玉米营养生长动态模拟仿真系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟植物技术是对植物在三维空间中的结构发育与生长过程的计算机仿真技术;是植物学家进行科学研究的重要工具。它是计算机技术在农业中应用的一个方面,也是作物栽培、作物生理生态、作物育种研究的一个新方向。通过虚拟植物技术,可以在虚拟农田系统环境下进行试验,可部分代替在现实中难以进行或者费时,费力而有昂贵的农田试验;另外,虚拟植物技术可以与智能化计算机技术相结合,使用户可以在计算机上进行虚拟植物生长的管理,有利于农业生产技术的普及和推广。
     玉米是一种重要粮食作物,玉米生产在我国农业生产中占有非常重要的地位,玉米生产技术的研究也是农业技术研究中的重要分支;由于玉米植株形态结构简单,生长规律性较强;因此玉米虚拟生长过程也易于实现。本文尝试在玉米生长模拟模型和形态结构模型的研究基础上,实现玉米虚拟生长动态模拟仿真。为玉米生产的科学研究提供虚拟仿真实验平台,能够更好地进行玉米生产技术的研究,提高农业技术水平。本文在研究中主要的创新点如下:
     1、在玉米生理生态特性研究基础上,结合实际生产情况,在成熟生长模拟模型的基础上,通过深入分析和研究,从植株发育过程、生物量的生产与分配、养分动态变化等方面建立了玉米生长模拟模型。在构建生长模拟模型的时候,按照和玉米器官的形态建模设计相耦合的思想,指出了玉米虚拟生长过程中需要调节的控制参数,为后续的玉米形态建模提供参数控制接口。模型设计简单,模拟效果较好。
     2、结合玉米植株各主要器官的形态特征,本文建立了玉米叶片、雌穗、雄穗和根系等各主要器官的三维形态模型。所建立的形态模型不仅包括玉米器官的几何造型,也包括形态动态变化的模型,并提出了形态动态变化的关键性参数。为玉米虚拟生长模拟仿真的研究奠定了基础。
     3、利用基于关键帧的计算机动画技术,在玉米生长模拟模型和形态建模基础上,本文实现了玉米虚拟生长的可视化仿真。在实现过程中,利用了WPF图形动画技术加以实现,一方面图形绘制、动画演示等设计更易实现;另一方面也使以后的功能扩展更加方便。在技术实现方面,具有一定的创新性。
     本文通过建立玉米生长模拟模型和玉米形态模型,设计并实现了玉米虚拟生长的可视化仿真过程,进而开发了玉米营养生长动态模拟仿真系统。该系统可以通过参数的设置,来实时演示玉米生长的动态模拟过程。系统的设计和实现有一定的理论价值和应用价值。
Virtual plant technology is a plant in the three-dimensional structure of development and growth in the computer simulation process, it is the botanist an important tool to study. It is the application of computer technology in one aspect of agriculture, but also crop cultivation, crop physiology, crop breeding a new direction. By the virtual plant technology to agricultural systems in a virtual environment to test some place in the real world can be difficult or time-consuming, laborious and costly field trials there. Virtual plant technology and intelligent computer technology, allows the user to the computer management of virtual plant growth is conducive to the popularization and promotion of agricultural technology.
     Maize is an important food crop. Maize production in China's agricultural production occupies a very important role, and maize production technology is an important branch of research in agricultural technology. As simple corn plant morphology, growth, strong regularity. Virtual maize growth process is therefore easy to implement. This paper attempts to corn growth simulation model and the morphological structure model based on the realization of maize growth dynamics simulation of virtual effects. Corn production for the virtual simulation platform for scientific research in order to better study of maize production technologies to improve agricultural technology. This paper studies the major innovations are as follows:
     1. Physiological and ecological characteristics of the corn basis, with the actual production in the mature growth simulation model, based on analysis and research through in-depth, from the process of plant development, biomass production and distribution, nutrient dynamics, etc., soybean growth simulation models. was established. Growth simulation model in the building when, according to the shape modeling and maize organs coupled design idea, pointing out that maize growth process needs to adjust the virtual control parameters for subsequent modeling of morphological parameters of maize control interface. Model design is simple, the effect is ideal.
