, Fujita K, et al. Early clinical outcomes of 3D-conformal radiotherapy using accelerated hyperfractionation without intracavitary brachytherapy for cervical cancer [J]. Gynecologic Oncology, 2007, 104, 11-14.
    4.马丽莉,何仲.影响妇科恶性肿瘤患者生活质量的因素及干预措施[J].中华护理杂志,2003,33(11):876.
    5.马永忠,王时进,苏旭.放射治疗并发的靶外放射损伤[J].中国自然医学杂志,2007,9(3):267-230.
    6. Sundar S, Symonds P, Deeham C, et al. Tolerance of pelvic organs to radiation treatment for carcinoma of cervical cancer[J]. Gynecol Oncol, 2004, 93(2):400-406.
    7. Abbasakoor F,Vaizey CJ,Boulos PB. Improving the morbidity of anorectal injury from pelvic radiotherapy [J]. Colorectal Dis,2006,8:2-10.
    8.李魁秀,房朝辉,牛怀书,等.112例年轻妇女子宫颈癌放疗疗效及预后[J].中华放射肿瘤学杂志,2007,16(2):118-120.
    9.杨玲,皇甫小梅,张思维,等.中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势[J].中国医学科学院学报,2003,25(4):386-390.
    10. ICRU REPORT 48. Phantoms and computational models in therapy [J]. Diagnosis and protection. Issued:15 June 1992. International Commission Radiation Units and Measurements.
    11. Xu XG,Chao TC. Calculations of specific absorbed fractions of the gastrointestinal tract using a realistic whole body tomographic model [J]. Cancer Biotherapy & Radiopharmaceuticals,2003,18(3):431-436.
    12. Xu XG,Chao TC,Bozkurt A. VIP-Man:An image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations [J]. Health Physics,2000,78(5):476-486.
    13.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002.911-914.
    14. Mundt AJ,Mell LK,Roeske JC.Preliminary analysis of chronicgastrointestinal toxicity in gynecology patients treated with intensity modulated whole pelvic radiation therapy[J].Int J Radiat Oncol Biol Phys,2003,56:1354-1360.
    15. Gillian Thomas. Cervical cancer: Treatment challenges in the developing world [J]. Radiotherapy and Oncology,2006,79:139-141.
    16. Brixey CJ,Roeske JC,Lujan AE,et a1.Impact of intensity modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies[J].Int J Radiat On col Biol Phys,2002,54:1388-1396.
    17.张福泉,邱杰,杨波,等.宫颈癌外照射的射野与剂量学分析[J].中华放射医学与防护杂志,2004,24(5):438-439.
    18. Chambers SK,Chambers JH,Holm C,et al. Sequelae of lateral ovarian transposition in unirrasiated cervical cancer patients [J]. Gynecol Oncol,1990,39 (2):155-159.
    19. Valicenti R K,Sweet J W. Variability of target volume definition in three-dimensional conformal radiation therapy for prostate cancer [J]. Int J Radiat Oncol Biol Phys,1999,44(4):931-935.
    20. Vincenzo V,Nicola D,Stefania N,et al. An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER) [J]. Radiotherapy and Oncology,2004,70:165-169.
    1. Papp Z,Csapo Z,Mayer A,et al. Wertheim-operation:5-year survival of 501 consecutive patients with cervical cancer [J]. Orv Hetil,2006,147(12):537-545.
    2. Atkovar G,Uzel O,Ozsahin M,et al. Postoperative radiotherapy in carcinoma of the cervix: treatment results and prognostic factors [J]. Radiother Oncol,1995,35(3):198-205.
    3. Turkistanli EC,Sogukpinar N,Saydam BK,et al. Cervical cancer prevention and early detection:The role of nurse’s andmidwives [J]. Asian Pac J Cancer Prev, 2003,4:15-21.
    4.马丽莉,何仲.影响妇科恶性肿瘤患者生活质量的因素及干预措施[J].中华护理杂志,2003,33(11):876.
    5. Gloiella ME,Berkman B,Robison M. Spirituslity and quality of life in gynecologic patiens [J]. Cancer-practical,1998,6(6):333-338.
    6.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002. 103-106.
    7.原锦. CT模拟过程在三维适形放疗中的临床应用价值[J].实用医技杂志,2006, 13(7):1037-1038.
    8.张绍祥,刘正津,谭立文,等.首例中国数字化可视人体完成[J].第三军医大学学报,2002,24(10):1231-1232.
    9.张绍祥,刘正津,谭立文,等.第三例中国数字化可视人体数据集采集完成[J].第三军医大学学报,2003,25(10):794-796.
    10.张绍祥,王平安,刘正津,,等.首套中国男、女数字化可视人体结构数据的可视化研究[J].第三军医大学学报,2003,25(7):563-565.
    11.谭立文,张绍祥,李恺,等.冰冻薄层连续断层标本的制作方法[J].中国临床解剖学杂志,2003,21(3):413-414.
    12.谭立文,王忠贵,张绍祥,等.数字化可视人体连续断层标本参数测量方法研究[J].解剖学杂志,2005,28(2):195-197.
    13.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,921-922.
    14. Paling SM,Williams ED,Barber R,et al. The application of serial MRI analysistechniques to the study of cerebral atrophy in late-onset dementia [J]. Medical Image Analysis,2004,8:69-79.
    15. Greess H,Nomayr A,Tomandl B,et al. 2D and 3D visualisation of head and neck tumours fromspiral-CT data [J]. European Journal of Radiology,2000,33:170-177.
    16.章伟敏,曹永胜.多层螺旋CT锥形线束校正重建技术:适应性倾斜多层平面重建法[J].中国医学影像技术,2004,20 (9):1465 -1468.
    17.宋林,谭立文.冰冻连续断层标本的定标方法[J].局解手术学杂志, 2003, 12(2): 134.
    18.谭立文,王忠贵,张绍祥,等.数字化可视人体连续断层标本参数测量方法研究[J].解剖学杂志,2005,28(2):195-197.
    19.肖嵛,谭立文,宋林,等.连续断层图像立体重采样评估[J].第三军医大学学报, 2007,29(3):193-195.
    20.李克功.人体断层解剖与临床[J].大理医学院学报,1999,8(4):68-71.
    21.郑国焱,李树祥.任意剖面显示算法研究[J].北京生物医学工程,1995,14(1):1-9.
    22.王立功,于甬华,罗立民.医学图像体数据场的剖切显示方法[J].中国图像图形学报,2003,8(7):769-773.
    23. Ciernik IF,Dizendorf E,Baumert BG,et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT):A feasibility study [J]. Int J Radiat Oncol Biol Phys,2003,57(3):853-863.
    24. Mah K,Caldwell CB,Ung YC,et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma:A prospective study [J]. Int J Radiat Oncol Biol Phys, 2002,52(2):339-350.
    25. Del Wel AV,Nijsten S,Hochstenbag M,et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer:A modeling study [J]. Int J Radiat Oncol Biol Phys,2005,61(3):649- 655.
    26.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,914-915.
    27.钱建军,田野.放射治疗中肿瘤靶区勾画的主观差异性分析[J].核技术,2007,30(7):605-609.
    28.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,911-914.
    29.单锦露,雷新,王东,等.锎-252中子腔内后装加盆腔外照射治疗子宫颈癌临床分析[J].中华妇产科杂志,2005,40(4):223-226.
    30. Chao KSC,Williamson J,Grigsby PW,et al. Uterosacral space involvement in locally advanced carcinoma of the uterine cervix [J]. Int J Radiat Oncol Biol Phys,1998,40:397-403.
