机器人制孔终端执行器控制系统设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人自动制孔系统作为柔性加工设备,灵活性高,且成本低,既适用大批量生产,又能快速适应产品更换,适应小批量或研制阶段的装配生产,因此在国外航空制造领域已经得到广泛的应用,并开始显现效益。而国内机器人自动制孔系统在航空领域的应用几乎为空白,主要依靠引进国外自动钻铆机实现自动制孔功能。在此背景下,浙江大学飞机数字化装配项目组自主研制开发一套基于飞机壁板制孔的机器人自动制孔系统,本文对制孔终端执行器的控制系统进行设计研究。
     第一章阐述论文研究的背景和意义,总结飞机装配中自动制孔系统的国内外发展现状,在阐述机器人及其终端执行器在飞机装配中应用技术的基础上,提出论文的研究内容。
     第二章首先阐述飞机壁板制孔工艺和要求,然后提出基于终端执行器的机器人自动制孔系统,对制孔系统每个组成部分的结构、功能和特点作了详细的介绍,最后分析机器人自动制孔系统的制孔工艺流程及其特点。
     第三章首先介绍终端执行器进给系统的控制原理,根据控制系统设计要求提出基于SynqNet总线技术的控制系统,并详细介绍系统中的硬件组成。然后根据进给系统的传动原理提出进给轴的全闭环控制方式,并设计交流伺服控制系统中电流环、速度环和位置环的PID控制器。最后介绍主轴电机的控制系统。
     由于制孔过程中工件的变形和振动使得锪窝深度难以控制,第四章首先提出基于压脚位置实时补偿的进给轴闭环控制系统,将制孔过程中的压脚位移等效于工件的变形量,并实时补偿到进给深度。同时设计低通滤波器,抑制压脚的高频振动对位置控制的干扰,以获得精确的锪窝深度和良好的表面质量。最后介绍该控制系统在MechaWare软件中的实现过程。
     为了验证终端执行器控制系统的可行性以及对锪窝深度的控制效果,第五章针对不同加工表面、不同压紧力、不同规格刀具,设置多组实验。根据对实验结果的分析得到,经过压脚位置实时补偿的终端执行器进给系统能够将锪窝深度误差控制在0.02mm以内,并且使加工孔的圆度、表面光洁度以及加工效率等相比较手工制孔有了大大的改善。
     第六章对全文的研究工作进行总结,并对进一步研究的内容进行展望。
As flexible manufacture equipment, robot drilling system is widely used abroad and begin to achieve benefits, due to its high flexibility and low cost. It is not only applied to mass production, but also can quickly adapt to products upgrading and fit small batch production or the development stage of the assembly production. However, robot drilling system is few used at home. The performance of automatic drilling is mainly achieved by the introduction of automatic drilling and riveting machines abroad. Against this background, the project group of Aircraft Digital Assembly in Zhe Jiang University has developed a robot drilling system based on the drilling of aircraft panels. This paper presents the design and research of robot drilling end effector control system.
     The first chapter presents the research background and meaning of this paper firstly. And then the recent development of automatic drilling system in aircraft digital assembly is summarized both at home and abroad. At last, the research contents are presented based on the introduction of the apppplication of robot drilling system and its end effector in aircraft assembly.
     In the second, firstly, the drilling process and requirements of aircraft panels are presented. And then the robot drilling system is introduced based on the drilling of end effector, each constituent's structure, function and characteristics of the system are introduced in detail. Finally, the drilling process and characteristics of robot drilling system are analysed.
     In the third chapter, the feeding system's control principles of the end effector are introduced at first. The control system based on SynqNet is presented from the design requirements of the control system. And the hardware constituents of the system are introduced in detail at the same time. Then the full closed loop control way of the feeding shaft is chose according to the transmit principle of the feeding system. And also the PID controller of the current loop velocity loop and position loop in AC servo control system are both designed. Finally, the control system of the spindle motor is introduced.
