面向装配的球面虚拟环境系统的建立及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟装配是虚拟现实技术在工业领域的重要应用之一,为解决复杂产品的装配工艺设计问题提供了经济有效的解决途径。虚拟装配的沉浸性能直接影响其实际应用效果。然而,传统虚拟装配系统的沉浸感不足,难以反映实际装配过程中的问题。随着科学技术的发展,人们开发出具有高度沉浸式虚拟装配环境,但是由于系统的构建耗资巨大,且多种关键技术尚不完善,无法满足装配设计的实际需求。因此,迫切需要引入新的方法和手段,建立具有高度沉浸感的、低成本的虚拟装配环境系统,以获得具有实际指导意义的装配方案。
     本文建立了一个新型的具有高度沉浸感的虚拟装配系统,设计了系统的总体硬件结构,并对相关功能模块的关键技术进行研究。该系统通过多个投影机和所研制的大型球面屏幕组成的投影系统为操作者提供360°全景展示画面,具有高度的沉浸感和广阔的操作空间,能够满足产品虚拟装配设计的要求。
     研制出一种低成本的立体图像分配器,通过基于低端硬件的立体投影显示系统,实现了球面屏幕的立体投影显示。在该系统中,首先建立立体像对生成的数学模型,并采用Off-axis算法实现立体场景源图像的获取,经过立体图像分配器的处理后生成满足投影显示的立体视对图像,以增强虚拟装配系统的沉浸感。
     针对平面图像投影到球面屏幕上发生变形的情况,提出了一种非线性几何拼接校正方法。该方法建立球面投影的数学模型,求解投影机在球幕上的最大显示区域,并利用相机获取最大区域内的标准网格图案,确定投影机与显示屏幕之间的几何关系,由双向曲线法逆运算求解双三次NURBS曲面的控制点阵,初步获得满足多投影显示的几何校正图像,再通过NURBS曲面的局部可修改特性进行图像重叠部分的拼接校正,实现了高精度、无缝的球面多投影显示。
     在分析球面屏幕多投影显示图像之间颜色差异原因的基础上,提出了一种适用于球面多投影显示的全局颜色校正方法。该方法采用基于相机的HDR图像处理技术重建所有投影机显示图像的亮度响应值,并针对球面背投显示模式的特点,从人对颜色视觉感知的角度出发,进行三个方面的全局颜色校正处理,包括全局的亮度均匀化、边缘亮度融合和色彩度的公共ITF匹配,实现了在视觉感知上统一的球面多投影显示效果。
     研究了球面投影图像的场景显示技术,在并行绘制环境下建立球面图像分割模型,根据球面多投影空间的实际布局情况,设计出满足球面多投影拼接显示的分割方案,通过球面投影图像的区域划分设计,使得经过几何拼接校正后的显示图像具有良好的连续性。基于sort-first并行绘制系统实现场景的并行渲染,并实现系统视觉显示各功能模块的集成处理,考虑到三维交互操作和场景漫游的同步显示要求,采用有效的同步控制技术实现场景动态显示的逻辑统一。
     最后开发了卫星虚拟装配系统,将本文所研究的关键技术用于系统的场景显示中,通过实际的投影验证了所提出理论方法的合理性和有效性。实验结果表明所建立的球面虚拟装配系统具有高度的沉浸性能,可用于产品的虚拟装配设计。
Virtual assembly(VA), as one of the important applications for virtual reality(VR) applied in industrial area, provides an economical way to solve the issues of product assembly process design. Immersive performance of VA influences the effectiveness of its application directly. However, traditional VA system does not provide enough high degree of immersion, and the assembly operations of designer’s simulation lack sense of reality, thus it is difficult to predict problem that occurs during actual assembly process. With gradual improvement of technology, immersive VA environment is developed, but constructing such a system incurs substantial expenditures, and several key technologies are still not perfect to meet the actual needs of assembly design. Therefore, it is urgent to construct a low-cost, high-immersive VA system by introducing new mehods and means, to obtain a simulation result with pratical guidance.
     In this thesis, a new highly immersive VA system was constructed, the whole hardware architecture of the system was designed, and various functional modules were developed and integrated in the system. The system could provide 360°panoramic display for the operator through a projection system consisting of projectors and a large spherical screen developed independently. Simutaniously, it had a high degree of immersion and broad operation space that could meet the requirements of VA product design.
