非滑道大型多层钢结构建造过程精度控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,大型多层钢结构在各种场馆建筑、集成化工业厂房等方面得到了越来越多的应用。由于大型多层钢结构各层的制造误差和安装误差的积累,在合理的建造效率下,实现钢结构的安装精度非常困难,非滑道区域建造的地基沉降加大了这一难度,所以安装精度控制是非滑道大型多层钢结构建造的主要技术难点。本研究通过采用合理的安装技术和变形控制手段降低建造难度,并使用空间测量的技术获得大型钢结构建造的位置和误差信息,基于最小二乘法建数学模型对安装定位进行优化,减少误差,指导钢结构安装并预先修整结构层,达到提高精度和效率的目的。本文的主要研究内容有:
     1.为实现大型多层钢结构建造的精度监控而采用的三维测量技术,包括:建立测量控制网,并实现控制点的高程传递,从而建立测量体系;为保证测量不受杆件阻碍而采用的自由设站等测量技术;为获得制造和安装信息而使用的甲板片测量技术和测量数据在不同坐标系间的匹配方法。
     2.为了保证非滑道大型多层钢结构顺利建造并满足精度要求而采用的安装技术,包括:钢结构安装的整体工艺流程和立柱插接技术;为调整制造误差而使用的钢结构误差矫正方法。
     3.针对非滑道建造过程建立桩土耦合的有限元模型,对建造过程的变形进行分析,并使用临时支撑等手段,减少结构物竖向变形,减少地基的不均匀沉降;采用测量技术,对结构和设备安装时的地基沉降和结构变形进行监控,保证安装精度,为下一层结构的安装的降低难度。
     4.以测量数据为基础,基于最小二乘法和空间坐标变换,建立精度优化的目标函数,并以安装技术要求为约束方程,实现了提高安装精度的定位优化。
     5.基于AutoCAD二次开发的精度控制软件的实现,包括:包含模型导入、结构分层、精度点设定的三维模型处理模块的开发;实现测量数据导入和匹配的测量数据处理模块的开发;实现了提高建造精度的定位优化和误差分析模块的开发;实现数据储存、调用和显示的数据库和数据管理模块的开发。
     6.以镍矿工程的3M102模块为例,展示模块的建造过程和大型多层钢结构建造过程精度控制软件的使用及结果。
With the development of the economic, the application of large steel structure with multi-layers has become more and more widely in various construction of buildings and integrated industrial plants. As error accumulation of large steel structure with multi-layers when manufacturing and installing, it is very hard to realize the accuracy of installation in responsible constructing efficiency, what’s more, the foundation settlement in non-sliding region makes it become much more difficult. Therefore, it becomes the key technical difficulty to control the installation accuracy when constructing large steel structure with multi-layers in non-sliding region. The reasonable installation technology and deformation controlling method have been used to reduce the difficulties in construction. The position error when constructing large steel structure can be obtained through space measuring technology. The model based on the least square method optimizes the installation location and reduces the position error. Through the method, the layers of large steel structure can be preliminarily adjusted in order to improve the installation accuracy and efficiency.
     The main research of this paper can be included as follows:
     1. in order to realize controlling the construction accuracy, there-dimensional measurement technology has been established which contains: establishing the measurement system aims at establishing measurement control network and realizing the elevation transferring of the control point; measuring methods such as free stationing can ensure the measuring process successful; in order to obtain the manufacturing and installing information, the method of measuring the deck matches to measuring data in different coordinate system.
     2. the installation technology that insures the process of construction successfully contains: the whole installation process and the technology of plugging column with another; the error redressing method which can ensure the installation accuracy.
     3. The pile-soil coupling finite element model has been established to analysis the construction deformation. In order to reduce the vertical deformation and foundation settlement, the method of adding temporary support has been carried out which can also reduce the difficulty of installation.
     4. Taking measuring data as premise, the objective function to optimize for accuracy has been established. Taking technical requirements as constraint equations, the positioning optimization has been realized.
     5. Based on AutoCAD secondary development, the software of accuracy controlling has been achieved that contains: three-dimensional model has been developed including model importing, layering and accuracy point settling; measuring data imported and matching data processing module developing have been realized; Poisoning optimization for improving construction accuracy and error analysis model have been developed; database for data storage, transfer and display has been developed as well as data management model.
引文
[1]王新武,卫永胜,李道山,某高层大跨度联体钢构吊装及变形控制施工方法,华北水利水电学院学报,2010,31(5):13~15
    [2]詹志勇,上海港国际客运中心候船楼钢结构网壳的变形控制技术,建筑施工,2008,30(12):1040~1044
    [3]杨公升,张良锋,郭志农,KONIAMBO镍矿模块化冶炼厂建造技术总结,2010全国钢结构学术年会论文集,2010,10:693~705
    [4]黄腾,陈建华,特大型斜拉桥钢塔柱架设精密测量技术,精密与大型工程测量技术研讨交流会论文集,2006,5(2):96~105
    [5]张胜良,秦长利,国家游泳中心(水立方)钢结构工程施工测量技术要点和实施,精密与大型工程测量技术研讨交流会论文集,2006,5(2):106~112
    [6]曾兴,AutoCAD全站仪在复杂结构施工测量放样中的应用,现代企业文化,2010,(14),129~130
    [7]张瑞森,宋红智,天津机场航站楼大跨度管桁架钢结构屋盖安装技术,天津建设科技,2009,(2):19~24
    [8]Tim Clarke, Richard Gooch, Real-time 3-D Metrology for Aerospace Manufacture, Sensor Review Volume, 1999, 19(2): 113~115.
