集成化虚拟装配理论、方法及其在飞机总体布置中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于飞机构造复杂,零部件和连接件数量大,飞机研制中装配和安装工作的劳动量占飞机制造总劳动量的50%~60%。可见,良好的装配设计和装配性能,对保证飞机质量和可靠性,降低飞机成本和提高市场竞争力具有十分重要的意义。虚拟装配技术的出现,为解决飞机装配问题提供了一种强有力的手段。虚拟装配技术可以应用在飞机研制的许多阶段。在方案阶段,利用虚拟装配技术实现飞机总体布置,生成总体布置图;工程研制阶段,对于更加详细的零部件模型,应用虚拟装配技术得到更为真实的装配方案,为飞机设计提供依据;在生产定型阶段,生成符合生产实际的装配工艺及装配仿真动画等指导生产任务。
     大部分建立虚拟装配系统的方案为:在CAD中建模,再将模型导入虚拟装配系统,CAD系统与虚拟装配系统相互独立。这是一种信息单向传递方案,CAD系统中的设计工作可以传输到虚拟装配系统中,而虚拟装配设计结果难以及时反馈到其它设计活动中,虚拟装配系统容易成为信息孤岛。目前的虚拟装配技术正朝着集成化方向发展:一种集成方案为:直接在系统中通过三维操作和语音命令创建、修改、操纵和观察基于约束的模型,再进行虚拟装配,无须与其它CAD系统进行数据传输,这种方案使得CATIA、UG和ProE等传统CAD模型难以应用;另一种为:建立集成于CAD系统的虚拟装配系统,即“在CAD中增加VR功能”,直接在CAD系统上搭建虚拟装配环境,可直接继承和利用CAD成熟稳定的相关算法,但可扩展性不好,相关理论、技术也不够成熟。
     为避免虚拟装配系统成为信息孤岛,基于“在CAD中增加VR功能”技术路线,本文提出了一种集成化的虚拟装配方案:
     (1)建立了一个集成于CAD系统的虚拟现实环境,研究并实现了立体显示,数据手套的集成、虚拟环境中的交互技术和碰撞检测算法等内容。
     (2)提出了信息双向传递的VA-CADPIM模型,克服了传统虚拟装配系统和CAD系统之间难以双向交换信息的不足,能有效提高设计者进行产品装配设计与分析的效率。
     (3)建立了基于装配任务的虚拟装配工艺信息模型,存储虚拟装配操作过程中的工艺信息,能够有效地表达以装配工序为基础的装配过程,通过任务对象的交叉安装解决工序交叉和安装布置调整问题。
     (4)提出了装配约束识别方法,并给出了基于运动自由度分析的虚拟装配精确定位求解方法。
     (5)为满足系统功能要求,并以集成化、可扩展性,易移植性为目标建立了集成化的虚拟装配系统体系结构。
     (6)基于CATIA V5R14及其二次开发环境CAA自主开发了集成化虚拟装配原型系统IVADS,该系统能够完成虚拟场景浏览、虚拟装配规划和可装配性评价等功能,并给出了某飞机前机身电子舱的虚拟装配总体布置应用实例,验证了本文理论与方法的正确性与有效性。
In product design procedure, assembly design is the phase of the largest workload and the most time-consuming. During airplane design and manufacture phases, the workload of assembly and installation is the 50~60 percent of the total because of the complexity of the airplane structure and the large quantity of components and connectors. It is obvious that assembly design and assembly performance is significant for assuring airplane quality and reliability, decreasing the cost and enhancing the market competitiveness. Virtual assembly technology becomes a powerful tool for solving airplane assembly problem. Virtual Assembly technology can be applied in many phases of airplane design and manufacture: using virtual assembly technology, general arrangement is carry out in conceptual and preliminary design phases, assembly scheme is obtained in detail design phase, and assembly process of according with actual manufacture is built as a guidance.