     A low-cost 3D image distributor was developed, and a method based on ordinary hardware was used to achieve 3D projection display that could meet the spherical screen. In the system, a 3D image generation model was established firstly, and Off-axis algorithm was applied to acquire 3D scene source images, then the distributor deal with that images information to create 3D images for projection display, therefore it can enhance the immersive effect of VA system.
     As a planar image deformed when projected on the irregular spherical screen, a correction method based on NURBS surface model was proposed for nonlinear geometric mosaic, a camera was used to obtain standard grid pattern on the screen, then the geometric relationship between projector and display screen was seted up, and control points of bicubic NURBS surface lattice were calculated by a two-directional curves inversed solving method. A geometric correction image was obtained initially so that met the multi-projection display, and local modify characteristics of NURBS surface was used to perform mosaic correction of overlapped images. Therefore, it can realize high precision, seamless spherical multi-projection display.
     Based on analysing color difference between images, a global sphere color correction method that considers color visual perception of humankinds was proposed for spherical screen multi-projection display. HDR image processing technique with a camera was applied to modify brightness response value of display images for all of the projectors. According to characteristics of spherical rear projection display mode, there were three aspects of the global color correction as following, including the overall brightness uniformity, edge brightness blending and color common ITF match, to achieve visual perception unification on the spherical multi-projection display.
     Scene dynamic display technology was studied for spherical projection real-time display. Spherical segmentation model was established under a parallel rendering environment. According to the actual layout of pherical multi-projection space, spherical partition scheme was designed to fulfill multi-projector display. Through region division design of spherical projection image, it made the display images well continuity after geometric mosaic correction. A sort-first parallel rendering system is used in VA system to achieve parallel scenes rendering, and realize visual display of the system and integration processes of each functional module, to meet the requirements of synchronization display for 3D interaction operation and scene roaming. Therefore, an efficient synchronization technology was adopted for the logical unity of scene dynamic display.
     Finally, a virtual environment was designed and developed for satellite assembly, the key technologies studied in this paper were used for scene display, and their validity and reasonability of theoretical approach proposed were verified by some actual projection tests. The experimental results demonstrated that immersive performance of the established VA system with spherical screen is excellent, and it could be used for VA design of products.
引文
1陈定方,罗亚波.虚拟设计.机械工业出版社. 2002: 56~102
    2张隽,翟正军.虚拟装配技术的研究与应用现状.航空制造技术. 2009(1): 70~73
    3徐晓钟,王荣桥,马枚.可装配性设计环境与航空发动机转子的装配仿真.计算机辅助设计与制造. 2001, 1: 16~17
    4邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究.计算机集成制造系统. 2007, 13(7): 1367~1373
    5张茂军.虚拟现实系统.科学出版社. 2001: 52~114
    6 J. Cook, R. Hubbold, M. Keates. Virtual Reality for Large Scale Industrial Applications. Future Generation Computer Systems. 1998, 10(14): 157~166
    7宁汝新,郑轶.虚拟装配技术的研究进展及发展趋势分析.中国机械工程. 2005, 16(15): 1398~1404
    8 C. Cruz-Neira, D. J. Sandin. Surround-Screen Projection-Based Virtual Reality: the Design and Implementation of the CAVE. Proc. SIGGRAPH’93, 1993: 135~142
    9 S. Jayaram, H. I. Connacher. Virtual Assembly Using Virtual Reality Techniques. Computer Aided Design. 1997, (29): 575~584.
