可重构核仪器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构技术的发展和核电子学应用范围的扩展使得核仪器站在了新一轮技术更新和升级的浪潮之上。传统核仪器的实现手段和方法已在很多方面表现出与当前实验需求的不相符。同时,可重构技术的出现促使核仪器领域发生深刻而重大的技术变革。曾为各类核与粒子物理实验立下汗马功劳的传统技术路线将要结束它的历史使命,取而代之的将是以可重构技术为基础,数字算法为核心的全新可重构核仪器系统。在这历史的紧要关头,对可重构核仪器的研究将为仪器开发铺就一条全新的技术道路,引导核探测技术走向更美好的未来。
     可重构技术是近年来兴起的新的技术路径,在众多领域有着广泛的应用,例如,雷达,天线,计算机系统和结构等。在核与粒子物理实验电子学领域还未见相关报道。随着物理实验研究的不断深入,研究范围的不断扩展,应用广泛的,要求繁多的测量需求不断被提出来。核电子学仪器陷入不停的开发,改版,升级的过程中,耗费大量的人力,物力和财力。为解决这一问题,针对实验室核与粒子物理实验的特点,本论文提出一种可重构的核仪器系统结构,利用可重构的方式,把机械的硬件插件转化为数字化插件,在一个精心设计的平台上通过多种的功能算法,实现不同的测量目标,同时,离线算法被用来对硬件性能的不足进行修正和弥补,通过各个部分的组合,以达到系统的最优化。通过可重构核仪器,可以方便地,快速地,经济地建立新的实验仪器系统,从而使实验过程更为便捷。
     本工作分析了物理实验的特点,从内容、规模和实验方式等方面总结得出物理实验对电子学仪器的要求,以此作为系统设计的依据。详细介绍了总体设计,硬件设计,实时功能算法,离线算法,软件设计五个部分,分别详述了设计的考虑和具体实现。对可重构核仪器系统硬件的基本性能进行了测量,给出了数字波形采样的带宽,有效位,时间测量精度等指标。最后叙述了三个不同类型的实验应用,以22Na能谱测量,G-M计数管坪区测量和非简并纠缠交换实验的时间测控来说明可重构核仪器系统可以便捷地完成不同的测量任务,检验了可重构核仪器系统的实用性。
     本论文的创新之处如下:
     (1)将可重构的概念引入核仪器领域,提出开发可重构核仪器的思想。可重构本来是为平衡电子计算的灵活性和高效性而发展出来的概念,在本论文的工作中借鉴可重构的思想,提出发展兼有软件的灵活和硬件的效率的可重构核仪器。
     (2)探索性地开发可重构核仪器,完成了框架设计和具体实现。将可重构核仪器应用于不同的实例中。核仪器的重构是针对不同的功能和性能要求而进行的,重构的部分包括前端,数字化的方式,逻辑计算,和修正方式等等。核仪器的重构是一个系统化,一体化的过程,各部分相互配合,协调以达到预期的目标。本论文建立了这样一套系统,并通过实例说明快速的重构可以容易地构建完全不相同的实验系统,实现不同类型的实验。
     (3)可重构的核仪器系统通过快速重构的方式,完成高精度的时间测量,非线性计算,反馈控制等功能,实现了非简并纠缠光子交换的实验。在实验过程中,高精度(~33p)的时间测量和快速准确的输出反馈控制是实验成功的关键,通过重构同时满足这两个要求,根据实验需求不断地调整参数,最终实现了世界上首次非简并纠缠光子交换的实验。
Nuclear instruments are now facing a new wave of technological updates which is brought by expansion of the range of applications and the development of reconfigurable technology. The methods of the traditional nuclear instruments cannot match the experimental requirements in many ways. Meanwhile, the current reconfigurable technology urges the significant technological change in the field of nuclear instruments. A novel reconfigurable nuclear instrument system which is based on reconfigurable technology and digital algorithms will take place the traditional instrument. In this critical moment in history, the study on the reconfigurable nuclear instrument will pave a new way to nuclear detection technology.