    [9]Geraint Jones, Scott Sandwith, Integrated CAD-Metrology and Alignment of Key Features of A380 Wings, 2004 Coordinate Measurement System Committee, 2004: 113~117
    [10]John Hartmann, Automated Wing Panel Assembly for the A340-600, Society of Automotive Engineers, 2000, 7(1): 44~47.
    [11]郭荣奎,秦耀良,唐建琼,船体建造精度控制技术研究,江苏船舶,2008,25(2):43~44
    [12]刘玉君,胡日强等,船体零部件补偿量的计算方法研究,哈尔滨工程大学学报,2007,28(7):723~728
    [13]胡日强,船体建造精度控制关键技术研究:[博士学位论文],沈阳;大连理工大学,2006
    [14]唐汉帆,国外造船精度控制技术,舰船标准化工程师,2003,(2):17~22
    [15].Shoji Takechi, Kazuhiro Aoyama and Toshiharu Nomoto, Virtual Manufacturing System based on Product Modeling-Development of Computer-Aided Geometric Accuracy Management System for Steel Structures, Proceedings of The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japa, 2002: 26~31
    [16]丁伟康,浅谈巨型总段造船法,上海造船,2009,(2):43~47
    [17]王永明,李明峰,朱振宇等,基于全站仪的造船精度控制测量算法研究,矿山测量,2010,(2):72~76
    [18]曾宪诚,造船精度管理探索,江苏船舶,25(3),2008:33~34
    [19]邹冀华,刘志存,大型飞机部件数字化对接装配技术研究,计算机集成制造系统,2007,13(7):1368~1377
    [20]邹冀华,飞机数字化测量辅助装配技术及应用,航空制造技术,2009,(24):48~52
    [21]朱三山,梅中义,飞机数字化装配测量系统研究,现代制造工程,2011,(8):55~58
    [22]王孟孟,朱琦,安灵斌,开发先进造船精度管理软件——SP.NET系统软件系统简介,造船技术,(3):37~40
    [23]F. Bosche, Carl T. Haas, Automated 3D Data Collection for 3D Building Information Modeling, Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japa, 2002: 519~524
    [24]熊威,甘忠,测量辅助飞机装配技术,航空制造技术,2011,(8):57~60
    [25]陈智勇,吴建军,赵玉静等,激光跟踪测量系统在飞机型面测量中的应用,机械设计与制造,2009,(12):68~71
    [26]范玉青,飞机数字化装配技术综述——飞机制造的一次革命性变革,航空制造技术,2006,(9):42~48
    [27]牛鎏,孟飙,范玉青,基于激光跟踪的数字化装配定位原型系统设计现代制造工程,2007,(11):52~56
    [28]姚吉利,自由设站法的应用,山东建材学院学报,1998,(4):79~85
    [29]邱章云,全站仪由设站极坐标法在隧洞工程测量中的应用,城市勘测,2010,(3):101~104
    [30]朱洪涛,吴维军,王志勇,提高全站仪自由设站精度方法的研究,铁道工程学报,2009,(5):21~26
    [31]侯永会,高少强,大型钢结构拼装构件的定位测量,石家庄铁路职业技术学院学报,2005,4(2):66~68
    [32]Jae-Woong Youn, Kang-Seob Yoon, Dug-Young Lee, Three-dimensional Measurement System for Pipe Assembly Process, Measurement science and Technology, 2005, (16): 2091~2100
    [33]宗小平,苏亚武,付梓,100.8m高空钢结构施工大平台设计及吊装施工技术,建筑技术,2007,38(2):90~94
    [34]陈继国,陈顾勤,超大型钢结构屋架工程地面整体拼装技术研究,建筑施工,2009,(8):664~665
    [35]杨耀辉,李世鲲,王维迎,超高层钢结构安装技术,建筑施工,2009,39(4):247~254
    [36]Yasuhisa Okumoto, Dimensional Error of Assembled Blocks, Journal of Ship Production, 2001, 17(1): 8~15
    [37]马金彬,高层钢框架结构施工工艺与焊接变形分析:[硕士学位论文],重庆;重庆大学,2006
    [38]丁晓华,郭红雨,基于ANSYS的预应力连续刚构桥非线性仿真模型研究,中国水运,2007,5(5):54~65
    [39]赵健,刘静,ANSYS分析FRP加固混凝土结构研究综述,四川建筑,2007,27(3):158~159
    [40]孙敦本,梁路多层框架结构基础隔震地震反应分析,工程建设与设计,2007,(8):87~89
    [41]姜峰,黄明鑫,张晓杰,上海世博会阳光谷钢结构施工变形控制技术,施工技术,2010,39(8):101~104
    [42]潘国荣,王穗辉,上海新国际博览中心连廊钢结构加载变形测量,测绘通报,2004,(8):24~27
    [43]深圳京基100超高层钢结构整体变形控制技术,施工技术,2011,40(350):15~19
    [44]鲍谷雨,对某工业厂房钢结构变形的分析和处理,工业建筑,2000,30(4):67~70
    [45]Shoji Takechi, Kazuhiro Aoyama, Toshiharu Nomoto, Studies on the Block Positioning Metrics System for the Hull Erection Stage, Marine science and technology, 2002 , (6): 158~167
    [46]Yasuhisa Okumoto, Factors on Dimensional Inaccuracy of Steel Block Assembly Proceedings, The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002: 26~31
    [47]曹卫华,郭正,最优化技术方法及matlab的实现,北京:化学工业出版社,2005
    [48]宋正菊,基于遗传算法的网络教学系统自适应组卷研究:[硕士学位论文],天津;天津大学,2007
    [49]石丽娟,遗传算法求解函数优化问题的Matlab实现,福建电脑,2010,(3):79~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700