    10 S. Jayaram, U. Jayaram,Y. Wang. VADE: a Virtual Assembly Design Environment. IEEE Proc. of Computer Graphics and Applications. 1999, (19): 44~50
    11 Q. H. Wang, J. R. Li. Interactive Visualization of Complex Dynamic Virtual Environments for Industrial Assemblies. Computers in Industry. 2006, (57): 366~377
    12 Z. Liu, J. Tan. Constrained Behavior Manipulation for Interactive Assembly in a virtual Environment. Int. Journal Manufacture Technology. 2007, (32): 797~810
    13 B. Jung, M. Hoffhenke. Virtual Assembly with construction Kits. ASME Design Engineering Technical Conference. Sacramento. 1997: 1~7
    14 B. Antonishek, D. Egts. Virtual Assembly Using Two-Handed Interaction Techniques on the Virtual Workbench. ASME Design Engineering Technical Conference. 1998: 5536~5540
    15 M. Weyrich, P. Drew. An interactive Environment for virtual Manufacturing:the virtual Workbench. Computers in Industry. 1999, (38): 5~15
    16 Z. Ai, X. Chen, M. Rasmussen. Reconstruction and Exploration of Three-Dimensional Confocal Microscopy Data in an Immersive Virtual Environment. Computerized Medical Imaging and Graphics. 2005, (29): 313~318
    17 L. Renambot, B. Jeong, H. Hur. Enabling High Resolution Collaborative Visualization in Display Rich Virtual Organizations. Future Generation Computer Systems, 2009, (25): 161~168
    18韩志新.大屏幕拼接显示系统浅析.煤炭技术. 2006, (3): 37~39
    19小木哲朗,林正紘.レイヤ分割法を用いたドーム映像の生成. Proc. of ASIAGRAPH. Tokyo. 2007: 1~6
    20曾鸿,张均东,王海燕.三通道立体投影轮机模拟器视景仿真系统.大连海事大学学报. 2007, (2): 39~42
    21郝占刚,焦晓辉.大屏幕显示系统及其应用. 2005, (2): 41~43
    22 A. Simon, S. Schoiz. Multi-Viewpoint Images for Multi-User Interaction. IEEE Virtual Reality Conference, Bonn, Germany, 2005: 107~113
    23 T. Holtkamper, S. Scholz, A. Dressler. Co-Located Collaborative Use of Virtual Environments. AAPG Annual Convention and Exhibition, Long Beach, USA. 2007: 1~6
    24 E. Lantz. A Survey of Large-Scale Immersive Displays. ACM SIGGRAPH in the Emerging Display Technology Conference. 2007: 1~7
    25 T. Hollerer, J. Kuchera, X. Amatriain. The Allosphere: a Large-Scale Immersive Surround-View Instrument. ACM Int. Conference. 2007, 252(1278243): 1~7
    26 R. D. Yang, X. M. Fan, D. L. Wu. Virtual Assembly Technologyies Based on Constraint and DOF Analysis. Robotics and Computer-Intergrated Manufacturing. 2007, (23): 447~456
    27郑轶,宁汝新,唐承统,等.三通道投影虚拟装配环境的研究与实现.计算机辅助设计与图形学学报. 2006, 2(18): 314~318
    28郑秩.基于物理属性的虚拟装配系统及关键技术研究.北京理工大学博士学位论文. 2006: 40~91
    29郑轶,宁汝新,唐承统,等.虚拟装配平台实现技术研究. 2006, 9(25): 1027~1030
    30贾庆轩,宋荆州,孙汉旭.高临场感多投影面虚拟环境系统的设计与实现.中国工程科学. 2006, 8(8): 33~38
    31高印寒,马增治,李春光.虚拟现实技术及其在机械工程中的应用.吉林大学学报工学版. 2003, 33(2): 104~106
    32 H. J. Bullinger, M. Richter, K. A. Seidel. Virtual Assembly Planning. Human Factors and Ergonomics in Manufacturing. John Wiley & Sons Inc. 2000: 331~341
    33 J. M. Ritchie, J. Simmons, P. Holt. Immersive Virtual Reality as an Interactive Tool for Cable Hardnesses Design. Simpozionul National cu Participare International? PRoiectarea ASIstat? de Calculator. 2002, 3(7~8): 461~474
    34王晓民,周卫东. CAVE系统的发展及在医学领域中的运用.医疗卫生装备. 2004, 4(3): 26~28