     The reconfigurable technology rising in recent years has been widely applied in many fields, such as radar, antenna, and computer structures. But there are not any reports about reconfigurable technology in the field of nuclear instruments.
     Deverse requirments come out due to the deepening of the study of physics experiments and the continuous expansion of application range. The nuclear instrument fell into a non-stop development and revision, that wastes a lot of manpower, material and financial resources. To solve this problem, based on the characteristics of physics experiments in the laboratory, this work presented a structure of reconfigurable nuclear instrument system using reconfigurable In a well-designed platform, a variety of algorithms achieve the different types of measurements. And at the same time, the off-line algorithms are used to correct and compensate the weakness of hardware performance. Reconfigurable nuclear instrument can be easily, quickly and cost-effectively rebuilt as a new experimental apparatus, making the experiments goes smoothly.
     This work analyzes the characteristics of the physical experiments. From the content, scale and methods, we conclude the requirements as the basis for the design of the system. Details of the overall design, hardware design, real-time algorithm, off-line algorithm, and software design are discussed respectively. Some elementary measurement has been done include the bandwidth, ENOB, precison of TDC and the nonlinearity of DAC. Three different types of experimental applications are described. They are spectrum measurement of22Na, GM tube plateau measurement and feedback control in non-degenerate entanglement swapping experiment. These experiment illustrate the reconfigurable nuclear instrument system could take different experimental tasks conveniently.
     The innovation of this thesis is as follows:
     (1) This work brings the concept of reconfigurable into the field of nuclear instruments and creates the idea of reconfigurable nuclear instrument. Reconfigurable concept aimed to balanced flexibility and efficiency of computing technology. Nuclear nuclear instrument uses the experience of reconfigurable computing, which make the nuclear instrument have the advantage of both efficiency and flexibility
     (2) This work developed a reconfigurable nuclear instrument, completed three different experiments. The functional change of the nuclear instruments requires the reconfigure of the front-end, digital, logic calculation, and off-line alogrithms. The reconfigure of nuclear instruments is a systematic, integrated process. Every part cooperates together in order to achieve the desired objectives.
     (3) Reconfigrable nuclear instrument help achive the non-degenerate entangled photon exchange experiment by reconfiguring the systems completing high-precision time measurement, nonlinear calculations, and feedback control. During the experiment, high-precision time measurement (~33ps), fast and accurate feedback control output is the key to the success of the experiment. Reconfigrable nuclear instrument satisfies the requirements at the same time. So, under the support of reconfigure, the non-degenerate entangled photon exchange experiment has been complished firstly.
引文
[1]马明建.2005.数据采集与处理技术[M].西安:西安交通大学出版社
    [2]席德明.1982.常用核电子技术[M].北京:科学出版社.
    [3]王进红.2012.基于开关电容矩阵的波形数字化技术研究[D]:[博士].合肥:中国科学技术大学,1-2.
    [4]王经瑾范天民钱永庚.1983.核电子学[M].北京:原子能出版社
    [5]谢一刚,陈昌,王曼等.2003.粒子探测器与数据获取[M].北京:科学出版社
    [6]Ponting P, Verweij H.1991. Instrumentation buses for high energy physics, past, present and future [J]. Nuclear Science, IEEE Transactions on,38(2): 322-324.
    [7]Larsen R S.2010. PICMG xTCA standards extensions for physics:New developments and future plans [C]//Real Time Conference (RT),17th IEEE-NPSS. IEEE,2010:1-7.
    [8]Specification (Data) Sheets of Gamma Analyst Integrated Gamma Spectrometer. CANBERRA Industries Inc. http://www.canberra.com
    [9]Specification (Data) Sheets of TRUMP-ISA/PCI. AMETEK, Inc. http://www. ortec-online. com/
    [10]Specification (Data) Sheets of EASY-MCA. AMETEK, Inc. http://www.ortec-online.com/
    [11]王峰.2007.部分重构计算系统的关键技术研究[D]:[博士].合肥:中国科学技术大学
    [12]Underwood K, "FPGAs vs. CPUs:trends in peak floating-point performance," Proc. Int. Symp. on FPGAs (ACM Press,2004).