     The main solution for virtual assembly is that, the relevant CAD models are first created using traditional CAD software, such as ProE, UGⅡor CATIA, the constructed CAD models are then converted into polygonal models and are imported into a VR environment. Adopting this solution, CAD system and virtual assembly system are isolated with each other, informations transfer uni-directionally, the design result can be transfered from CAD to virtual assembly, but not be feed back in time, virtual assembly becomes information silo. Currently, Integration for virtual assembly is the developing trend. A solution is that, designers are able to create both the solid model of a part and the assembly model of a product in 3D space by direct 3D manipulations and voice commands intuitively and easily, to perform assembly planning interactively in 3D space, and to simulate and check assembly process. Adopting this solution, virtual assembly system does not need transer information with other CAD, but also becomes isolated with other CAD. Another solution is that virtual assembly is built in CAD system, many algorithms of CAD can be directly used by this solution, but extensibility is not good, and relative theory, method is not mature.
     To tackle the information silo in virtual assembly system, based on the strategy of Integrate VR into CAD, an integrated virtual assembly solution was proposed in this paper:
     1. A virtual environment integrated into CAD was built, including stereo display, integrating data glove with CAD, interaction technolody in virtual environment, and collision detection algorithm so on.
     2. To overcome the limitation of information exchange between traditional virtual assembly system and CAD, a VA-CADPIM model of bi-directional information transfer was presented, can effectively improve efficiency of product assembly design and analysis.
     3. A virtual assembly process information model based on assembly task was established. A hierarchical assembly process was employed to express the virtual assembly process. The crossing procedure and installation adjustment were realized through the strategy of crossing assembly of task target body and an adjustment approach given herein. The method to cut down the redundant assembly task was proposed.
     4. An assembly constraint recognization method was given, and the exact placement technology of component in virtual assembly environment based freedom analysis was introduced.
     5. To satisfy integrated virtual assembly system function, and to make targets of high integration, good expansibility and portability, a virtual assembly architecture integrated with CAD was built.
     6. Based on CATIA V5R14, its 3rd part development environment and Immersion Virtual Hand SDK, a prototype system instance IVADS was developed, which can finish many functions, such as virtual scene navigation, virtual assembly planning, assemblability evaluation, and a general arrangement application for electron cabin of some airplane forward fuselage was given, accuracy and validity of theory and methods were tested.
引文
[1]姚珺.虚拟装配理论与方法研究[博士学位论文].北京:北京理工大学,2002
    [2] Choi A C K, Chan D S K, Yuen A M F. Application of virtual assembly tools for improving product design. International Journal of Advanced Manufacturing Technology, 2002, 19(5): 377~383
    [3]王云渤,张关康,冯宗律等.飞机装配工艺学.北京:国防工业出版社,1990