    35李奇,冯华君,徐之海,等.计算机立体视觉技术综述.光学技术. 1999, 9: 71~73
    36 S. Schlechtweg. MiniCAVE: A Fully Immersive Display System Using Consumer Hardware. EGVE Symposium. 2008: 1~8
    37 A. Fischer, J. M. Vance. PHANToM Haptic Device Impliemented in a Projection Screen Virtual Environment. Proc. of the Workshop on Virtual Environment. 2003, (39): 225~230
    38 C. R. Ryu, Y. H.Cho, Y. H. Chai. Development of immersive VR Display System for 3D Digital Art. IEEE Int. Conference on Computer Graphics, Imaging and Visualization, Penang, Malaysia, 2004: 93~98
    39林柏纬,潘志庚.基于PC架构的高性能CAVE系统.计算机辅助设计与图形学学报. 2003, 15(6): 724~729
    40 B. V. Shulgin, J. Ye, V. H. Raja. Multiprojector Image Distortion Correction Scheme for Curved Screens on the Example of the Cybersphere. SPIE-IS&T Electronic Imaging, Stereoscopic Displays and Virtual Reality Systems, 2006, (6055): 1~6
    41 K. J. Fernandes, V. H. Raja, J. Eyre. Immersive Learning System for Manufacturing Industries. Computers in Industry. 2003, (51): 31~40
    42 G. H. Liu, Y. X. Yao. Development of a New Virtual Environment System for Assembly. Key Engineering Materials. 2006, (316): 556~560
    43刘国华.大型复杂产品虚拟装配系统人机交互技术的研究.博士学位论文. 2007: 1~80
    44徐伟忠,刘辉,谈正.三维立体显示系统的开发研究.中国图像图形学报. 1997,4(2): 144~148
    45毛崇德,王元庆.多视点自由立体投影系统.光电工程. 2006,(33): 59~62
    46王元庆.自由立体显示器的应用与现状.现代显示. 2002(35):38~41
    47郑东华,丁瀛洁,程维明.三维立体显示技术研究新进展.光学技术.2008,5(34): 426~434
    48戴晨光,张永生,黄小波,等.基于微机的3维景观立体显示技术. 2002, (9): 18~21
    49丁辉,付梦印.立体显示技术最新进展.电视技术. 2006, (8): 36~38
    50戴晨光,张永生.三维地理景观立体投影显示的方法和技术实现.测绘技术装备. 2005, (2): 17~20
    51 W. Kresse, D. Reiners, C. Kn?pfle. Color Consistency for Digital Multi-Projector Stereo Display Systems: The HEyeWall and the Digital CAVE. Int. Immersive Projection Technologies Workshop. The Eurographics Association. 2003: 271~279
    52 3D Perception AS, Norway, CompactView X10.http://www.3d-perception.com/. 2001
    53 Seiko Epson Corp, Japan, Epson PowerLite 730p. http://www.epson.com/. 2001
    54 Barco, Kortrijk Belgium, Barco Galaxy Warp. http://www.barco.com/. 2002.
    55 M. Brown, A. Majumder, R. Yang. Camera-Based Calibration Techniques for Seamless Multiprojector Displays, IEEE Transactions on Visualization and Computer Graphics. 2005, (11): 193~206
    56 J. Wang, N. G. Lu, M. L. Dong. A New Method for Linear Camera Calibration and Nonlinear Distortion Correction. SPIE 3rd Int. Symp. on Precision Mechanical Measurements, Kuang-Chao Fan, 628020: 1~6
    57 J. P. Villiers, F. W. Leuschner, R. Geldenhuys. Centi-Pixel Accurate Real-Time Inverse Distortion Correction. SPIE Optomechatronic Technologies, 2008, (726611): 1~8
    58 S. Lee, M. D. Abramoff, J. M. Reinhardt. Retinal Image Mosaicing Using the Radial Distortion Correction Model. SPIE Medical Imaging: Image Processing. 2008, (691435): 1~9
    59 N. P. Y. Yuen, W. C. Thibault. Inexpensive Immersive Projection. IEEE Virtual Reality Conference, Reno, Nevada, USA, 2008: 237~240
    60 R. Wang, J. T. Zhang, M. Y Wang. A Synthetic Method for Image Contour Distortion Correction. SPIE 7th Int. Symposium on Instrumentation and Control Technology: Sensors and Instruments. 2008, (71272M): 1~6.