    31. Greer BE,Koh WJ,Frigge DC,et al. Gynecologic radiotherapy fields defined by intraoperative measurements [J]. Gynecol Oncol,1990,38:421-424.
    32.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,314.
    33.张福泉,邱杰,杨波,等.宫颈癌外照射的射野与剂量学分析[J].中华放射医学与防护杂志,2004,24(5):438-439.
    34.陈振东,孙燕,王肇炎,等.实用肿瘤并发症诊断治疗学[M].安徽:安徽科学技术出版社,1997,279.
    35.雷新,单锦露,赵可伟.锎252中子后装治疗宫颈癌直肠钡灌肠与插铅丝监测直肠前壁受量的差异[J].中华放射肿瘤学杂志,2005,14(3):201-203.
    36. Sundar S,Symonds P,Deeham C,et al. Tolerance of pelvic organs to radiation treatment for carcinoma of cervical cancer [J]. Gynecol Oncol,2004,93(2):400-406.
    37. Morice P,Castaigne D,Haie-Meder C,et al. Lapaloscopic ovarian transposition for pelvic malignancies: indication and functional outcomes [J]. Fertil Steril,1998,70(5):956.
    38. Van EMA,Van DWKI, sharouni E,et al. Benefits and Side effects of lateral ovarian transposition performed during radical hysterectomy and pelvic lymphadenectomy for early stage cervical cancer [J]. Int J Gynecol Cancer,1999,9(5):396.
    39. Buekers TE,Anderson B,Sorodky JI,et al. Ovarian function after surgical treatment for cervical cancer [J]. Gynecol Oncol,2001,80 (1):85.
    40.皮守福,车铁君.放疗对肿瘤病人周围血象的影响[J].实用肿瘤学杂志,1995,9 (2):42.
    1. Zinger M,Liu JH,Husseninzadeh N,et a1. Successful surrogate pregnancy after ovarian transposition,pelvic irradiation and hysterectomy[J].J Reprod Med,2004,49(7):573-574.
    2. Hatoum OA,Binion DG,Phillips SA,et a1. Radiation induced small bowel“web”formation is associated with acquired microvascular dysfunction [J]. Gut,2005, 54(12):1797-1800.
    3. Brixey CJ,Roeske JC,Lujan AE,et a1.Impact of intensity modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies[J].Int J Radiat Oncol Biol Phys,2002,54:1388-1396.
    4. An YH,Zhou RX,Ding AP. Protection of abdominal and pelvic hypoxic irradiation on the immunity of cancer patients [J]. Radiotherapy and Oncology,1997,43:87.
    5.安永恒,周仁祥,丁爱萍,等.低氧照射腹盆部对肿瘤病人骨髓及免疫功能的影响[J].齐鲁医学杂志, 2002,17 (1):10-12.
    6. Chambers SK,Chambers JH,Holm C,et al. Sequelae of lateral ovarian transposition in unirrasiated cervical cancer patients [J]. Gynecol Oncol,1990,39 (2):155-159.
    7. Shii K,Aoki Y,Takakuwa K, et al. Ovarian function after radical hysterectomy with ovarian preservation for cervical cancer [J]. Int J Repord Med, 2001, 46 (4):347.
    8.张美琴,陈鸣之.年轻妇女子宫颈癌174例临床及预后分析[J].中华妇产科杂志,2003,38 (11):689.
    9.殷蔚伯,谷铣之,主编.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,916-917.
    10.张季,王宜杰.医学图像三维可视化系统的设计[J].医学信息,2006,19 (8):1294-1296.
    11.康雨,闫相国,郑崇勋,等.医学可视化网格平台的设计与实现[J].西安交通大学学报,2007,41 (8):1000-1002.
    12. Collignon A,Maes F,Delaere D,et al. Automated multi-modal image registration based on information theory [J]. Information Processing in Medical Imaging,1995,3:263-274.
    13. Viola P,Wells W. A lignment by maximization of mutual information [J]. InternationalJournal of Computer Vision,1997,24 (2):137-154.
    14.陈昱,张远林.医学图像配准的研究方法纵览[J].北京生物医学工程,2000,19 (2):119-122.
    15.谭立文,张绍祥,李恺,等.冰冻薄层连续断层标本的制作方法[J].中国临床解剖学杂志,2003,21 (3):413-414.
    16. Beneventi S,Chionne F,Gobbi G,et al. Quantitative CT tomography for radiotherapy treatment planning: calibration phantom and sources of error [J]. Radiother Oncol,1995,37 ( supplement):41.
    17. Luca C,Antonella F,Francesca B,et al. Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy [J]. Radiother oncol,1998,48( 3):335-338.
    18. Vaidyanath S,Temkin B. Registration and segmentation for the high resolution visible human male images [J]. Stud Health Technol Inform,2006,119:556-558.
    19. Robb RA,Hanson DP. Biomedical image visualization research using the Visible Human Datasets [J]. Clin Anat,2006,19(3):240-253.
    20. Heng PA,Zhang SX, Xie YM, et al. Photorealistic virtual anatomy based on Chinese Visible Human data [J]. Clin Anat,2006, 19(3): 232-239.
    21.张加易,袁中凡,林大全,等.组织辐射等效材料等效性验证方法的探讨[J].中国测试技术,2006,32(2):24-27.
    22. Benedetti PP,Maneschi F,Scambia G,et al. Lymphatic spread of cervical cancer:An anatomical and pathological study based on 225 radical hysterectomies with systematic pelvic and aortic lymphadenectomy [J]. Gynecol Oncol,1996,62 (1):19-24.
    23.李鹏,蔡胜,姜玉新.超声对良、恶性浅表淋巴结病变的鉴别诊断及其进展[J].中国医学影像技术,2007,23 (9) :1409-1412.
    24. Krastan C, Herneth AM, Formanek M, et al. Modern imaging lymph node staging of the head and neck region[J] . Eur J Radiol,2006,58 (3):360-366.
    25. Wang LJ,Wong YC,Chen CJ,et al. Cervical carcinoma:MR imaging with integrated endorectal/phased-array coils:Apilot study [J]. Eur Radiol, 2001, 11(9):1822-1827.
    26. Tateishi U , Hasegawa T , Kusumoto M , et al. Radiologic manifestations of proximal-type epithelioid sarcoma of the soft tissues [J]. AJ R,2002,179(4):973-977.
    27. Qatarneh SM,Kiricuta I,Brahme A, et al. 3D atlas on lymph node topography based onthe Visible Human Data set [J]. I. J. Radiation Oncology﹡Biology﹡Physics,2004, 60(1) :581-582.
    28. Dinniwell R,Chan P,Haider M,et al. Pelvic and inguinal lymphatic target volume delineation: analysis of the visible human high resolution anatomic data sets [J]. Radiotherapy and Oncology,2005,76(1):S17.
    29. Dinniwell R,Chan P,Lock M,et al. Limits and limitations of MRI and CT lymphatic target volume delineation: analysis of the visible human high resolution anatomic data sets [J]. Radiotherapy and Oncology,2005,76(1):S17.
    30. Greer BE,Koh WJ,Frigge DC,et al. Gynecologic radiotherapy fields defined by intraoperative measurements [J]. Gynecol Oncol,1990,38:421-424.
    31. Pendleburg SC,Cahill S,Crandon AJ,et al. Role of bipedal lymphangiogram in radiation treatment planning for cervix cancer [J]. Int J Radiat Oncol Biol Phys,1993,27:959-962.
    32. Chao KSC,Williamson J,Grigsby PW,et al . Uterosacral space involvement in locally advanced carcinoma of the uterine cervix [J]. Int J Radiat Oncol Biol Phys,1998,40: 397-403.