    [4]昂海松,余雄庆.飞行器先进设计技术.北京:国防工业出版社,2008
    [5]童秉枢等.现代CAD技术.北京:清华大学出版社,2000
    [6] Ye N, Banerjee P, Banerjee A, et al. A comparative study of assembly planning in traditional and virtual environments. IEEE Transactions on System, Man and Cybernetics - Part C: Application and Reviews, 1999, 29(4): 546~555
    [7]宁汝新,郑轶.虚拟装配技术的研究进展及发展趋势分析.中国机械工程, 2005, 16(15): 1398~1404
    [8] Jayaram S, Connacher H, Lyons K. Virtual assembly using virtual reality techniques. Computer Aided Design, 1997,8(29): 575~584
    [9] Jung B, Hoffhenke M, Wachsmuth I. Virtual assembly with construction kits. Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, 1997
    [10] Song J, Shi F Z. A survey of virtual assembly system. Proceedings of SPIE, 2003, 5444: 337~344
    [11]顾诵芬主编.飞机总体设计.北京:北京航空航天大学出版社,2001:4~6
    [12] Bullinger H J, Richter M. Virtual assembly planning. Human Factors and Ergonomics Manufacturing, 2000, 10(3): 331~341
    [13] Blach R, Landauer J. A highly flexible virtual reality system. Future Generation Computer System, 1998, 14: 167~178
    [14] Jayaram S, Wang Y, Jayaram U. A virtual assembly design environment. //Proceedings of IEEE Virtual Reality, Houston, TX, 1999
    [15] Jayaram S, Jayaram U, Wang Y, et al. VADE: a virtual assembly design environment. IEEE Computer Graphics and Applications, 1999, 19(6): 44~50
    [16] Wang Y, Jayaram U, Jayaram S, et al. Methods and algorithms for constraint– based virtual assembly. Virtual Reality, 2003,6(4): 229~243
    [17] Macatamney L, Corlett E N. RULA: a survey method for the investigation of work– relatedupper limb disorders. Applied Ergonomics, 1993, 24(2): 91~99
    [18] Shaikh I, Kim Y J, Jayaram S, et al. Integration of immersive environment and rula for real– time study of workplace related musculoskeletal disorders in the upper limb. Proceedings of DETC’03 ASME, Chicago, Illinois, 2003
    [19] Jayaram S, Jayaram U, Kim Y J, et al. Industry case studies in the use of immersive virtual assembly. Virtual Reality, 2007, 11(4): 217~228
    [20] Oliver J. IVY: a synthetic environment for interactive assembly planning. http://www.vrac.iastate.edu: 8080/research/visualization/ivy/index.html, 2008-10-20
    [21] VRAC. VEGASⅡ: a virtual environment for general assembly simulationⅡ. http://www.vrac.iastate.edu/~jmvance/ASSEMBLY/Assembly2.html. 2008-10-20
    [22] VRAC. VR Juggler– open source virtual reality tools. http://www.vrjuggler.org/. 2008-10-20
    [23] Boeing. Voxmap pointshell(VPS) software library. http://www.boeing.com/assocproducts/vps/, 2008-10-20
    [24] Srinivasan H, Gadh R. Complexity reduction in geometric selective disassembly using the wave propagation abstraction. Proceedings of IEEE Intermational Conference on Robotics and Automation, Leuven, 1998
    [25] Shyamsundar N, Gadh R. Internet– based collaborative product design with assembly features and virtual design spaces. Computer– Aided Design, 2001, 33(9): 637~651
    [26] Shyamsundar N, Gadh R. Collaborative virtual prototyping of product assemblies over internet. Computer– Aided Design, 2002, 34(10): 755~768
    [27] Banerjee A, Banerjee P. A behavioral scene graph for rule enforcement in interactive virtual assembly sequence planning. Computer in Industry, 2000, 42(2-3): 147~157
    [28] Rajan V N, Sivasubramanian K,Fernandez J E. Accessibility and ergonomic analysis of assembly product and jig designs. International Journal of Industrial Ergonomics, 1999, 23(5-6): 473~487