    61 R. Raskar, M. S. Brown, R.Yang. Multi-Projector Displays Using Camera-Based Registration. IEEE Visualization Conference, Los Alamitos, United States, 1999:161~168
    62 R. Raskar, J. van Baar, P. Beardsley. ILamps: Geometrically Aware and Self-Configuring Projectors. ACM Trans. Graphics. 2003, 22(3): 809~818
    63 Y. Chen, D. Clark, A. Finkelstein, et al, Automatic Alignment of High-Resolution Multi-Projector Displays Using an Un-Calibrated Camera. IEEE Visualization Conference, Salt Lake City, United states, 2000: 125~130
    64 R. Yang, D. Gotz, J. Hensley. PixelFlex: a Reconfigurable Multi-Projector Display System. IEEE Visualization Conference, San Diego, United states, 2001: 167~174
    65 H. Chen, R. Sukthankar, G. Wallace. Scalable Alignment of Large-Format Multi-Projector Displays Using Camera Homography Trees. IEEE Visualization Conference, Boston, United states, 2002: 1~8
    66 A. Raij, G. Gill, A. Majumder. PixelFlex2: a Comprehensive, Automatic, Casually-Aligned Multi-Projector Display. IEEE Int. Workshop on Projector-Camera Systems. 2003: 301~309
    67 C. Li, H. Lin, J. Shi. Multi-Projector Tiled Display Wall Calibration with a Camera. SPIE-Int. Society of Optical Engineering, San Jose, USA, 2005: 294~301
    68王修晖,杨林波.多投影显示墙的几何校正.计算机辅助设计与图形学学报. 2008, 20(6): 707~712
    69 R. Raskar, G. Welch, H. Fuchs. Seamless Projection Overlaps Using Image Warping and Intensity Blending. Proc. of the 4th Int. Conference on Virtual Systems and Multimedia, Gifu, 1998: 179~188
    70 R. Raskar, J. van Baar, J. Chai. A Low Cost Projector Mosaic with Fast Registration. Proc. 5th Int. Conf. Computer Vision. Melbourne, Australia, 2002: 1~6
    71 R. Raskar, J. van Baar. Low-Cost Multi-Projector Curved Screen Displays. Digest of Technical Papers-SID Int. Symposium. 2005, 36(1): 884~887
    72 R. Raskar, J. Baar, T. Willwacher. Quadric Transfer for Immersive Curved Display. Computer Graphics Forum. 2004, 23(3): 1~10
    73 T. Moriya, F. Beniyama, K. Utsugi. Multi-Camera and Multi-Projector Based Seamless Live Image Display System. IEEE Int. Multimedia Model Conf. Brisbana, Australia, 2004: 265~272
    74 N. Hashimoto, S. Jeong, Y. Takeyama. Immersive Multi-Projector Display on Hybrid Screens with Human-Scale Haptic and Locomotion Interface. Proc. Int. Conf. Cyberworlds CW, Tokyo, Japan, 2004: 361~368
    75 M. Harville, B. Cubertson, I. Sobel. Practical Methods for Geometric andPhotometric Correction of Tiled Projector Displays on Curved Surfaces. Conf. Comput. Vision Pattern Recog. Workshops, New York, USA, 2006: 1~8
    76 W. Sun, I. Sobel, B. Culbertson, et al. Calibrating Multi-Projector Cylindrically Curved Displays for Wallpaper Projection. PROCAMS-ACM/IEEE Int. Workshop Proj. Camera Syst., Marina del ray, USA, 2008: 1~8
    77宋荆洲,孙汉旭,施法中.多投影面沉浸式虚拟环境的快速构建方法.系统仿真学报. 2006, 18(11): 3143~3147
    78张号,贾庆轩,孙汉旭.一种多通道曲面投影系统的几何校正方法.系统仿真学报.2006, 18(2): 493~496
    79张号.基于多投影面环幕虚拟环境的自行车漫游系统的研究.北京邮电大学硕士学位论文. 2007: 22~36
    80刘国华,姚英学.投影仪曲面投影校正技术.计算机辅助工程. 2006, 15(2): 11~14
    81高国保,柴海峰.拼接投影的边缘融合处理问题.现代显示. 2007: 49~53
    82张军,王邦平,易成.一种实用的多投影仪显示墙色彩校正方法.计算机应用. 2009, 29(4): 982~986
    83 A. Majumder, Z. He, H. Towles, et al. Achieving Color Uniformity across Multi-Projector Displays. IEEE Visualization Conference, Salt Lake City, United states, 2000: 1~9
    84 A. Majumder, R. Stevens. LAM: Luminace Attenation Map for Photometric Uniformity in Projection Based Displays. ACM Symposium on Virtual Reality Software and Technology, Hong Kong, China, 2002: 147~154
    85 A. Majumder, R. Stevens. Color Nonuniformity in Projection-Based Displays: Analysis and Solutions. IEEE Transactions on Visualization and Computer Graphics. 2004, 10(2): 177~188
    86 G. Wallace, H. Chen, and K. Li. Color Gamut Matching for Tiled Display Walls. Proc. Immersive Projection Technology Workshop. 2003: 1~10
    87曹双喜,陈福民.多投影仪拼接显示的实现.计算机工程与应用. 2005, (2): 84~86
    88贾庆轩,阮瑞卿,孙汉旭,等.多投影面显示系统亮度均衡的实现.系统仿真学报. 2006,18(2): 478~482
    89王修晖,华炜,鲍虎军.多投影显示墙的全局颜色校正,计算机辅助设计与图形学学报. 2007,19(1):96~101
    90王胜正,施朝健,石永辉.新一代船舶操纵模拟器关键技术.上海海事大学. 2007, 28(1): 143~149
    91王胜正,杨杰.自动多投影仪非线性几何校正与图像边缘融合方法.上海交通大学学报, 2008, 42(4): 574~583
    92刘涛,李学军,高永明,谢剑薇.基于PC的大屏幕立体投影与快速边缘拼接.系统仿真学报. 2007, 19(3):570~574
    93宋荆洲,施法中,孙汉旭.多投影面沉浸式虚拟环境系统的颜色校正.计算机工程. 2007, 33(2): 177~179
    94 O. G. Staadt, J. Walker, C. Nuber. A Survey and Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering. ACM SIGGRAPH ASIA Courses, Singapore, 2008, (41): 1~10.
