可变喷射范围的喷药装置的仿真与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药是指在农业生产中用于防治农作物病虫害、消除杂草的各种药剂的统称。从大量使用农药来防治病虫草害至今的几十年里,农药的使用对人类和社会的贡献是全世界人们都有目共睹的。在农业生产中,有效地使用农药不仅可以提高粮食产量,而且可以减轻人们的劳动强度:在非农生产中,农药也曾发挥了很大的作用。但是由于农药的使用存在较多的问题,使得大量的农药流失到非靶标环境中,这样不仅浪费了农药,还造成了严重的环境污染。解决这一问题的一条技术出路便是在精准施药技术思想指导下的施药机械的革新、改造。
     基于此思想,本文结合重庆市科技攻关项目“基于太阳能集成的灌溉低能耗远程控制系统研究”,研制了一种可变喷射范围的喷药装置。该喷药装置由步进电机带动,通过调节涡流室深度,改变喷雾角大小,实现根据植株外形定靶定形精准喷药。
     喷药装置的设计思路来源于可调式旋水芯喷嘴,因此本文首先从理论上分析了影响喷嘴喷雾角大小的因素:理想情况下,喷雾角只与喷嘴的结构有关。接着,本文利用计算流体动力学(CFD)软件FLUENT仿真模拟流体在喷嘴内的流动,研究喷雾角与喷嘴结构参数的关系,优化喷嘴结构,研制喷药装置,并通过仿真得到了喷药装置涡流室深度与喷雾角间的函数关系:L=f(θ),为后期喷药装置的控制提供了依据。最后,通过自制实验测试平台验证了喷药装置可变喷射范围的功能。
     此外,本文还详细介绍了利用FLUENT软件对喷嘴内流场进行数值模拟研究的过程与方法以及喷药装置的结构设计过程。
     实验结果表明:本文研制的定靶定形喷药装置能够在一定条件实现喷射范围的变化。
Pesticide is a general designation of the various medicaments which are used to control insect and to eliminate weeds. From the large use of pesticide to control pest to today ,the contribution of the use of pesticide for human and social is known all over the world. In agriculture production, the effective use of pesticide not only increases grain production but also reduces the labor intensity; in the non-agricultural production, pesticide has played a significant role. There are many problems in pesticide applications. It makes large quantities of pesticide is lost into non-target environment. This not only wastes pesticide, but also pollutes environment. To solve these problems is to reform and reconstruct spraying facilities based on precision pesticide application techniques.
     The variable spraying-area of the spraying device is fabricated based on the above principle and under the Chongqing key Scientific and Technological projects: Research of Low-energy of Irrigation emote Control System based on solar energy. This device is driven by the stepper motor, and achieves precision-area and target spraying by adjusting the depth of swirl chamber to change the spray angle according to the scope of plant
     The idea for designing the spraying device comes from the adjustable nozzle. So that the factors of spraying angle are analyzed theoretically firstly in this paper: The factors are the structure of the nozzle under ideal circumstances. Secondly, which a numerical simulationis carried out for the flow in nozzle by FLUENT soft is to research the relation of spraying angle and the structure of the nozzle, to optimize the structure of the nozzle, to fabricatespraying device, and to find the functional relation of the depth of swirl chamber and the s praying angle to control the spraying device : L = f(θ) .Finally, variable spraying-area of thefunction of the spraying device is testified through the self-made experiment
     In addition, the process and the method of simulation by FLUENT software and the design process of the spraying device are introduced in detail.
     The experimental results show that the spraying device changes the spraying area in certain range.
引文
[1]刘金铜.精准农业概论[M].北京:气象出版社,2002:32.
    [2]D.K.Giles,D.Downey.Quality Control Verification and Mapping for Chemical Application [J].Precision Agriculture,2003(3):103-124.
    [3]Blackmore S.Precision farming:an introduction outlook on Agriculture[J]CABI,1994,23(4):275-280.
    [4]雷雨,袁志华.试论精准农业及其技术体系[J].河南农业科学,2007(7):21-24.
    [5]杨建才.精准农业与温室生产[J].温室园艺,2007(1):17-18.
    [6]E.Molto,B.Martin,A.Gutierrez.Design and Testing of an Automatic Machine for Spraying at a Constant Distance from the Tree Canopy[J].Agriculture Engineering Research,2000,77(4):379-384.
    [7]E.Molto,B.Martin,A.Gutierrez.Pesticide Loss Reduction by Automatic Adaptation of Spraying on Globular Trees[J].Agriculture Engineering Research,2001,78(1):35-41.
    [8]William E Hart,Larry D Gaultney.A direct injection system for dry flow able pesticides.MI:ASAE,1989,Paper No.891610.
    [9]马辉.我国应大力发展农药精准施药技术[J].农药,2002(41):6.
    [10]史岩,祁力钧,傅泽田等.压力式变量喷雾系统建模与仿真[J].农业工程学报,2004,20(5):118-121.
    [11]Unavut J K,Sschueller J K,Mason P A C.Continuous control of a sprayer pinch valve[J].Transaction Trans of the ASAE,2000,43(4):829-837.
