基于知识的CAD系统若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
知识工程是随着人工智能技术的发展而产生的,对于促进计算机辅助设计的工程化、实用化和自动化,提高产品设计质量和效率均有着显著的意义。基于知识的产品设计技术已成为国内外研究开发的热点,并视为CAD 技术深化应用和发展的重要途径。本文结合国家十五重点科技攻关项目“产品CAD 软件”(项目编号:2001BA201A02),对基于知识的CAD 系统中若干关键技术进行了深入的研究。
    产品设计的知识建模是基于知识的CAD 系统核心问题之一。为了避免繁琐的知识获取过程,降低知识维护成本,本文提出了在传统特征基础上进行扩展以实现知识融合机制的方法。通过引入知识元的混合知识表达简化了知识建模过程。在扩展特征基础上,提出了知识元特征和凝聚特征概念。知识元特征能够与几何形状特征一致的方式进行操作,还能够灵活地构造设计中的准则或原理,运用这些设计准则来完成包括复杂计算、推理、校核验证、自适应调整等功能。系统级的凝聚特征将设计知识、几何形状以及联接关系等封装起来,克服了传统特征在功能语义表达上的不完备性。
    知识约束系统建模是对知识元特征模型进行知识处理的基础。为了保证对实际工程设计问题的适用性及系统约束维护一致性等要求,提出了基于有向二分图的知识约束系统建模方法。通过对知识约束特性的分析,并运用图论算法对二分图进行有向化、凝聚和分类等操作,降低了知识约束处理的复杂程度。利用知识约束系统生成的推理求解序列,形成推理求解的控制策略,保证了混合推理求解的稳定性和有效控制。
    知识库子系统是CAD 系统应用知识的关键性构件。为了保证知识库系统的易维护性和可扩充性,提出了面向设计任务结构的多层次知识库构造方法。在设计任务和设计任务结构的基础上,利用知识元用于形成设计任务的问题求解方法PSM。提出了基于知识元和设计任务的多粒度知识重用方法,并将设计任务网络应用于设计任务的自动化过程引导之中。
    在上述理论研究成果的基础上,研制开发了基于知识的CAD 原型系统,并顺利通过了项目验收。最后,给出了减速器的实例以验证本文研究的有效性和可行性。
Advances in artificial intelligence technologies have led to the emergence and development of Knowledge Based Engineering (KBE) techniques. KBE techniques are expected to promote the practicability and automation of computer aided design, and has great significance to improve product quality and design efficiency. Currently knowledge based product design technology has attracted much attention, and is considered as an important way to improve the application and development of computer aided design. Based on the overview of KBE, Several key issues to implement the knowledge based CAD system are studied in this dissertation, which is sponsored by the National Key Research Project of the 10th five-year-plan of China (Grant No. 2001BA201A02).
    Knowledge modeling of product design is one of the essential issues in knowledge based CAD system. To expedite knowledge acquisition process and to facilitate the maintenance of design knowledge, a knowledge fusion mechanism is introduced which is based on the extension of traditional feature model. Knowledge primitive that represents the basic knowledge form is employed to simplify the knowledge modeling process. Based on the extended feature, knowledge primitive feature and agglomerated feature are introduced.
    Knowledge primitive feature offers many merits, such as easy manipulation and suitable to construct design rationales. The design rationales are then applied to carry out complex computation, reasoning, validation, self-adjustment etc. Encapsulating design knowledge, geometry form and conjunction relationship, the agglomerated feature in system-level is generated to maintain the whole semantic elements of a function.
    Knowledge constraint modeling establishes a foundation to process the knowledge primitive model. To ensure the feasibility for engineering design and the consistency of constraint management, a directed bi-partite graph is proposed to model the knowledge constraints. According to characteristics of different knowledge constraints, some methods and algorithms are employed to direct, group and reduce the graph. A control strategy of reasoning and computation process can be formulated by using of solving sequence generated by knowledge constraint model. The control algorithm ensures the stability and effective control of hybrid reasoning and computation process.