     2. With all the major organs of maize morphological characteristics of maize leaves are established, Ear, tassel, and root and other major organs of the three dimensional shape model. The shape model established not only the geometric shape of maize organs, including morphological dynamic model, and proposed changes form the key dynamic parameters. Virtual simulation of maize growth and laid the foundation for the research.
     3. Key frame-based computer animation technology, simulation model of maize growth and morphological modeling, the paper realized the growth of maize virtual visual simulation. In the implementation process, the use of the WPF graphics animation technology to achieve the one hand, graphics rendering, animation and other design easier to achieve; the other hand, the future extensions more convenient. In terms of technology, with a certain innovation.
     Through the establishment of corn and corn growth simulation model shape model, designed and implemented the growth of maize virtual visual simulation process, then developed a dynamic simulation system of maize nutrition. The system can set parameters, to demonstrate real-time dynamic simulation of maize growth. Systems design and implementation of a theoretical and practical value.
引文
[1]Gao L Z. Jin Z Q, Zheng G Q, et al.. Wheat cultivational simulation-optimization-decision making system(WCSODS) [J]. Jiangsu Journal of Agricultural Sciences,2000,16(2):65-72.
    [2]曹宏鑫,董玉红,孙立荣.作物模拟技术在小麦栽培中应用的研究[J].中国农业科学,2003.36(3):342-348.
    [3]赵星,De Reffye P,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24(6):608—615.
    [4]郭焱,李保国.虚拟植物的研究进展[J]科学通报,2001,46(4):273—280.
    [5]Pettunen J, Sievanen R, Nikinmaa E, et al. LIGNUM:a tree model based on simple structural units[J]. Ann Bot,1996,77:87-98.
    [6]De Reffye P, Blaise F, Chemouny s,et al. Calibration of a hydraulic architecture-based growth model of cotton plants[J]. Agonomie,1999,19:265-280.
    [7]Guo Y, Li B G. New advances in virtual plant research[J]. Chin Sci Ball,2001,46(11):888-894.
    [8]Allen M T, Prusinkiewicz P, DeJong T M. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees:the L-PEACH model[J]. New Phytol,2005,166:869-880.
    [9]郑国清,张瑞玲,高亮之.我国玉米计算机模拟模型研究进展[J].玉米科学,2003,11(2):66-70.
    [10]De Wit C T. Photo synthesis of leaf canopies A gricultural Research Report 663 [M]. Pudoc, W ageningen, The Netherlands,1965.57.
    [11]Lindenmayer A. Mathematical models for cellular interaction in devel-opment,parts Ⅰ and Ⅱ[J].Journal of Theoretical Biology,1968,(18):280-289.
    [12]Prusinkiewicz P, Lindenmayer A, Hanan J. Developmental models of herbaceous plants for computer imagery purpose[J].Computer Graph-ics,1988,22(4):141-150.
    [13]Prusinkiewicz P, Lindenmaye A.The Algorithmic Beauty of Plants[M].NewYork:Spririger,1990.
    [14]Prusinkiewicz P, Remphrey W R, Davidson C G,et al. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems[J].Can.J.Bot.,1994,72:701-714.
    [15]胡包钢,赵星,严红平,等.植物生长建模与可视化—回顾与展望[J].自动化学报,2001,27(6)815-835.
    [16]Chen S G,Impens I,Ceulemans,et al.Measurement of gap fraction of fractal generated canopies using digitalize dim-age analysis[J]. Agric for Mcteorol,1993,65:245-259.
    [17]De Reffye P,Edelin C,Francon J,et al.Plant models faithful botanical structure and development[J].Computer Graphics,1988,(4):151-158.
    [18]Jaeger M,De Reffye P.Basic concepts of computer simulation of plant growth[J].Biosci,1992,17(3):275-291.
    [19]De Reffye P H,Fourcaud T,Blaise F,et al.A functional model of tree growth and tree architecture[J].Silva Fennica,1997,31:297-311.
    [20]章家恩,黄润,刘楚生,等.玉米株叶形态结构的可视初步研究[J].华南农业大学学报,2001,22(4):5-7.
    [21]郑文刚,郭新宇,赵春江,等.玉米叶片几何造型研究[J].农业工程学报,2004,20(1):152-154.