    [29] Dewar R G, Carpenter I D, Richter J M, et al. Assembly planning in a virtual environment. //Proceedings of the International Conference on Management and Technology, Portland, 1997
    [30] Robinson G, Ritchie J M, Day P N, et al. System design and user evaluation of co-star: an immersive stereoscopic system for cable harness design. Computer-Aided Design, 2007, 39(4): 245~257
    [31] Lim T, Ritchie J M, Corney J R, et al. Assessment of a haptic virtual assembly system that uses physics-based ineractions. IEEE International Symposium on Assembly and Manufacturing, Arbor, 2007
    [32] Gomes A, Zachmann G. Virtual reality as a tool for verification of assembly and maintenance processes. Computer and Graphics, 1999, 23(3): 389~403
    [33] Gomes A, Rix J. Virtual prototyping: the integration of design and virtual reality. CAD Tools and Algorithms for Product Design, Schloss Dagstuhl, 2000
    [34] Jung B, Hoffhenke M, Wachsmuth I. Virtual assembly with construction kits. Proceedings of 1997 ASME Design Engineering Technical Conference, Sacramento, 1997
    [35] Kopp S, Wachsmuth I. Model– based animation of co– verbal gesture. //Proceedings of computer animation, Geneva, Switzerland, 2002
    [36] Jung B. Task– level assembly modeling in virtual environments. Proceedings ICCSA 2003, Montreal, Canada, 2003
    [37] University of Bielefeld, Virtuelle Werkstatt. http://www.techfak.uni-bielefeld.de/ags/wbski/werkstatt/werkstatt_en.html,2009-1-10
    [38] Biermann P, Jung B. Variant design in immersive virtual reality: a markup language for scalable CSG parts. Proceedings AMDO 2004, Palma de Mallorca, 2004
    [39] Latoschik M, Frohlich C. Towards intelligent VR: multi-layered semantic reflection for intelligent virtual environments. GRAPP 2007, Barcelona, 2007
    [40] Frohlich B, Tramberend H, Beers A, et al. Physically-based manipulation on the responsive workbench. Proceedings IEEE Virtual Reality 2000, 2000
    [41] Yuan X B, Yang S X. Virtual assembly with biologically inspired intelligence. IEEE Transactions on Systems, Man, and Cybemetics– Part C: Applications and Reviews, 2003, 33(2): 159~167
    [42] Yuan X B. An interactive approach of assembly planning. IEEE Transaction on System, Man, and Cybemetics– Part A: Systems and Humans, 2002, 32(4): 522~526
    [43] Yuan X B, Lu J N. A vision-based approach of bare-hand interface design in virtual assembly. //Proceedings of the 7th IFIP International Conference on Information Technology for Balanced Automation Systems in Manufacturing and Services, Niagara Falls, 2006
    [44] Chryssolouris G, Mavrikios D, Fragos D, et al, A virtual reality– based experimentation environment for the verification of human– related factors in assembly processes. Robotics and Computer Integrated Manufacturing, 2000, 16(4): 267~276
    [45] Mavrikios D, Pappas M, Kotsonis M, et al. Digital humans for virtual assembly evaluation. 1st International Conference on Digital Human Modeling, Beijing, 2007
    [46] Ma W Y, Zhong Y M, Shiu-Kit T, et al. A hierarchically structured and constraint-based data model for intuitive and precise solid modeling in a virtual reality environment. Computer-AidedDesign, 2004, 36(10): 903~928
    [47] Zhong Y M, Ma W Y, Bijan S. A methodology for solid modeling in a virtual reality environment. Robotics and Computer-Integrated Manufacturing, 2005, 21(6): 528~549