    95刘真,石教英,彭浩宇.基于PC集群并行图形绘制系统综述.系统仿真学报. 2006, 18(1): 70~72
    96 H. Igehy, G. Stoll, P. Hanrahan. The Design of a Parallel Graphics Interface. Proc. ACM SIGGRAPH Conf. Computer Graph, Orlando, USA, 1998: 1~10
    97 C. H. Park, H, Ko, T. Kim. NAVER: Networked and Augmented Virtual Environment Architecture: Design and Implementation of VR Framework for Gyeongju VR Theater. Computers and Graphics. 2003, (27): 223~230
    98 G. Humphreys, I. Buck. Distributed Rendering for Scalable Displays [C]//Proceedings of surpercomputing. 2000: 784~790
    99 G. Humphreys, M. Houston. Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters ACM Transactions on Graphics on. Proc. of ACM SIGGRAPH 2002: 48~52
    100 K. Li, H. Chen. Early Experiences and Chanlleges in Building and Using a Scalable Display Wall System. IEEE Proc. of computer graphics and applications. 2000, 20(4): 671~680
    101 B. Wei, C. Silva, E. Koutsofios, S. Krishnan, and S. North. Visualization Research with Large Displays. IEEE Proc. of Computer Graphics and Applications. 2000, 20(4): 50~54
    102 M. Hereld, I. R. Judson, J. Paris, et al. Developing Tiled Projection Display Systems. Proc. of 4th Immersive Projection Technology Workshop. 2000: 78~85
    103 B. Jeong, R. Jagodic, L. Renambot, et al. Scalable Graphics Architecture for High-Resolution Displays. IEEE Information Visualization Workshop. 2005: 782~787
    104 Y. S. Kim, J. Yang, S. Han. A Multichannel Visualization Module for Virtual Manufacturing. Computers in Industry, 2006, 57(7): 653~633
    105杨建,石教英,林柏纬,潘志庚. PCCAVE:基于联网PC的廉价CAVE系统.计算机研究与发展. 2001, 38(5): 513~518
    106杨建. AnyGL:一个大规模混合分布图像系统.浙江大学博士论文. 2002: 51~86
    107郎兴华,郭阳,林亨,等. STL模型的立体显示及其多屏拼接.系统仿真学报. 2004,16(4): 740~744
    108 T. Ni, G. S. Schmidt, O. G. Staadt. A Survey of Large High-Resolution Display Technologies Techniques, and Applications. IEEE Virtual Reality Conference. 2006: 1~12
    109梅继红,雷小永.基于数据手套的虚拟操作技术研究.系统仿真学报. 2002, 14(3):3 30~332
    110王雷,王力.基于手势的交互式虚拟环境.计算机工程与应用. 2002, 22: 88~90
    111 G. H. Liu, Y. X. Yao. Progress of Research on Virtual Environment System for Assembly, Journal of Harbin Institute of Technology, 2005, 12(Suppl. 2): 128~130
    112黄永刚. 3D自由立体显示软件研究与实现.合肥工业大学硕士论文. 2006: 41~87
    113王正荣.在PRO/ENGINEER中实现自由立体显示.合肥工业大学硕士论文. 2007:4~80
    114岳晓军.计算机三维室景立体显示技术的研究.硕士学位论文. 2006: 3~42
    115 P. Bourke. 3D Stereo Rendering Using OpenGL and Glut. http://tav.net /multimedia/imagen/3d_stereo.htm
    116 T. He, A. Kaufman. Fast Stereo Volume Rendering. IEEE Visualization Conference. 1996, (96): 49~56
    117刘传才.图像理解与计算机视觉.厦门大学出版社. 2002: 34~36
    118王小敏.一种立体计算机视觉技术的仿真研究.系统仿真学报. 2006, 18(5): 1139~1142
    119段华,赵东标.基本立体视觉的移动机器人导航方法的研究.控制与决策, 2006, 6(21): 710~714