    [22]郭焱,李保国.玉米冠层三维结构研究[J].作物学报,1998,24(6):1006-1009.
    [23]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,38(5):384-390.
    [24]吴门新,朱启疆,王锦地,等.夏玉米结构参数计算及大田玉米冠层的可视化研究[J].作物学报,2002,28(6):721-726.
    [25]郭焱,等.玉米冠层的数学描述与三维重建研究[J].应用生态学报,1999,10(1):39-41.
    [26]周淑秋,雷蕾,郭新宁.虚拟作物生长VRML实现方法[J].首都师范大学学报(自然科学 版),2003,24(4):13-16.
    [27]郭焱.作物生长与模拟的可视化研究—以玉米为例[D].北京:中国农业大学,1997.
    [28]曹卫星,朱艳,汤亮,等.数字农作技术[M].北京:中国科学出版,2008.
    [29]杨京平.作物模拟模型及其应用.应用生态学报,1999,10(4):501~505
    [30]马新明,杨娟,熊淑萍,等.植物虚拟研究现状及展望[J].作物研究,2003,17(3):148-151.
    [31]Hodges T, Botner D, Sakamoto C, et al. Using the CERES-maize model to estimate production for the U.S. Cornbelt[J]. Agri For Mete,1987,40:293~303
    [32]张艳红,马永良,廖树华CERES-Maize模型模拟中品种参数优化方法研究[J].中国农业大学学报,2004,9(4):24-29.
    [33]戴明宏,陶洪斌,廖树华,等.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析[J].农业工程学报,2008,24(4):30-36.
    [34]陈晓光,亢艳莉,刘玉兰CERES-Maize模型中遗传参数确定方法的研究[J].玉米科学,2007,15(6):127-129.
    [35]许吟隆,崔巧娟.利用CERES-Maize模型检验应用高分辨率气候变化情景进行影响评估的方法[J].中国农业气象,2005,26(增):42-45.
    [36]马韫韬,郭焱,展志岗,等.玉米生长虚拟模型GREENLAB-Maize的评估[J].作物学报,2006,32(7):956-963.
    [37]郑国清,高亮之.玉米发育期动态模拟模型[J].江苏农业学报,2006,16(1):15-21.
    [38]郭新宇,邓旭阳,郑文刚,等.玉米叶片形态建成的三维可视化研究[J].玉米科学,2004(专刊):27-30.
    [39]郭新宁,赵春江.基于过程的玉米生长模拟系统的研制[J].中国科技成果,2004,90(12):53-55.
    [40]郑国清,段韶芬,阎书波,等.玉米叶龄与器官发育模拟模型[J].玉米科学,2003,11(4):63-66.
    [41]郭新宇,赵春江,刘洋,等.基于生长模型的玉米三维可视化研究[J].农业工程学报,2007,23(3);121-125.
    [44]刘晓东,蒋立华,赵军军,等.基于Bezier曲线的植物形态建模和显示[J].计算机工程与应用,2002,13:97-98.
    [43]刘晓东,罗轶先,郭新宇,等.基于NURBS曲面的玉米叶生长过程中的形态建模[J].计算机工程与应用,2004,14:201-204.
    [44]邓旭阳,周淑秋,郭新宇.基于Cardinal样条插值和三角面片的叶片静态建模[J].计算机工程与应用,2004,25:199-201.
    [45]丁永祥,夏巨谌,王英,等.任意多边形的Delaunay三角剖分[J].计算机学报.1994,17(4):270-275.
    [46]王文海.三维几何造型的理论与技术[J].计算机辅助工程,1994,2:21-30.
    [47]鄂玉江,等.玉米根系的生长规律及其产量关系的研究[J].作物学报,1988,14(2):149-154.
    [48]戴俊英,等.玉米根系的生长规律及其与产量关系的研究[J].作物学报,1988,14(4),310-314.
    [49]李少昆,等.不同密度玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系[J].玉米科学,1993,1(3):43-19.
    [50]Donala Hearn,M Pauline Baker.计算机图形学(第二版)(翻译版)[M].北京:电子工业出版社,2002.
    [51]:李响.WPF自学手册[M].北京:电子工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700