    33. Dargent D,Salvm J. Envahissenent ganglionnaire pelvienp:Place de la pelviscopie retroperitoneale[M].Medsi,Paris:McGraw Hill,1989:101.
    34. Possover M,Krause N,Kuhne-Heid R,et a1.Value of laparoscopic evaluation of paraaortic and pelvic lymph nodes for treatment of cervical cancer[J].Am J Obstet Gynecol,1998,178(4):806-810.
    35. Possover M , Plaul K , Krause N , et a1. Left-sided laparoscopic paraaortic lymphadenectomy:anatomy of the ventral tributaries of the infrarenal vena cava[J].Am J Obstet Gynecol,1998,179(5):1295-1297
    36. Zhang SX,Heng PA,Liu ZJ,et al. Creation of the Chinese Visible Human Data Set [J]. The Anatomic Record,2003,275B:190-195.
    37.姜在波,单鸿,黄明声,等.超选择性子宫动脉造影的临床应用研究[J].中国医学影像技术,2003,19(5):564-566.
    38.吴佳奇,张义琼.血管介入的形态学研究进展及展望[J].泸州医学院学报,2000,23(2):162-164.
    39. Robb RA. Virtual endoscopy: development and evaluation using the Visible Humandata sets [J]. Comput Med Imaging Graph, 2000,24(3):133-151.
    40. Trelease RB,Nieder GL,Dorup J, et al. Going virtual with quicktime VR:New methods and standardized tools for interactive dynamic visualization of anatomical structures [J]. Anat Rec,2000,261(2):64-67.
    41.刘彦.腹腔镜妇科手术并发症的特点及防治[J].中国实用妇科与产科杂志,2003,19(11):664-666.
    42. Lee CL,Soong YK. Laparoscopic hyslerectomy:Is dissecting the ureter necessary? [J]. Int Surg,1995,80:167-169.
    43. Saidi MH,Saadller RK,Vancaillie,et al. Diagnosis and management of serious urinary complications after major operative laparoscopy [J]. Obstet Gynecol,1996,87:272-276.
    44. Wu MP,Lin YS,Chou Cy. Major complications of operative gynecologic laparoscopy in southern Taiwan [J]. J Am Assoc Gynecol Laparosc,2001,8:61- 67.
    45. Silvia Zunino,Otilio Rosato,Sergio Lucino,et al. Anatomic study of the pelvis in carcinoma of the uterine cervix as related to the box technique [J]. I. J. Radiation Oncology﹡Biology﹡Physics,1999, 44(1) :53-59.
    46.张福泉,邱杰,杨波,等.宫颈癌外照射的射野与剂量学分析[J].中华放射医学与防护杂志,2004,24(5):438-439.
    47. Jocelyne Troccaz , Stkphane LavalEe , Philippe Cinquin. Computer-augmented surgery[J]. Human Movement Science,1996,15(3):445-475.
    48.范毓东,董家鸿.虚拟手术系统在肝脏手术方案设计中的应用[J].外科理论与实践,2004,9(4):272-274.
    49.吴荣,迟峰.恶性肿瘤综合治疗的策略[J].医学与哲学,2006,27(6):36-37.
    1.胡逸民.肿瘤放射物理学[M].北京:原子能出版社,1999,439-456.
    2.马如宇,铁瑛,薛文东,等.基于螺旋CT构建人体骨盆三维有限元模型[J].医用生物力学,2004,19(3):180-184.
    3. Shao-Xiang Zhang,Pheng-Ann Heng,Zheng-Jin Liu,et al. Creation of the Chinese visible human data set[J]. Anat Rec,2003,275B:190-195.
    4. Shao-Xiang Zhang,Pheng-Ann Heng,Zheng-Jin Liu,et al. The Chinese Visible Human (CVH) datasets incorporate technical and imaging advances on earlier digital human [J]. J Anat,2004,204:165-173.
    5.李恺,张绍祥,谭立文,等.经颈静脉肝内门体静脉分流术三维模型构建与可视化[J].中国介入影像与治疗学,2007,4(3):223-226.
    6.高宏建,吴水才,任新颖,等.利用Amira进行肝脏及其管道系统的三维重建[J].北京生物医学工程,2006,25(5):534-537.
    7.石成玉,徐榭,白净.一个数字化的孕妇物理人模型的开发及其在核医药学上的应用[J].中国医学影像技术,2004,20(8):1267-1272.
    8.徐榭,赵自强,石玉成,等.基于美国可视人项目图像的成年男子解剖模型及其在医学虚拟仿真上的应用[J].中国基础科学杂志,2002,6:25-30.
    9. Xu X G,Chao T C,Bozkurt A,et al. VIP-Man:an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo canculations [J]. Health Physics,2000,78(5):476-486.
    10. Chao T C,Xu X G. Specific absorbed fractions from the image based VIP-man body model and EGS4-VLSI Monte Carlo code: Internal electron emitters[J]. Physics in Medicine and Biology,2001,46:901-927.
    11. Chao T C, Bozkurt A, Xu X G. Coversion coefficients based on VIP-man anatomical model and EGS4-VLSI code for monoenergetic photon beams from 10 keV to 10 MeV[J]. Health Physics,2001,81(2):163-183.
    12.张居营,徐榭,石成玉.四维动态数字人体模型的开发及其在放疗计划中评估器官呼吸运动影响的研究[J].中国医学影像技术,2006,22(9):1301-1305.
    13.姜庆寰,李开宝,程金生,等.放疗剂量标准水模和检验水模的研制[J].中华放射医学与防护杂志,2002,22(5):318.
    14.单锦露,张绍祥.与放射肿瘤学密切相关的医学影像学[J].重庆医学,2004,33(12):1891-1893.
    15.王烝. DICOM协议在肿瘤放射治疗中的应用[J].中国辐射卫生,2006,15(2):237-238.
    16. National Electrical Manufacturers Association. Digital Imaging and Communications in Medicine (DICOM) [S], 1999.
    17. ICRU. Tissue Substitutes in Radiation Dosimetry and Measurement [R]. ICRU Report
    44, Bethesda MD USA:ICRU,1989.
    18. ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89 [R]. Oxford: Elsevier Science Ltd,2002.
    19.俞亚青,田学隆.医学图像配准方法分类及现状[J].重庆大学学报,2003,26 (8):114-118.
    20. Pluim JPW, Fitzpatrick JM. Image registration [J]. IEEE Tran on Med Img,2003, 22(11):1341-1343.
    21. Rajiv Kapoor,Aditya Dutta. Fusion for registration of medical images-A study [C]. 32nd Applied Imagery Pattern Recognition Workshop (AIPR),2003,180-185.
    22. Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information [J]. Pro of the IEEE,2003,91(10):1699-1722.
    23. Ruiz–Alzola E,Suarez C,Alberola-Lopez. Geostatistical medical image registration[C]. Medical Image Computing and Computer assisted Intervention (MICCAI),2003,894-901.
    24. Hallpike L,Hawkes DJ. Medical image registration: An overview[J]. Br institute Radiol,2004,14(6):455-463.
    25.巴本冬,吴晓娟,王磊.多模态医学图像融合技术概述[J].信息技术与信息化,2004,6:28-30.
    26. Bloch I,Maitre H. Data fusion in 2D and 3D image processing: an overview[J]. Computer Graphics and Image Processing,1997,Proceedings,Brazilian,On page (s):127-134.
    27. Brown L G. A survey of image registration techniques[J]. ACM Computing Surveys. 1991,24(4):326-376.
    28.曲桂红,张大力,阎平凡.一种基于图像分割的医学图像融合方法[J].北京生物医学工程,2003,22(1):1-4.