    Knowledge repository is the indispensable component of the knowledge based CAD system. A DTS (Design task structure) oriented approach to construct a hierarchical and systematic knowledge repository is introduced. Thus the knowledge repository is more manageable and expandable. A set of knowledge primitives can be used to realize a specific problem solving method (PSM) of a design task in DTS. By using of knowledge primitive and design task, design knowledge can also be reused in multi-granule. The design task network (DTN) is employed to guide the automation of design process. On the basis of the above theoretic achievement, a knowledge based CAD prototype system has been developed which passed the project assessment. Finally, the feasibility and validity of this research is testified by a gear reducer design.
引文
[1] 陆汝钤. 世纪之交的知识工程与知识科学,北京:清华大学出版社,2001
    [2] Newell A, Simon H A. Computer science as empirical enquiry: symbols and search. Communications of the ACM, 1976, 19(3): 113~126
    [3] Newell A. The knowledge level. Artificial Intelligence, 1982,18(1): 87~127
    [4] 石纯一. 人工智能原理. 北京:清华大学出版社,1993
    [5] 童秉枢. 现代CAD 技术. 北京:清华大学出版社,2000
    [6] 周济,查建中,肖人彬. 智能设计. 北京:高等教育出版社,1998
    [7] 高济. 基于知识的软件智能化技术. 杭州:浙江大学出版社,2002
    [8] 高济. 开发知识级问题求解建模. 高技术通讯,1995, 5(6):20~24
    [9] 高济. RA:面向知识级分析的问题求解建模方法. 浙江大学学报(自然科学版). 1994,28(2):216~223
    [10] Schreiber G, Wielinga B, Breuker J. KADS: A Principled Approach to Knowledge-Based System Development. London: Knowledge-Based Systems, Academic Press, 1993
    [11] Schreiber A T, Wielinga B, Akkermans J M, Van De Velde W, de Hoog R. CommonKADS, a comprehensive methodology for KBS development. IEEE Expert, 1994, 9 (6):28~37
    [12] Chandrasekaran B. Towards a Functional Architecture for Intelligence Based on Generic Information Processing Tasks. IJCAI 1987: 1183~1192.
    [13] Chandrasekaran B. Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert-System Design. IEEE Expert, 1986, 1(3): 23~30
    [14] Hidde de Jong. Computer-Supported Analysis of Scientific Measurements: [PhD thesis]. University of Twente, Enschede, The Netherlands, 1998
    [15] Marcus S. SALT: a knowledge-acquisition tool for propose-and-revise systems. Automating Knowledge acquisition for expert systems. S.Marcus (ed), Kluwer Academic Publishing. 1988
    [16] McDermott J. Preliminary steps toward a taxonomy of problem solving methods. Automating Knowledge-acquisition for expert systems. S.Marcus (ed), Kluwer Academic Publishing, 1988
    [17] Ruey-Juin Chang, Gordon S, Novak Jr. Components of Expertise for Knowledge Level Modeling. Proc. Third International Conference on Tools for Artificial Intelligence, San Jose, CA, Nov. 1991.
    [18] Landes D, Studer R. The design process in MIKE. In Proceedings of the 8th Knowledge Acquisition for Knowledge-Based Systems Workshop KAW'94, Banff, Canada, 1994.
    [19] Clancey W J. Heuristic Classification. Artificial Intelligence, 1985, 27(3): 289~350.
    [20] 朱承,曹泽文等. 知识库系统建模框架的发展与现状. 计算机工程,2002, 28(8): 3~5
    [21] George F Luger. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. London: Addison~Wesley, 4th Edition, 2004
    [22] 蔡毅,娄臻亮等.基于模型推理的智能注塑模设计系统. 上海交通大学学报,2002,36(4):474~477
    [23] 周馨,郭海英. CBR 技术及其在CAD 中的应用. 机械设计,2000, 17(11):4~6
    [24] 石纯一,分孝光. 定性推理. 模式识别与人工智能,1990,3(3):65~73
    [25] 吴勇,朱岩,朱建民. 深层知识在故障诊断专家系统中的应用. 电光与控制,2001(2):30~3
    [26] Brown D C, Chandrasekaran B. An Approach to expert system for mechanical design, Proceedings of Trends and Application, IEEE Computer Society, National Bureau of Standards, Gaithersburgh, Maryland, 1983
    [27] Finger S, Dixon J R. A Review of Research in Mechanical Engineering Design, Part I: Descriptive, Prescriptive, and Computer~Based Models of Design Processes. Research in Engineering Design, 1989, 1(1): 51~68.