    120王宇宙.计算机视觉三维重建理论与应用.西北大学博士论文. 2004: 60~62
    121杨小革.微机立体动画研究及体视误差分析.计算机辅助工程. 1996, (1): 31~39
    122 L. F. Hodges. Tutorial: Time-Multiplexed Stereoscopic Computer Graphics. IEEE Proc. of Computer Graphics and Applications. 1992, 12(2): 20~30
    123石教英.虚拟现实算法及实用算法.北京:科学出版社. 2002: 21~78
    124孙家广.计算机图形学(第三版).清华大学出版社. 1998: 410~522
    125 R. J. Surati. Scalable Self-Calibrating Display Technology for Seamless Large-Scale Displays. PhD Thesis.1999: 40~87
    126 H. Chen, R. Sukthankar, G. Wallace. Calibrating Scalable Multi-Projector Display Using Camaera Homography Trees. Computer Vision and Pattern Recognition. Technical Sketch. 2002: 12~17
    127 A. Majumder and R. Stevens. Perceptual Photometric Seamlessness in Tiled Projection-Based Displays. ACM Trans. On Graphics, 2005,24:111~134
    128 B. Sajadi, M. Lazarov, A. Majumder. Color Seamlessness in Multi-Projector Displays Using Constraned Gamut Morphing. IEEE trans. On visual. and comp. graphics. 2009,15:1317~1325
    129 M. Brown, A. Majumder, R. Yang. Camera-Based Calibration Techniques for Seamless Multi-Projector Displays. IEEE Transactions on Visualization and Computer Graphics. 2005,11(2):193~206
    130 P. E. Debevec, J. Malik. Recovering High Range Radiance Maps from Photographs. Proc. of the ACM SIGGRAPH Conference on Computer Graphics, Los Angeles, USA, 1997: 369~378
    131 R. L. De Valois, K. K. De Valois. Spatial Vision. Oxford University Press. 1990:
    74~160
    132江巨浪.纹理映射技术的研究及实现.合肥工业大学.硕士学位论文. 2003: 25~60
    133卢章平,丁立军,戴立玲.基于分类的纹理映射方法综述.江苏大学学报. 2006(27):14~16
    134 Richard S. Wright, Jr. Benjamin Lipchak著.徐波译. OpenGL超级宝典.人民邮电出版社. 2005:85~240
    135 S. Molnar, M. Cox. A Sorting Classification of Parallel Rendering. IEEE Proc. of Computer Graphics and Applications. Science (S0272-1716). 1994, 14(4): 23~32
    136姚英学,蔡颖.计算机辅助设计与制造.高等教育出版社. 2002: 40~89
    137 B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera. High-performance dynamic graphics streaming for scalable adaptive gravhics environment, proeeedings of SC06, Tampa, 2006:102~105
    138 S. Marchesin, C. Mongenet, J.M. Dischler. Dynamic Load Balancing for Parallel Volume Rendering, Eurographics Symposium on Parallel Graphics andVisualization, 2006:371~375
    139 J. Sebot, A.Vartanian, J. L. Bechennec, et al. A Parallel Algorithm for 3D Geometry Transformations in OpenGL. In: European Conference on Parallel Computing. 1999: 659~662
    140 R. Samanta, J. Zheng, T. Funkhouser. Load Balancing for Multi-Projector Rendering Systems. Proc. of ACM SIGGRAPH/EUROGRAPHICH Workshop on Graphics Hardware, Los Angeles, USA, 1999: 107~116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700