    29.沈晋慧,马斌荣,杨虎.基于小波分析的医学图像融合技术及其效果评价[J].中国医学物理学杂志,2003,20(4):232-234.
    30. Hata N, Dohi T, Iseki H, et al. Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration[J]. Neurosurgery,1997,41:608-614.
    31. Lindseth F,Kaspersen JH,Ommedal S,et al. Multimodal image fusion in ultrasound based neuronavigation : improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound [J]. Comput Aided Surg,2003, 8:49-69.
    32. Vincent D,Jerome T,Jocelyne T,et al. An Information fusion method for the automatic delineation of the bone soft tissues interface in ultrasound Images. Lecture Notes in Computer Science,Heidelberg:Springer Berlin,2004:218-229.
    33. DICOM Part 1:Introduction and Overview. http://medical.nema.org/dicom/2004. html. 2005.
    34. NEMA Standard Publication. Digital imaging and communication in medicine (DICOM) [S]. National electrical manufacturers association,2101 L St.,N.W., Washington DC,2000.
    35. WG10, DICOM Standards Committee. Strategic Document [M]. Chicago:DICOM Standards Committee,2001.
    36.梁存升,冯骥. DICOM标准分析及其应用[J].中国医学装备,2006,3(2):18-20.
    37.徐遄,吴勇,贾克斌,等.数字医学影像与通信的重要标准—DICOM标准[J].中国医学影像技术,2002,18(9):952-954.
    38. Jang S H,Kim WY. Defining a new annotation object for DICOM image:a practical approach [J]. Comput Med Imaging Graph,2004,28 (7):371-375.
    39.胡阳秋,高小榕,高上凯.医学图像DICOM格式转换软件的设计与实现[J].北京生物医学工程,2000,19 (4):193-197.
    40. Snyder WS,Ford MR,Warmer GG,et a1. Estimates of absorbed fractions for monoenergetic photon source uniformly distributed in various organs of a heterogeneous phantom[J] .Medical Internal Radiation Dose Committee (MIRD) Pamphlet,1969,5:1-6.
    41. ICRP.ICRP Publication 23,Report of the task group on Reference Man[R].Oxford:Pergamon Press,1975.
    42. Gibbs SJ,Pujol,A Chen TS,et a1. Patient risk from interproximal radiography[J].Oral Surgery,Oral Medicine,Oral Pathology ,1984,58:347-354.
    43. Williams G,Zankl M,Abmayr W,et al. The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods [J]. Phys Med Bio1,1986,31:449-452.
    44. Jones DG.A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation [J].Radiat Prot Dosim,1997,72:21-29.
    45. Petoussi-Henss N.Zankl M.Voxel anthropomorphic models as a tool for internal dosimetry [J].Radiat Prot Dosim.1998,79:415-418.
    46. Shi CY,Xu XG,Kim CH,et a1.Development of a pregnant wonlall model from CT data [J].Health Phys,2003,S84:177.
    47. Nipper JC,Williams JL,Bolch WE.Creation of two tomographic voxel models of paediatric patients in the first year of life [J]. Phys Med Bio1,2002,47:3143-3164.
    48. Zubal IG,Harrel CR,Smith EO,et a1. Computerized three-dimensional segmented human anatomy [J].Med Phys,1994,21:299-302.
    49. Lichter AS,Ten Hanken RK. Three-dimensional treatment planning and conformal radiation dose delivery [J]. Oncol,1995,95.
    50.林大全,吴大可.仿真辐照人体模型的现状与应用[J].世界医疗器械,1998,4(8):38-42.
    51.胡逸民.肿瘤放射物理学[M].北京:原子能出版社,1999,487-615.
    52. Wang L,Chu IC,Kapur A,et al. A patient specific Monte Carlo dose calculationmethod for photon beams [J]. Med. Phys,1998,25 (6) :867-878.
    53. Xu XG.Dose conversion coefficients for 0.1-10 MeV electrons calculated for the VIP-Man tomographic model Response to Zankl and Petoussi-Henss[J].Health Phys,2002,82(2):255-256.
    54. Xu XG,Chao TC,Bozkurt A. A male radiation worker mode1 developed from transverse color images of the Visible Human Project[C].Keystone,Colorado: Proceedings of the Fourth Visible Human Conference,2002.
    55. Xu XG,Chao TC.Calculations of specific absorbed fractions for GI-tract using a realistic whole body tomographic model[J].Cancer Biotherapy and Radiopharmaceuticals,2003,18(3):431-436.
    1.杨玲,皇甫小梅,张思维,等.中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势[J].中国医学科学院学报,2003,25(4):386-390.
    2.殷蔚伯,谷铣之.肿瘤放射治疗学[M].第3版,北京:中国协和医科大学出版社,2002:889-936.
    3.吴少雄.子宫颈癌放射治疗的几个热点问题[J].广东医学,2004,25(2):120-121.
    4.李魁秀,牛书怀,宋藏珠,等.化疗后放疗联合治疗晚期子宫颈癌[J].中华放射肿瘤学杂志,1997,6(2):84.
    5. Momis M,Eifel PJ,Iu J, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high - risk cervical cancer [J]. New England Jounol of Medicine,1999,340:1137.
    6.林仲秋,苏琛辉.宫颈癌术后辅助放疗[J].中国实用妇科与产科杂志,2006,22(8):568-569.
    7.殷蔚伯,谷铣之.肿瘤放射治疗学[M].北京:中国协和医科大学出版社,2002,921- 922.
    8. Tsai CS,Lai CH,Wang CC,et al . The prognostic factors for patients with early cervical cancer treated by radical hysterectomy and postoperative radiotherapy [J]. Gynecol Oncol,1999,75:328-333.
    9. Olsson S, Bergstrand ES, Carlsson AK, et al. Radiation dose measurements with alanine/agarose gel and thin alanine films around a 192 Ir brachytherapy source, using ESR spectroscopy [J]. PhysMed Biol,2002,47 (8):1333-1356.
    10. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy:current status and issues of interest [J]. Int J Radiat Oncol Biol Phys,2001,51:880-914.
    11. Woo SY,Sanders M,Grant W,et al. Dose the“peacock”have anything to do with radiationtherapy? [J]. Int J Radiat Oncol Biol Phys,1994,29:213-214.
    12. Ahamad A,D’Souza W,Salehpour M,et al. Intensity-modulated radiation therapy after hysterectomy:comparison with conventional treatment and sensitivity of the normal tissue-sparing effect to margin size [J]. Int J Radiat Oncol Biol Phys,2005,62:1117-1124.
    13. Portelance L,Chao KS,Grigsby PW,et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel,rectum,and bladder deses in patients with cervical cancer receiving pelvic and para-aortic irradiation[J]. Int J Radiat Oncol Biol Phys,2001, 51:261-266.
    14. Salama JK,Roeske JC, Mehta N, et al. Intensity-modulated radiation therapy in gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys,2003,55 (1):28-35.
    15. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies[J]. Int J Radiat Oncol Biol Phys,2002,52 (5):1330-1337.
    16.陈景林.介入化疗结合立体定向适形放疗治疗20例巨块型宫颈癌初探[J].福建医学杂志,2003,25(6):39.
    17. Roeske JC,Bonta D,Mell LK,et al. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy [J]. Radiother Oncol,2003,69 (2):201-207.
    18. Mutic Smalyapa RS,Grigsby PW. PET-guided IMRT for cervical carcinoma with positive para-aonic lymph nodes-adose-escalation treatment p lanning study [J]. Int Radiat Oncol Biol Phys,2003,55 (1):28-35.