    [12]邱白晶,李会芳,吴春笃等.变量喷雾装备及关键技术的探讨[J].江苏大学学报,2004,25(2):87-101.
    [13]何雄奎,严苛荣,储金宇等.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78-80.
    [14]陈勇,郑加强.精确施药可变量喷雾控制系统的研究[J].农业工程学报,2005,21(5):69-72.
    [15]邹明强.农药与农药污染[J].大学化学,2004,19(6):1-8.
    [16]袁会珠,齐淑华,杨代斌.21世纪的农药使用技术[EB/OL].http://www.hzppsf.cn/html/main/zbkjView/2756.html.
    [17]北京网站建设公司.农药毒性与环境的可持续发展[EB/OL]http://www.wudinet.com/wudinet /ati.asp?id=500020239.
    [18]逯忠斌,王春林.农资经营必读[M].北京:化学工业出版社,2004:23-45.
    [19]曹建明.喷雾学[M].北京:机械工业出版社,2005:157-191.
    [20]金志铨.车用柴油机修理大全[M].杭州:浙江科学出版社,1997:203-206.
    [21]北京农业工程大学.农业机械学(上册)[M].北京:中国农业出版社,1999:323-329.
    [22]桑正中.农业机械学(上册)[M].北京:机械工业出版社,1988:229-233.
    [23]郑加强,冼福生.风动转笼式静电喷雾技术的研究[J].农业机械学报,1990(1):55-61.
    [24]艾育华.喷嘴与蒸汽喷射器研究[D]硕士学位论文.北京:华北电力大学,2001:26-30.
    [25]黄翔,冯厚敏.PX-Ⅰ型空调用离心式喷嘴的研制[J].西安纺织工学院学报,1994,8(2):134-139.
    [26]Dombrowski and W.R.Johns.The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets[J].Chemical Engineering science,1963(18):203-214.
    [27]Nathan GJ.An Aaxisymmetric 'fluidic' Nozzle to Generate Jet Precession[J].Fluid Mechan -ics,1998,370:347-380.
    [28]屠大燕.流体力学与流体机械[M].北京:中国建筑工业出版社,2000:55-182.
    [29]王之任.离心式喷嘴工况理论分析[J].推进技术,1996,17(5):1-8.
    [30]H.K,Versteeg and W.Malalasekera,An Introduction to Computational Fluid Dynamics the Finite Volume Method[M].Longman Group Ltd,1995:1-8.
    [31]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004:1-4.
    [32]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报,2003,24(5):888-890.
    [33]N K R.Studies on Liquid Sheet Disintegration in Air-blast Atomization[D].Ph.D.Thesis.Granfield Institute of Technology.1997.
    [34]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:46-48.
    [35]Li Y,Liu ZY and An YR.A brief introduction to Fluent--a general purpose CFD code.[J].Journal of Hydrodynamics,2001,16(2):254-258.
    [36]S M Jeng,M A Jog,M A Benjamin.Computational and Experimental study of Liquid Sheet Emanating from Simplex Fuel Nozzle[J].AIAA Journal,1998,36(2):201-207.
    [37]A T Sakman,M A Jog,S M Jeng.Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance[J].AIAA Journal,2000,38(7):1214-1218.
    [38]武新,张永胜.Origin在曲线拟合中的应用[J].计算机工程与应用,2005.17:206-208.
    [39]郝红伟,施光凯.Origin6.0实例教程[M].北京:中国电力出版社,2002:1-3.
    [40]李发尧.高速直线运动单元设计及性能评价实验技术研究[D].硕士学位论文.重庆:重庆大学,2006:10-23.
    [41]周凯.步进驱动系统的高精度闭环控制[J].电机与控制学报,1998,2(1):13-17.
    [42]邱宣怀,郭可谦,吴宗泽.机械设计[M].北京:高等教育出版社,1997:118-122.
    [43]吴宗泽,罗圣国.机械设计课程设计手册[M].北京:高等教育出版社,1992:33-37.
    [44]数字化手册编委会.机械设计手册软件版[EB/OL]http://minfre.com.
    [45]周立功,张华.深入浅出ARM7[M].北京:北京航空航天大学出版社,2005:1-5.
    [46]上海聪睿科技电子科技有限公司.位移传感器/变送器系列[EB/OL].http://www.shcrkj.com /product.asp?BigClassName=位移传感器/变送器系列.
    [47]尤波,王鹏飞.基于L287/298芯片的混合式步进电机驱动器的研制[J].黑龙江机械工程学会年会论文集,2002:156-163.
    [48]柳震乾.几种步进电机驱动电路[J].机械与电子.1989(3):28-29.
    [49]刘宝廷,程树康.步进电动及其驱动控制系统[M]哈尔滨:哈尔滨工业大学出版社,1997:10-15.
    [50]乐创自动化技术有限公司.步进电机及驱动器[EB/OL].http://www.step-servo.com.
    [51]Fluent Inc.Fluent6.5 User's Guide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700