    [48]刘振宇,谭建荣,张树有.面向虚拟装配的产品层次信息表达研究.计算机辅助设计与图形学学报,2001,13(3):223~228
    [49]刘振宇,谭建荣,张树有.虚拟环境中装配设计语义的表达、传递与转化研究.计算机学报,2000,23(11):1208~1214
    [50]刘振宇,谭建荣,张树有.基于语义识别的虚拟装配运动引导研究.软件学报,2002,13(3):382~389
    [51]楼健人,张树有,谭建荣等.虚拟现实环境下产品装配特征信息的提取.机械设计,2002,19(2):1~3
    [52]万华根,高曙明,彭群生. VDVAS:一个集成的虚拟设计与虚拟装配系统.中国图象图形学报,2001,7A(1):27~35
    [53]高瞻,张树有,顾嘉胤等.虚拟现实环境下产品装配定位导航技术研究.中国机械工程,2002,13(6):901~903
    [54]李永立,张树有,刘振宇. VRML环境下基于语义的产品装配设计技术研究.计算机辅助设计与图形学学报,2003,15(2):209~214
    [55]姬舒平,李小俚,马玉林.虚拟环境下的设计质量保证技术.航空工艺技术,1999, 1(1):35~37
    [56]周炜,刘继红.虚拟环境下人工拆卸的实现.华中科技大学学报,2000,28(2):45~47
    [57] Cao P, Liu J, Zhong Y. Dynamic management of assembly constraints for virtual disassembly. ICMA 2002: 307~314
    [58]管强,刘继红,钟毅芳等.虚拟环境下面向装配的设计系统的研究.计算机辅助设计与图形学学报,2001,13(6):515~519
    [59]武殿梁,杨润党,马登哲等.虚拟装配系统及其关键技术.上海交通大学学报,2004,38(9):1539~1543
    [60]庄晓,周雄辉,许文斌等.虚拟环境中的快速产品装配建模.中国机械工程,1999,10(2):185~189
    [61]梁海奇,王增强,莫蓉等.虚拟产品开发中的装配建模研究.机械科学与技术,2001,20(2):312~315
    [62]隋爱娜,吴威,赵沁平.虚拟装配与虚拟原型机的理论与技术分析.系统仿真学报,2000,12(4):387~389
    [63]田丰,程成,陈由迪等.面向虚拟装配的三维交互平台.计算机辅助设计与图形学学报,2002,14(3):193~198
    [64] Fan J, Jin X D, KVAS: a knowledge-based virtual assembly system. IEEE International Conference on Systems, Man, and Cybernetics (SCM2001), Tucson, Arizona, 2001
    [65] Chen W Y, Wang S Z, Li Z J, et al. Study of key techniques concerning virtual assembly system for equipment maintenance training. Third International Conference on Virtual Reality and Its Application in Industry, Hangzhou, China, 2002
    [66]刘检华,宁汝新,阎艳.集成化虚拟装配工艺规划系统研究.中国机械工程,2006,17(23):2486~2491
    [67]万毕乐,宁汝新,刘检华等.虚拟环境中线缆建模及布线的研究与实现.中国机械工程,2006,17(20):2135~2139
    [68]刘振宇.面向过程与历史的虚拟环境中产品装配建模理论、方法及应用研究[博士学位论文].杭州:浙江大学,2001
    [69]刘宏增,黄靖远.虚拟设计.北京:机械工业出版社,1999
    [70] Schmitz B. Virtual reality: on the brink of greatness. Computer Aided Engineering, 1993, 12(4): 26~32
    [71] Rowell A. Virtual vehicles set the pace. Computer Graphics World, 1998, 21(3): 61~68
    [72] Beth M. Virtual tune-up: simulated design and upkeep for a fighter jet engine. http://www.digitalcad.com/2002/10_oct/features/virtual_production.htm, 2009-1-11
    [73]郑太雄.虚拟装配理论与方法研究[博士学位论文].重庆:重庆大学,2003
    [74]刘检华,姚珺,宁汝新. CAD系统与虚拟装配系统间的信息集成技术研究.计算机集成制造系统-CIMS,2005,11(1):44~67
    [75] Berta J. Integrating VR and CAD[J]. IEEE Computer Graphics and Applications, 1999, 19(5): 14~19
    [76]武殿梁,杨润党,马登哲等.虚拟装配环境中的装配模型表达技术研究.计算机集成制造系统-CIMS,2004,10(11):1364~1369
    [77] www.fakespace.com,2008-10-23
    [78] www.immersion.com,2008-10-23
    [79]张茂军.虚拟现实系统.北京:科学出版社,2002
    [80] Grigore C, Burdea G C,Coiffet P.虚拟现实技术(魏迎梅,栾悉道等译).北京:电子工业出版社,2005
    [81]徐伟忠,刘辉,谈正.三维立体显示系统的开发研究.中国图象图形学报,1997,2(2):144~147
    [82] Linda G, Shapiro, George C, et al.计算机视觉(赵清杰等译).北京:机械工业出版社,2005
    [83]郑华东,于瀛洁,程维明.三维立体显示技术研究新进展.光学技术,2008,34(3): 426~434
    [84]王雷,王力.基于手势的交互式虚拟环境.计算机工程与应用,2002,38(22):88~89
    [85]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社,1996
    [86] Immersion Corporation, VirtualHand - User’s Guide, 2006
    [87] Ronan B, Serge R, Daniel T. Multi-finger manipulation of virtual objects. Proceedings of the ACM Symposium on Virtual Reality and Technology, 1996: 67~74
    [88]刘欣,孙济洲,刘艳等.一种基于非线性弹簧模型的虚拟手交互新方法.中国图象图形学报,2008,13(3):552~557
    [89] Tomozoe Y, Machida T, Kiyokawa K, et al. Unified gesture-based interaction techniques for object manipulation and navigation in a large- scale virtual environment. Proceedings of IEEE Conference on Virtual Reality, Chicago, 2004