     It is a great challenge to ensure the countersink depth of robot drilling due to the deformation and vibration of the workppiece during the drilling process. The fourth chapter presents the feeding shafif's full closed loop control system, based on the pressure foot's real-time position compensation of the end effector. The displacement of the pressure foot is equal to the deformation of the workppiece during the drilling process and added to the countersink depth on real time. A lowpass filter is designed to restrain the interference to position control caused by pressure foot's high frequency vibration. Thereby ensure the countersink depth and achieve high hole quality. At last, the implementation process of the control system in MechaWare is introduced.
     In order to prove the feasibility of the end effector's control system and check the control effect of the countersink depth, couples of experiments are set up in the fifth chapter in allusion to different drilling, surface pressure force and different specification of cut tools. According to the analysis of experimental results, the end effector's feeding system with real-time position compensation of the pressure foot can make the hole quality very accurate, with the countersink depth variation at 0.02 mm in the worst case. Compared to hand-drilling, the roundness, roughness and drilling efficiency of the hole has been greatly improved.
     The research work is summarized and the further studies are prospeted in the sixth chapter.
引文
[1]A.JI.阿比波夫.飞机制造工艺[M].西安:西北工业大学出版社,1986.
    [2]邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统,2007,13(7):1367-1374.
    [3]王云渤,张关康,冯宗律.飞机装配工艺学[M].北京:国防工业出版社,1990.
    [4]范玉青.现代飞机制造技术[M].北京:北京航空航天大学出版社,2001.
    [5]刘善国.先进飞机装配技术及其发展[J].航空制造技术,2006,10:38-41.
    [6]肖庆东,王仲奇,马强,孟俊涛.大型飞机数字化装配技术研究[J].中国制造信息化,2007,36(3):26-29.
    [7]许国康.大型飞机自动化装配技术[J].航空学报,2008,3(29):734-740.
    [8]B.П.格里高格里高利耶夫.飞机和直升机部件铆接装配[M].北京:国防工业出版社,1988.
    [9]许国康.自动钻铆技术及其在数字化装配中的应用[J].航空制造技术,2005,6:45-49.
    [10]费军.自动钻铆技术发展现状与应用分析[J].航空制造技术,2005,6:42-44.
    [11]楼阿莉.国内外自动钻铆技术的发展现状及应用[J].航空制造技术,2005,6:50-52.
    [12]李少波,陈翔鹏.自动钻铆技术的应用和无头铆钉安装[J].航空制造技术,2007,9:51-52.
    [13]Scott Hogan, Ian Moore, John Hartmann, et al. Automated wing drilling system for the A380[J]. Society of Automotive Engineers,2003,1:2940.
    [14]Benjamen Hempstead, Brent Thayer, Stephen Williams. Composite automatic wing drilling equipment[J]. Society of Automotive Engineers,2006,1:3162.
    [15]邓锋.MPAC自动钻铆机[J].航空制造技术,2010,6:26-29.
    [16]刘宇平,杨宏毅.打造航空工业自动钻铆先锋[J].航空制造技术,2006, 12:60-61.
    [17]周自敏.BA96自动钻铆机基本原理探讨及研究[J].航空制造技术,2010,22:132-133.
    [18]费军.自动钻铆技术在波音737尾段项目中的应用[J].航空制造技术,2007,9: 85-89.
    [19]邹方.飞机装配迎来机器人时代[J].航空制造技术,2009,24:34-37.
    [20]John J. Craig. Introduction to robotics mechanics and control[M]. Beijing:China Machine Press,2006.
    [21]熊有伦,丁汉,刘思沧.机器人学[M].北京:机械工业出版社,1991.
    [22]毕树生,梁杰,战强.机器人技术在航空工业中的应用[J].航空制造技术,2009,4:34-39.
    [23]Russell DeVlieg. Expanding the use of robotics in airframe assembly via accurate robot technology [J]. Society of Automotive Engineers,2010-01-1846.