    [13]T. Todman et al., "Reconfigurable computing:Architectures and design methods," Proc. Inst. Elect. Eng.-Comput. Digit. Tech., vol.152, no.2, pp. 193-207, Mar.2005.
    [14]Estrin G, Bussell B, Turn R, et al.1963. Parallel processing in a restructurable computer system [J]. Electronic Computers, IEEE Transactions on,1963 (6):747-755.
    [15]DeHon A, Wawrzynek J.1999. Reconfigurable computing:what, why, and implications for design automation[C]//Proceedings of the 36th annual ACM/IEEE Design Automation Conference. ACM,1999:610-615.
    [16]覃祥菊,朱明程,张太镒,等.2004.FPGA动态可重构技术原理及实现方法分析[J].电子器件,27(2):277-282.
    [17]魏刚.2006.基于FPGA的可重构系统设计[D]:[硕士].北京:北京化工大学.
    [18]Datasheet of Virtex.Xilinx Inc.http://www.xilinx.com/
    [19]安虹.2006.用可重构计算技术实现高效能通用微处理芯片[J].信息技术快报,4(6):1-23.
    [20]许文曜.2008.基于新型FPGA的自可重构系统设计研究[D]:[博士].杭州:浙江大学.
    [21]周盛雨.2007.基于FPGA的动态部分重构系统实现[D]:[博士].北京:中国科学院.
    [22]朱凯科.2006.FPGA动态可重构设计方法研究[D]:[硕士].杭州:浙江大学
    [23]王诚.2005.Altera FPGA/CPLD设计:基础篇[M].北京:人民邮电出版社.
    [24]梁婵君.2010.MEMS可重构天线的研究与设计[D]:[硕士].杭州:杭州电子科技大学.
    [25]李林.2011.基于RF-MEMS开关的可重构微带贴片天线分析[D]:[硕士].西安:西安电子科技大学.
    [26]刘贝.2012.微带电调可重构滤波器的研究与设计[D]:[硕士].西安:西安电子科技大学.
    [27]尹洪涛,黄灿杰,付平,等.2007.LXI标准概述[J].国外电子测量技术,26(5):15-18.
    [28]郭恩全,苗胜.2009.测试总线发展的回顾与展望[J].电子测量与仪器学报,23(8):1-6.
    [29]徐克尊,1981.物理.粒子探测技术[M].上海:上海科学技术出版社.
    [30]汪晓莲.2009.粒子探测技术[M].合肥:中国科学技术大学出版社.
    [31]虞孝麒.1999.核电子学方法[M].合肥:中国科学技术大学出版社.
    [32]张软玉.2006.数字化核能谱获取系统的研究[D]:[博士].成都:四川大学.
    [33]Shubin Liu, Changqing Feng, Qi An et. al.2010. BES III Time-of-Flight Readout System [J], IEEE Transactions on Nuclear Science,57(2).
    [34]金革,江晓,李锋,等.2007.大面积中子探测器阵列研制[J].核电子学与探测技术,27(4):617-620.
    [35]Massoumi G R, Schultz P J, Lennard W N, et al.1988. Positron emission yields for encapsulated 22Na sources [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 30(4):592-597.
    [36]刘刚.2008.CsI晶体粒子鉴别性能研究[D]:[硕士].兰州:兰州大学.
    [37]Collaboration A P.1998. The ATLAS Pixel Detector[J]. Technical Design Report,(CERN/LHCC,98-13).
    [38]Cherry S R, Sorenson J A, Phelps M E.2012. Physics in nuclear medicine[M]. Saunders.
    [39]Oed A.1988. Position-sensitive detector with microstrip anode for electron multiplication with gases [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,263(2):351-359.
    [40]曹平.2007.勘探地震数据获取系统设计[D]:[博士].合肥:中国科学技术大学.
    [41]杨长友,张炳云,过雅南,等.1996.北京谱仪(BES Ⅱ型)的监测系统[J].第8届全国核电子学与核探测技术学术年会论文集(一).