    19. Roeske JC,Lujan A,Rotmensch J,et al. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys, 2000,48 (5):1613-1621.
    20.胡逸民.肿瘤放射物理学[M].北京:原子能出版社,1999,149.
    21. ICRU REPORT48. Phantoms and computational models in therapy.diagnosis and protection[R]. Issued:15 June 1992. Commission Radiation Units and Measurements.
    22.蔡敏芹,林大全,郭祚达,等.中国人辐照仿真人体模型及人体器官数学模型[J].中国医学影像技术,2005,21(9):1464-1467.
    23.李彩霞,林大全,王远萍,等.数字化的虚拟人体和仿真人体模型的发展及医学应用[J].中国医学影像技术,2005,21(11):1764-1466.
    24. Cristy M,Eckerman K.F. Specific absorbed fractions of energy at various ages from internal photons sources[R]. Oak Ridge,TN: Oak Ridge National Laboratory,Report No:ORNL/TM8381NI.1987.
    25. Xu XG,Chao TC,Bozkurt A. VIP-Man:an image-based whole-body adult male modelconstructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations[J]. Health Physics,2000,78(5):476-486.
    26. Snyder WS,Ford MR,Warmer GG,et a1.Estimates of absorbed fractions for monoenergetic photon source uniformly distributed in various organs of a heterogeneous phantom[J] . Medical Internal Radiation Dose Committee (MIRD)Pamphlet,1969,5:1-6.
    27. ICRP.ICRP Publication 23,Report of the task group on Reference Man[R].Oxford:Pergamon Press,1975.
    28. Gibbs SJ,Pujol,A Chen TS,et a1. Patient risk from interproximal radiography[J].Oral Surgery,Oral Medicine,Oral Pathology,1984,58:347-354.
    29. Williams G,Zankl M,Abmayr W,et al. The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods[J]. Phys Med Bio1,1986,31:449-452.
    30. Petoussi-Henss N,Zankl M.Voxel anthropomorphic models as a tool for internal dosimetry[J].Radiat Prot Dosim.1998,79:415-418.
    31. Shi CY,Xu XG,Kim CH,et a1.Development of a pregnant wonlall model from CT data[J].Health Phys,2003,S84:177.
    32. Nipper JC,Williams JL,Bolch WE.Creation of two tomographic voxel models of paediatric patients in the first year of life [J]. Phys Med Bio1,2002,47:3143-3164.
    33. Keall PJ,Siebers JV,Joshi S,et al. Monte Carlo as a four-dimensional radiotherapy treatment planning tool to account for respiratory motion[J]. Phys Med Biol,2004,49 (10):3639-3648.
    34. Wijesooriya K,Bartee C,Siebers JV,et al. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator:implications for 4D radiotherapy [J]. Med Phys,2005,32 (4):932-941.
    35. Vedam S,Docef A,Fix M,et al. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator based four-dimensional radiation delivery [J]. Med Phys,2005,32 (6):1607-1620.
    36.殷蔚伯,谷铣之.肿瘤放射治疗学[M].第3版,北京:中国协和医科大学出版社,2002:889-936.
    37. Lane BR,Stein DE, Remzi FH,et a1.Management of radiotherapy inducedrectourethral fistula[J].J Urol,2006,175:1382-1388.
    38. Abbasakoor F,Vaizey CJ,Boulos PB.Improving the morbidity of anorectal injury from pelvic radiotherapy[J].Colorectal Dis,2006, 8:2-10.
    39.殷蔚伯,谷铣之.肿瘤放射治疗学[M].第3版,北京:中国协和医科大学出版社,2002:313-320.
    40.王颖,万跃,孙世良. 124例宫颈癌放疗后的放射性直肠损伤分析[J].中华放射医学与防护杂志,2003,23:38-39.
    41.曲雅勤,何玉宝,姜新,等.宫颈癌根治术后三维适形放疗的临床价值[J].肿瘤,2007, 27(9):737-740.
    42.杨淑芳,王海琳.宫颈癌三维适形放疗与二维放疗计划的比较分析[J].兰州大学学报,2007,33(3):68-70.
    43. Yamazaki A, Shirato H, Nishioka, et al. Reduction of late comp lications after irregularly shaped four - field whole pelvic radiotherapy using computed tomographic simulation compared with parallel-oppose whole pelvic radiotherapy[J]. Jpn J Clin Oncol,2000,30(4):629-637.
    44. Lawrence BM,Leonard RP. Estimation of normal tissue complication probabilities with three-dimensional technology [J]. Int J Radiat Oncol Biol Phys,1994,28:777-779.
    45.张书旭,王兆武,沈国辉,等.宫颈癌三维适形调强放疗剂量分布特性研究[J].现代肿瘤学,2007, 2(2):106-107.
    46. Wahab SH,Malyapa RS,Mutic S,et al. A treatment planning study comparing HDR and AGIMRT for cervical cancer[J]. Med Phys,2004,31 (4):734-743.
    47. Molia M,Escude L,Nouet P,et a1.Fractionated stercotactic radiotherapy boost for gynecologic tumors:an alternative to brachytherapy? [J]. Int J Radiat Oncol Biol Phys,2005,62:118-124.
    48. Van de Bunt L,Van der Heide UA,Ketelaars M,et a1.Conventional conformal and intensity modulated radiationtheapy treatment planning of external beam radiotherapy for cervical cancer:the impact of tumor regression[J].Int J Radiat Oncol Biol Phys,2006,64(1):189-196.
    49. Roeske JC,Lujian A,Rotmensch J,et a1.Intensity modulated whole pelvic radiation therapy in patients with gynecological malignancies[J].Int J Radiat Oncol Biol Phys,2000,48:1613-l621.
    50. Zunino S, Rosato O, Lucino S, et a1.Anatomic study of the pelvis in carcinoma of the uterine cervix as related to the box technique[J]. Int J Radiation Oncology Biol Phys, 1999,44(1):53-59.
    51. Paley PJ,Gof BA,Minudri R,et a1.The prognostic significance of radiation dose and residual tumor in the treatment of barrel-shaped endophytic cervical carcinoma[J].Gynecol Oncol,2000,76:373-379.
    52. Mundt AJ,Lujan AE,Rotmensch J,et a1. Intensity modulated whole pelvic radiotherapy in women with gynecologic malignancies[J].Int J Radiat Oncol Biol Phys,2002,52(5):1330-1337.
    53. Mundt AJ,Mell LK,Roeske JC.Preliminary analysis of chronicgastrointestinal toxicity in gynecology patients treated with intensity modulated whole pelvic radiation therapy[J].Int J Radiat Oncol Biol Phys,2003,56:1354-1360.
    54. Brixey CJ,Roeske JC,Lujan AE,et a1.Impact of intensity modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies[J].Int J Radiat On col Biol Phys. 2002,54:1388-1396.
    55. Vincenzo V, Nicola D, Stefania N, et al. An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER) [J]. Radiotherapy and Oncology,2004,70:165-169.
    1. Ackerman MJ, Spitzer VM, Scherzinger AL, et al. The visible human data set: an image resource for anatomical visualization [J]. Medinfo 1995,8(2):1195-1198.
    2. Shao-xiang Zhang, pheng-ann Heng, Zheng-jin Liu, et al. Creation of the Chinese Visible Human Data Set [J]. The Anatomic Record, 2003, 275B:190-195.
    3. Sachse F. B, Werner C. D, Meyer-Waarden K,et al. Development of a human body model for numerical calculation of electrical field’s [J]. Computerized Medical Imaging and Graphics, 2000, 24(3):165-171.