    [24]Nirosh Jayaweera, Robotic assembly of aero-engine components[D]. Nottingham, NG7 2RD, UK:University of Nottingham,2010.
    [25]Russell DeVlieg. ONCE(One-sided cell end effector) robotic drilling system[J]. Society of Automation Engineers,2002-01-2626.
    [26]Tomas Olsson, MathiasHaage, HenrikKihlman, et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback[J]. Robotics and Computer-Intergrated Manufacturing,2010,26:24-38.
    [27]Jie Liang, Shusheng Bi. Design and experimental study of an end effector for robotic drilling[J]. International Journal of Advanced Manufacturing Technology, 2010,50:399-407.
    [28]王云渤.飞机装配工艺学[M].北京:国防工业出版社,1984.
    [29]KUKA公司Production Specification-360.2004.
    [30]黄宇.激光跟踪仪在飞机数字化制造过程中的应用[J].航空制造激技术,2011,6:32-37
    [31]董景新,赵长德,熊沈蜀,郭美凤.控制工程基础[M].北京:清华大学出版社,2003.
    [32]Lin S Y, Ho C Y, Tzou Y Y. Distributed motion control using real-time network communication techniques[C]. Beijing:IEEE, IPEMC,2000:15-18.
    [33]王利军,孙鹤旭,雷兆明,王炜.运动控制网络的研究现状及发展趋势[J].控制工程,2006,4(13):289-293.
    [34]王利军,孙鹤旭,雷兆明,王炜.基于SynqNet的网络化控制器研究[J].制造技术与机床,2006,2:40-43.
    [35]Danaher Motion. SynqNet运动控制网络.新自动化,2005,4.
    [36]Danaher Motion. ZMP SynqNet Hardware Quick Start Guide.
    [37]Danaher Motion. AKM系列伺服电动机选型指南.
    [38]Danaher Motion S200系列高性能伺服驱动器选型指南.
    [39]Corley M J, Lorenz R D. Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds[C]. IEEE Trans, Ind Appl,1998,4(34):784-789.
    [40]Matsui N. Sensorless PM Brushless DC Motor Drive[C]. IEEE Trans, Ind Elec, 1996,2(43):300-308.
    [41]张尚才.控制工程基础[M].杭州:浙江大学出版社,1991.
    [42]仇翔辰,俞立承,南余荣.永磁同步直线电机控制策略综述[J].微特电机,2005,10:39-43.
    [43]仇国庆,罗宣林,王平.等PMSM伺服系统的PID控制器设计及仿真[J].重庆大学学报,2008,3(31):259-262.
    [44]刘金琨.先进PID控制Matlab仿真[M].北京:电子工业出版社,2004.
    [45]秦忆.现代交流伺服系统[M].武昌:华中理工大学出版社,1995.
    [46]张波,李忠,毛宗源.PWM逆变器供电的同步电机矢量控制电流环的研究和设计[J].控制理论与应用,1999,16(5):664-668.
    [47]王新平,李淑英,黄新栋.永磁同步电机伺服系统的设计与仿真[J].科学技术与工程,2009,9(11):2907-2911.
    [48]施丽婷,黄筱调,杨勇.数控交流伺服系统三环整定及应用[J].南京工业大学学报,2006,28(4):36-40.
    [49]陈国锋.基于直线电机驱动的定位器控制系统设计及应用研究[D].杭州:浙江大学,2010.
    [50]黄席椿,高顺泉.滤波器综合法设计原理[M].北京:人民邮电出版社,1977.
    [51]卢文祥,杜润生.机械工程·信息·信号分析[M].武汉:华中科技大学出版社,1999.
    [52]WILLIAM A, TAYLOR F. Electronic filter design handbook[M]. Beijing: Science Press,2006.
    [53]EILLIS G. Control system design guide[M]. Beijing:Publishing House of Electronics Industry,2004.
    [54]Motion Engineer. Technical Support.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700