    [42]Wolf T, Ramaswamy R, Bunga S, et al.2006. An architecture for distributed real-time passive network measurement[C]//Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS 2006. 14th IEEE International Symposium on. IEEE,2006:335-344.
    [43]Bucci G, Landi C.2003. A distributed measurement architecture for industrial applications [J]. Instrumentation and Measurement, IEEE Transactions on,52(1):165-174.
    [44]Dallet D, Da Silva J M.2005. Dynamic characterisation of analogue-to-digital converters [M]. Springer.
    [45]郑君里,应启珩,杨为理.1981.信号与系统(上册)[M].北京:高等教育出版社.
    [46]Sallen R P, Key E L.1955. A practical method of designing RC active filters[J]. Circuit Theory, IRE Transactions on,2(1):74-85.
    [47]AD8045 Datasheet, Analog Devices, http://www.analog.com
    [48]ADCMP582 Datasheet, Analog Devices, http://www.analog.com
    [49]MC100EPT26 Datasheet, Analog Devices, http://www.analog.com
    [50]李素芬,李刚,孙景发.2002.模数转换技术及其发展[J].电子技术应用,28(4):72-75.
    [51]ADS6149 Datasheet, Texas Instruments, http://www.ti.com
    [52]张延,黄佩诚.2006.高精度时间间隔测量技术与方法[J].天文学进展,24(1):1-15.
    [53]Song J, An Q, Liu S.2006. A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays [J]. Nuclear Science, IEEE Transactions on,53(1):236-241.
    [54]Wu J.2010. Several key issues on implementing delay line based TDCs using FPGAs [J]. Nuclear Science, IEEE Transactions on,57(3):1543-1548.
    [55]Cyclone Datasheet, Altera Corporation, http://www.altera.com
    [56]扈啸,张连超.2002,USB2.0控制器CY7C68013特点与应用[J].单片机与嵌入式系统应用,7:358-361.
    [57]W5300 Datasheet, WIZnet Co., Inc., http://www.wiznet.co.kr
    [58]AD5629 Datasheet, Analog Devices, http://www.analog.com
    [59]AD9755 Datasheet, Analog Devices, http://www.analog.com
    [60]张韵华,奚梅成,陈长松,等.2000.数值计算方法和算法[M].科学出版社.
    [61]Faisal M, Schiffer R T, Haling M J, et al.2013. A Data Processing System for Real-Time Pulse Processing and Timing Enhancement for Nuclear Particle Detection Systems [J].
    [62]Sang Z,Li F, Yao Y, et al.2012. A Non-linearity Correction Method for Fast Digital Multi-Channel Analyzers [J]. Physics Procedia,37:1594-1599.
    [63]刘卫静,李斌成,韩艳玲,等.2012.基于光谱采样率的反卷积算法分析[J].激光与光电子学进展,49(4):150-155.
    [64]Bardelli L, Poggi G, Bini M, et al.2004. Time measurements by means of digital sampling techniques:a study case of 100ps FWHM time resolution with a 100MSample/s,12bit digitizer [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,521(2):480-492.
    [65]郭世泽,金鑫,孙圣和.1993.数字存储示波器响应特性及有效位数的测量[J].电子测量与仪器学报,4:005.
    [66]IEEE standard for digitizing waveform recorders, IEEE Std 1057-2007, Revision of IEEE 1057-1994.
    [67]Agilent 81150A User Manual, Agilent Technologies Inc. http://www.agilent.com
    [68]Agilent U1051A User Manual, Agilent Technologies Inc. http://www.agilent.com
    [69]Sang Z, Jiang X, Li F, et al.2012. Real-time measurement and adjustment of random phase in frequency-nondegenerate entanglement swapping experiment[C]//Real Time Conference (RT), the 18th IEEE-NPSS. IEEE, 2012:1-6.
    [70]张强.2006.光子纠缠操纵及其应用[D]:[博士].合肥:中国科学技术大学中国科学技术大学.
    [71]J.-W. Pan et al.,1998. Experimental Entanglement Swapping:Entangling Photons That Never Interacted,Phys. Rev. Lett.80(3891)
    [72]T.-M. Zhao et al. to be published.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700