    4.李彩霞,林大全,王远萍,等.数字化的虚拟人体和仿真人体模型的发展及医学应用[J].中国医学影像技术,2005,21(11):1764-1766.
    5. Spitzer VM, Whitlock. The Visible Human Dataset: The Anatomical Platform for Human Simulation [J]. The Anatomical record (New Anat.), 1998, 253:49-57.
    6. ICRU REPORT 48. Phantoms and computational models in therapy[R]. Diagnosis and protection. Issued: 15 June 1992. International Commission Radiation Units and Measurements.
    7. Xu XG, Chao TC. Calculations of specific absorbed fractions of the gastrointestinal tract using a realistic whole body tomographic model[J]. Cancer Biotherapy & Radiopharmaceuticals,2003,18(3):431-436.
    8. Xu XG, Chao TC, and Bozkurt A. VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations[J]. Health Physics,2000,78(5):476-486.
    9. Cristy M, Eckerman K.F. Specific absorbed fractions of energy at various ages from internal photons sources[R]. Oak Ridge, TN: Oak Ridge National Laboratory, Report No: ORNL/TM8381NI.1987.
    10. Snyder WS,Ford MR,Warmer GG,et a1.Estimates of absorbed fractions for monoenergetic photon source uniformly distributed in various organs of a heterogeneous phantom[R] . Medical Internal Radiation Dose Committee (MIRD)Pamphlet,1969,5:1-6.
    11. ICRP.ICRP Publication 23,Report of the task group on Reference Man[R].Oxford:Pergamon Press,1975.
    12. Stabin MG,Watson E E,Cristy M, et a1.Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy[R].Oak Ridge,TN:Oak Ridge National Laboratory,Report No. ORNL/TM-12907, 1995.
    13. Kraraer R,Zankl M,Williams G,et a1.The calculation of dose from external photon exposues using reference human phantoms and Monte Carlo methods,Part l:The nude (ADAM) and female (EVA) adult mathematical phantoms[R]. Munchen:Gesellschaft fur Strahlen-und Umweltforschung mbH,GSF Bericht S-885, 1982.
    14. Gibbs SJ,Pujol,A Chen TS,et a1. Patient risk from interproximal radiography[J].Oral Surgery,Oral Medicine,Oral Pathology ,1984,58:347-354.
    15. Williams G, Zankl M, Abmayr W, et al. The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods[J]. Phys Med Bio1,1986,31:449-452.
    16. Jones DG.A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation[J].Radiat Prot Dosim,1997,72:21-29.
    17. Petoussi-Henss N,Zankl M.Voxel anthropomorphic models as a tool for internal dosimetry[J].Radiat Prot Dosim.1998,79:415-418.
    18. Shi CY,Xu XG,Kim CH,et a1.Development of a pregnant wonlall model from CT data[J].Health Phys,2003,S84:177.
    19. Nipper JC,Williams JL,Bolch WE.Creation of two tomographic voxel models of paediatric patients in the first year of life[J]. Phys Med Bio1,2002,47:3143-3164.
    20. Zubal IG, Harrel CR, Smith EO,et a1. Computerized three-dimensional segmented human anatomy[J].Med Phys,1994,21:299-302.
    21. Kramer R,Vieira JW, Khoury HJ, et a1. All about MAX:a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry[J].Phys Med Bio1. 2003, 48:1239-1262.
    22. Caon M,Bibbo G,Pattison J.An EGS4-ready tomographie computation model of a 14-year-old female torso for calculating organ doses from CT examinations[J].Phys Med Bio1,1999,44:2213-2225.
    23. Chao TC,Xu XG.Specific absorbed fractions from the image-based VIP-Man body model and EGS4-VLSI Monte Carlo code:Internal electron emitters[J].Phys MedBiol,2001,46:901-927.
    24. Xu XG,Chao TC.Calculations of specific absorbed fractions of the gitract using a realistic whole body tomographic mode1[J].Cancer Biother Radiopharma,2003,18:431-436.
    25. Bozkurt A, Chao TC, Xu XG . Fluence-to-dose conversion coefficients from monoenergetic neutron beams below 20 MeV based on the VIP-Man anatomical mode1[J]. Phys Med Bio1, 2000, 45:3059-3079.
    26. Chao TC,Bozkua A,Xu XG.Conversion coefficients based on VIP. Man anatomical model and EGS4-VLSI code for monoenergetic photon beams from 10 keV to 10 MeV[J].Health Phys, 2001, 81:163-183.
    27. Bozkurt A,Chao TC,Xu XG.FIuence.to.dose conversion coefficients based on the VIP-Man anatomical mod el and MCNPX code for monoenergetie neutron beam s above 20 MeV[J].Health Phys,2001,81:184-202.
    28. Chao TC,Bozkurt A,Xu XG.Organ dose conversion coefficients for 0.1-10 MeV electrons calculated for the VIP-Man tomographic mode1[J].Health Phys,2001,81:203-214.
    29. Wagner H. Image-guided conformal radiation therapy planning and delivery for non-small-cell lung cancer[J]. Cancer control, 2003, 10(4):277-288.
    30. Berbeco RI, Nishioka S, Shirato H, et al. Residual motion of lung tumors in gated radiotherapy with external respiratory surrogates[J]. Phys Med Biol,2005,50(16):3655-3667.
    31. Vedam SS , Keall PJ , Kini VR , et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal [J]. Phys Med Biol,2003 ,48 (1) :45-62.
    32. Keall PJ,Siebers JV,Joshi S,et al. Monte Carlo as a four-dimensional radiotherapy treatment planning tool to account for respiratory motion [J]. Phys Med Biol,2004,49 (10):3639-3648.
    33. Jiang H, Paganetti H. Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data [J]. Med Phys, 2004, 31 (10):2811-2818.
    34. Paganetti H. Four-dimensional Monte Carlo simulation of time dependent geometries [J]. Phys Med Biol ,2004,49 (6):N75-N81.
    35. Paganetti H , Jiang H , Adams JA , et al . Monte Carlo simulation with time dependent geomet ries to investigate effect s of organ motion wit h high temporal resolution [J]. Int J Radiat Oncol Biol Phys, 2004, 60 (3):942-950.
    36. Paganetti H, Jiang H, Trofimov A. 4D Monte Carlo simulation of proton beam scanning: modeling of variations in time and space to study t he interplay between scanning pattern and time dependent patient geometry [J]. Phys Med Biol, 2005, 50 (5):983-990.
    37. Wijesooriya K, Bartee C, Siebers JV, et al. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator : implications for 4D radiot herapy[J] . Med Phys ,2005 ,32 (4) :932-941.
    38. Vedam S,Docef A,Fix M , et al. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator based four-dimensional radiation delivery [J]. Med Phys, 2005, 32 (6):1607-1620.
    39.张居营,徐榭,石成玉.四维动态数字人体模型的开发及其在放疗计划中评估器官呼吸运动影响的研究[J].中国医学影像技术,2006,22(9):1301-1305.
    40.胡逸民.肿瘤放射物理学[M].北京:原子能出版社, 1999,487-615.
    41. Wang L, Chu IC, Kapur A, et al. A patient specific Monte Carlo dose calculation method for photon beams [J]. Med. Phys, 1998, 25 (6): 867-878.
    42. Nelson WR, et al. The EGS4 code system [R].Slac-report-265, Stanford University:Stanford Accelerator Center, 1985.
    43. Nelson WR, et al. EGS4 1n’97-A decade plus of enhancement [C]. ( In: H irayama H, et al.). Proceedings of the first international work shop onEGS4. Japan: KEK, 1997, 1.