    [90] Huang Z Y, Ronan B, Magnenat T N, et al. A multi-sensor approach for grasping and 3D interaction. Proceedings of IEEE International Conference on Computer Graphics: Developments in Virtual Environment, London, 1995
    [91] Mas S R, Daniel T. A hand control and automatic grasping system for synthetic actors. Eurographics Association, 1994, 13(13): 167~177
    [92] Wan H G, Gao S M, Peng Q S. Virtual grasping for virtual assembly tasks. Proceedings of the Third Inernational Conference on Image and Graphics, Hong Kong, 2004
    [93]李澍.飞行器虚拟维修关键技术研究与环境实现[硕士学位论文].南京:南京航空航天大学大学,2007
    [94]王西颖,戴国忠,张习文等.基于HMM-FNN模型的复杂动态手势识别.软件学报,2008,19(9):2302~2312
    [95]王修晖,鲍虎军.基于自适应遗传算法的手势识别.计算机辅助设计与图形学学报, 2007,19(8):1056~1062
    [96] Immersion Corporation, VirtualHand - Programmer’s Guide, 2006
    [97]范昭炜,万华根,高曙明.基于流的实时碰撞检测算法.软件学报,2004,15(10):1505~1514
    [98] Lin M, Gottschalk S. Collision detection between geometric models: a survey. Proceedings of theIMA Conference on Mathematics of Surfaces, 1998
    [99] Jimenez P, Thomas F, Torras C. 3d collision detection: A survey. Computers and Graphics, 2001, 25(2): 269~ 285
    [100] ColDet - free 3D collision detection library. http://cold-et.sourceforge.net. 2008-10-26
    [101] RAPID– a collision detection library. Chapel Hill: University of North Carolina, 1997
    [102] Cohen J, Lin M, Manocha D, et al. I-COLLIDE: An interactive and exact collision detection system for large-scale environments. Proceedings of the ACM Interactive 3D Graphics Conference, 1995
    [103] Klosowski J T, Held M, Mitchell J S B, et al. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transations on Visualization and Computer Graphics, 1998, 4(1): 21~36
    [104] Chung K, Wang W. Quick collision detection of polytopes in virtual environment. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 1996
    [105] Ehmann S, Liu M. Accurate and fast proximity queries between polyhedra using convex surface decomposition. Proceedings of the Eurographics Conference, 2001
    [106]朱丽丽,庄毅,叶延风等.虚拟装配中快速碰撞检测算法的研究与实现.计算机应用,2007,27(12):3132~3135
    [107] Mello L S H de, Sanderson A C. A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Transactions on Robotics and Automation, 1991, 7(2): 228~240
    [108] Sodhi R, Turner J U. Towards modeling of assemblies for product design. Computer-Aided Design, 1994, 26(2): 85~97
    [109] Lee K, Gossard D C. A hierarchical data structures for representing assemblies: part I. Computer-Aided Design, 1985, 17(1): 15~19
    [110]刘检华,宁汝新,姚珺等.基于装配任务的虚拟装配工艺模型研究.系统仿真学报,2005,17(9):2163~2166
    [111]郑轶,宁汝新,刘检华等.交互式虚拟装配路径规划及优选方法研究.中国机械工程,2006,17(11):1153~1156
    [112] Marcelino L, Murray N, Fernando T. A constraint manager to support virtual maintainability. Computers&Graphics, 2003, 27(1): 19~26
    [113] Fa M X, Terrence F, Peter M. Interactive constraint-based solid modeling using allowable motion. Proceedings of the ACM/SIGGRAPH Symposium on Solid Modelling and Applications,1993
    [114]乔雨,王波兴,向文.基于自由度分析的三维几何约束推理求解.计算机辅助设计与图形学学报,2002,14(6):557~561
    [115]杨润党,武殿梁,范秀敏等.基于约束的虚拟装配技术研究.计算机集成制造系统-CIMS,2006, 12(3): 413~414
    [116] Dale Rogerson. COM技术内幕(杨秀章译).北京:清华大学出版社,1998
    [117]南风强,张友良,汪惠芬等.数字化装配环境下产品装配设计方案模糊评价.计算机集成制造系统-CIMS,2007,13(8):1490-1497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700