    44. Bielajew A F, et al. PRESTA: The parameter reduced electron-step transport algorithm for electron Monte Carlo transport [J]. Nucl Instrum Methods, 1987, B18: 165.
    45. Judith F Briesmeister. MCNPTM-A general Monte Carlo N-Particle transport code [R]. LA-12625-M Version 4B, Oak Ridge: Radiation Safety Information Computational Center, 1997.
    46.刘晓平,王浩,吴宜灿.基于半空间理论的蒙特卡罗输运仿真模型研究[J].计算机应用,2000,20 (8):208-209.
    47. Briesmeister J F (Ed.), MCNP4C General Monte Carlo N-Particle Transport Code. Los Alamos National Laboratory, LA-13709-M,2000.
    48. Wang L,Chui CS,Michael L. A patient - specific Monte Carlo dose calculationmethod for photon beams [J]. Med Phys. 1998,25 (6):867-878.
    49. Sempau J,Wilderman SJ,Bielajew AF. DPM, a fast accurate Monte code optimized for photon and electron radiotherapy treatment planning dose calculations [J]. Phys Med Biol,2000,45:2263-2291.
    50.陈卓,刘晓平,施灿辉,等.基于MCNP的医学仿真计算建模方法研究[J].系统仿真学报,2004,16(10):2153-2156.
    51.赵攀,陈义学,林辉,等. MCNP/MCNPX几何栅元划分方法对精确放疗剂量计算的影响研究[J].原子核物理评论,2006,23(2):258-262.
    52.付宏忠,于涛.基于MCNP的BNCT人体头部剂量分布计算[J].南华大学学报(自然科学版),2005,19:67-71.
    53.吴新根,吕维雪,罗立民.有约束模拟退火法优化3D立体定向放射治疗计划[J].生物医学工程学杂志,1998,15(3):250-255.
    54. Stein J, Mohan R, Wang XH, et al. Optimum number and orientations of beams for intensity modulated treatments (abstract) [J]. Med Phys, 1996, 23(6):1063.
    55. Deasy JO. Multiple local minima in radiotherapy optimization problems with dose volume constraints [J]. Med Phys, 1997, 24(7): 1157-1161.
    56. Kirkpatri KS, Gelatt CD, Vecchi MP. Optimization by simulated annealing [J]. Science, 1983, 220(4598):671.
    57. Webb S. Optimization of conformal radiotherapy dose distribution by simulated annealing [J]. Phys Med Biol, 1991, 36 (9):1201-1226.
    58. Bahr GK, Kereiakes JG, Horwitz H, et al. The method of linear programming applied to radiation treatment planning [J]. Radiology, 1968, 91(4):686-693.
    59.钟世镇,李华,罗述谦.数字化虚拟人背景和意义[J].中国基础科学,2002,6:12-16.
    60. Zhang SX, Heng PA, Liu ZJ. Chinese visible human project [J]. Clinical Anatomy, 2006, 19:204-215.
    1.杨玲,皇甫小梅,张思维,等.中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势.中国医学科学院学报,2003,25(4):386-390.
    2. Vahrson H,Glaser FH. History of HDR afterloading in brachytherapy. In:Vahrson H,Rauthe G,eds. High dose rate afterloading in the treatment of cancer of the uterus, breast and rectum. Munchen Wien Baltimore:Urban, Schwarzenberg, 1988:2-5.
    3. Pettersson F. Annual report on the results of treatment in gynecological cancer. Stockholm:FIGO , 1988,20:52,1992,21:48.
    4. Pecorelli S. FIGO annual report on the results of treatment in gynecological cancer. (Vol. 23). Spain:Book Print,SL,1998.5
    5.孙建衡,曾绵才,徐见道.单纯60Co体外旋转及钟摆治疗晚期宫颈癌的探讨.天津医学杂志肿瘤附刊,1966,4:17.
    6. Kavanagh BD,Schefter TE,Wu Q,et al. Clinical application of intensity modulated radiotherapy for locally advanced cervical cancer. Semin Radiat Oncol,2002,12 (3):3260.
    7. Potter R,Knocke TH. The potential of 3-D conformal brachytherapy and external beam radiotherapy in cervical cancer. Strahlenther Onkol,2001,177 (12):641.
    8. Portelance L,Chao KS,Grigsby PW,et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys,2001,51(1):261
    9.殷蔚伯,谷铣之.肿瘤放射治疗学[M].第3版,北京:中国协和医科大学出版社,2002:889-936.
    10.张福泉,邱杰,杨波,等.宫颈癌外照射的射野与剂量学分析.中华放射医学与防护杂志,2004,24(5):438-439.
    11.王会霞,燕归如. 24例中晚期宫颈癌盆腔四野盒式体外照射临床观察.现代肿瘤医学,2007,15(10):1483-1485.
    12. Chao KSC,Williamson J,Grigsby PW,et al. Uterosacral space involvement in locally advanced carcinoma of the uterine cervix [J]. Int J Radiat Oncol Biol Phys,1998,40:397-403.
    13. Greer BE,Koh WJ,Frigge DC,et al. Gynecologic radiotherapy fields defined by intraoperative measurements [J]. Gynecol Oncol,1990,38:421-424.
    14.胡逸明.肿瘤放射物理学[M].第1版,北京:原子能出版社,1999:538-548.
    15. Takahashi S. Conformation radiotherapy:rotation techniques as applied to radiography and radiotherapy of canner [J]. Acta Radiol Suppl,1965,242:1- 42.
    16. Ling CC,Fuks Z. Conformal radiation treatment:A critical appeaised [J]. Euro J Cancer,1995,31:799-803.
    17. Helyer SJ,Heisig S. Multileaf collimation versus conventional shielding block,a time and motion study of beam shaping in radiotherapy [J]. Radiother Oncol,1995,37:61-64.
    18. Lawrence BM,Leonard RP. Estimation of normal tissue complication probabilities with three-dimensional technology [J]. Int J Radiat Oncol Biol Phys,1994,28:777-779.
    19. Ryu HS. Concurrent chemoradiotherapy in cervical cancer (a new paradigm in cervical cancer treatment) [J]. Yonsei Med J,2002,43(6):749-753.
    20. Yamazaki A, Shirato H, Nishioka, et al. Reduction of late comp lications after irregularly shaped four - field whole pelvic radiotherapy using computed tomographic simulation compared with parallel-oppose whole pelvic radiotherapy[J]. Jpn J Clin Oncol,2000,30(4):629-637.
    21.曲雅勤,何玉宝,姜新,等.宫颈癌根治术后三维适形放疗的临床价值.肿瘤,2007, 27(9):737-740.
    22.朱向华.三维适形放射治疗宫颈癌60例临床观察[J].肿瘤研究与临床,2006, 18(5):322-324.
    23.何报宁,何林,陈松,等.三维适形放射治疗与常规放射治疗不能手术宫颈癌的疗效观察[J].微创医学,2007, 2(2):106-107.
    24.杨淑芳,王海琳.宫颈癌.三维适形放疗与二维放疗计划的比较分析[J].兰州大学学报,2007, 33(3):68-70.
    25. Chin LM,Kijewski PK,Svensson GK,et al. Dose optimization with computer controlled gantry rotation, collimation motion and dose-rate variation [J]. Int J Radiat Oncol Biol. Phys, 1983,9:723-729.
    26. Keller Reichenbecher MA,Bortfeld T,Levegrun S,et a1. Intensity modulation withthe“step and shoot”technique using a commercial MLC:a planning study.Int J Radiat Oncol Bliol Phys,1999,45(5):1315-1324.
    27. Paley PJ,Goff BA,Minudri R,et al. The prognostic significance of radiation dose and residual tumor in the treatment of barrel-shaped endophytic cervical carcinoma [J]. Gynecol Oncol,2000,76 (3):373-379.
    28. Mutic Smalyapa RS, Grigsby PW. PET-guided IMRT for cervical carcinoma with positive para-aonic lymph nodes-adose-escalation treatment p lanning study [J]. Int Radiat Oncol Biol Phys,2003,55 (1):28-35.
    29. Roeske JC,Lujan A,Rotmensch J,et al. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys, 2000,48 (5):1613-1621.
    30. Brixey CJ,Roeske JC,Lujan AE,et a1. Impact of intensity modulated radiotherapy on acute hematologic toxicity in women with gynecologic malignancies[J].Int J Radiat Oncol Biol Phys,2002,54:1388-1396.
    31.张书旭,王兆武,沈国辉,等.宫颈癌三维适形调强放疗剂量分布特性研究.现代肿瘤学,2007, 2(2):106-107.
    32. Salama JK,Roeske JC,Mehta N, et al. Intensity - modulated radiation therapy in gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys,2003,55 (1):28-35.
    33. Van de Bunt L,Van der Heide UA, Ketelaars M,et a1.Conventional conformal and intensity modulated radiationtheapy treatment planning of external beam radiotherapy for cervical cancer:the impact of tumor regression[J].Int J Radiat Oncol Biol Phys,2006,64(1):189-196.
    34. Roeske JC,Lujian A,Rotmensch J,et a1.Intensity modulated whole pelvic radiation therapy in patients with gynecological malignancies.Int J Radiat Oncol Biol Phys,2000,48:1613-l621.
    35. Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity– modulated whole pelvic radiotherapy in women with gynecologic malignancies [J]. Int J Radiat Oncol Biol Phys,2002,52 (5):1330-1337.
    36. Mundt AJ,Mell LK,Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity modulated whole pelvic radiation therapy [J]. Int J Radiat Oncol Biol Phys,2003,56 (5):1354-1360.
    37. Wahab SH,Malyapa RS,Mutic S,et al. A treatment planning study comparing HDR and AGIMRT for cervical cancer [J]. Med Phys,2004,31 (4):734-743.
    38. Molia M,Escude L,Nouet P,et a1.Fractionated stercotactic radiotherapy boost for gynecologic tumors:An alternative to brachytherapy? [J]. Int J Radiat Oncol Biol Phys,2005,62:118-124.
    39.秦日.提高宫颈癌放射治疗疗效的研究进展[J].现代肿瘤医学, 2005,13 (4):2-4.
    40. Roeske JC, Bonta D, Mell LK, et al. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity modulated whole pelvic radiation therapy [J]. Radiother Oncol,2003,69 (2):201-207.
    41. David F,Paul G,ArthurB. Estimates ofwhole - body dose equivalent p roduced by beam intensitymodulated conformal therapy [J]. Int J Radiat Oncol Biol Phys,1997,38:667-672.
    42. Eric J,Hall D,Wu C. Radiation - induced second cancers:The impact of 3D-CRT and IMRT [J]. Int J Radiat Oncol Biol Phys,2003,56: 83-88.
    [1] Ackerman MJ, Spitzer VM, Scherzinger AL, Whitlock DG (1995) The Visible Human data set: an image resource for anatomical visualization. Medinfo 8:1195-1198
    [2] Lienemann A, Fischer T (2003) Functional imaging of the pelvic floor. Eur J Radio 47:117-122
    [3] Brooks JD,Chao WM,Kerr J(1998)Male pelvic anatomy reconstructed from the visible human data set. J Urol 159:868-872
    [4] Pommert A, Hohne KH, Burmester E, Gehrmann S, Leuwer R, Petersik A, Pflesser B, Tiede U (2006) Computer-based anatomy: a prerequisite for computer-assisted radiology and surgery. Acad Radiol 13:104-112
    [5] Kim JY, Chung MS, Hwang WS, Park JS, Park HS (2002) Visible Korean Human: another trial for making serially-sectioned images. Stud Health Technol Inform 85:228-233
    [6] Krapichler C, Haubner M, Engelbrecht R, Englmeier KH (1998) VR interaction techniques for medical imaging applications. Comput Methods Programs Biomed 56:65-74
    [7] Heinrichs WL, Srivastava S, Dev P, Chase RA (2004) LUCY: a 3-D pelvic model for surgical simulation. J Am Assoc Gynecol Laparosc11:326-331
    [8] Heng PA, Xie Y, Wang X, Chui YP, Wong TT (2006) Virtual acupuncture human based on Chinese visible human dataset. Stud Health Technol Inform 119:194-197
    [9] Park JS,Chung MS, Kim YS, Hwang WS, Cho JH (2001) Visible Korean Human: Another trial for making serially sectioned images. Proc SPIE (4681):171-183
    [10] Jiang ZB, Shan H, Huang MS (2003) Superselective angiography of uterine artery. Chinese Journal of Medical Imaging Technology19:564-566
    [11] Hoyte L,Ratiu P (2001) Linear measurements in 2-dimensional pelvic floor imaging: The impact of slice tilt angles on measurement reproducibility. Am J Obstet Gynecol 185:537-544
    [12] López-Cano M, Rodríguez-Navarro J, Rodríguez-Baeza A, Armengol-Carrasco M, Susín A (2007) A real-time dynamic 3D model of the human inguinal region for surgical education. Comput Biol Med37:1321-1326
    [13] Owsijewitsch M, Pommert A, H?hne KH, Schumacher U, Buerger T,. Richter HA (2005) Virtual reality training system for minimally invasive surgery of inguinal hernia. International Congress Series1281:521-526
    [14] Robb RA (2000) Virtual endoscopy: development and evaluation using the Visible Human Datasets. Comput Med Imaging Graph 24:133 -151
    [15] Rubin GD, Beaulieu CF, Argiro V, Ringl H, Norbash AM, Feller JF, Drake MD, Jeffrey RB, Napel S (1996) Perspective volume rendering of CT and MR images: applications for endoscopic imaging. Radiology 199:321-330
    [16] Senger S (1996) Incorporating visible human project data into the undergraduate anatomy and physiology curriculum. Stud Health Technol Inform 29:194-203
    [17] Spitzer VM,Whitlock DG (1998) The Visible Human Dataset: The anatomicalplatform for human simulation. Anat Rec 253:49-57
    [18] Zhang SX, Heng PA, Liu ZJ, Tan LW,Qiu MG, Li QY, Liao RX, Li K, Cui GY, Guo YL, Yang XP, Liu GJ, Shan JL, Liu JJ, Zhang WG, Chen XH, Chen JH, Wang J, Chen W, Lu M, You J, Pang XL, Xiao H, Xie YM (2003) Creation of the Chinese visible human data set. Anat Rec B New Anat 275:190-195
    [19] Zhang SX, Heng PA, Liu ZJ, Tan LW,Qiu MG, Li QY, Liao RX, Li K, Cui GY, Guo YL, Yang XP, Liu GJ, Shan JL, Liu JJ, Zhang WG, Chen XH, Chen JH, Wang J, Chen W, Lu M, You J, Pang XL, Xiao H, Xie YM, Cheng JC (2004) The chinese visible human (CVH) datasets incorporate technical and imaging advances on earlier digital humans. J Anat 204:165-173
    [20] Gao Z, Wilkins D, Eapen L, Morash C, Wassef Y, Gerig L (2007) a study of prostate delineation referenced against a gold standard created from the visible human data. Radiother Oncol 85:239-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700