    [28] Finger S, Dixon J R. A Review of Research in Mechanical Engineering Design, Part II: Descriptive, Prescriptive, and Computer~Based Models of Design Processes. Research in Engineering Design, 1989, 1(2): 121~137.
    [29] Penoyer J A, Burnett G, Fawcett D J, et al. Knowledge based product life cycle systems: principles of integration of KBE and C3P. Computer-Aided Design, 2000, 32(5~6): 311~320.
    [30] Francois Sprumont, Paul Xirouchakis. Towards a Knowledge-Based Model for the Computer Aided Design Process. Concurrent Engineering, 2002, 10: 129~142
    [31] 赵震,彭颖红等. 基于知识的冲压产品与工艺集成建模方法.上海交通大学学报,2003, 37(2):153~156
    [32] 彭岳华,徐海峰等. 基于知识工程的变速箱设计专家系统.机械设计,2003, 20(3):50~52
    [33] 丁良旭,徐宗俊等. 基于知识工程的客车造型参数化设计研究. 汽车技术,2002(11):14~17
    [34] 陈靖芯,徐晶等. 基于CATIA 的三维参数化建模方法及其应用.机械设计,2003,20(8):48~50
    [35] 朱晓魏,林忠钦等. 面向大批量定制产品的快速设计系统的研究. 计算机集成制造系统,2003, 9(9):817~822
    [36] 贾怀玉,金先龙等. 基于KBE 的电梯智能设计系统. 计算机辅助设计与图形学 学报,2004, 16(6):861~864,868
    [37] 丁志强,饶锡新,丁志等. 基于知识工程的多轴头传动智能CAD 设计系统. 机电工程,2004, 21(5):47~50
    [38] 章军,吴光强等. KBE 在汽车后视镜检测中的应用. 制造业自动化,2004, 26(4): 69~72,78
    [39] 王忠,朴英花等. CATIA—V5 的知识工程优化功能在汽车产品开发上的应用. 汽车技术,2004(3):16~18
    [40] Coventry 大学KBE 中心网址:http://www.kbe.coventry.ac.uk/
    [41] Callot M, Kneebone S, etc. MOKA -A Methodology for developing Knowledge Based Engineering Applications. European Product Data Technology conference, Watford, UK, 1998
    [42] Cranfield 大学KBE 研究主页: http://www.manufacturing.cranfield.ac.uk/ facility_details.cfm?id=29
    [43] Kochan A. Jaguar uses knowledge-based tools to reduce model development times. Assembly Automation, 19(2):11~11(1), 1999
    [44] 尹周平. 面向虚拟原型的产品特征建模和可接近性分析:[博士学位论文]. 华中理工大学,2000
    [45] 张天兵. 基于制造操作的机械产品建模理论研究与实践:[博士学位论文]. 华中理工大学,2001
    [46] 李春书. 产品数字化装配与CAD 集成理论与技术研究:[博士学位论文]. 天津大学,2000
    [47] Der Aaau Perng, Chao fan Chang. A new feature-based design system with dynamic editing. Computers & Industrial Engineering, 1997, 32(2): 383~397.
    [48] Turner G, Anderson D C. An object orient approach to interactive, feature based design for quick turn around manufacturing. ASME Computers in Engineering Conf, San Francisco, ASME Pr, 1988
    [49] Cutkosky M, Tanenbaum J, Miller D. Features in Process Based Design. In Proc. ASME Computers in Engineering Conference, 1988: 557~562
    [50] Cutkosky M R, Tenenbaum J M. Toward a framework for concurrent design. International journal of systems automation: Research and applications, 1992, 1(3): 239~261
    [51] Ryan Inouye, Paul K. Wright. Design Rules and Technology Guides for Web-Based Manufacturing. ASME 1999 DETC/CIE Conference, Las Vegas, Nevada: ASME, 1999
    [52] F L M Delbressine, J A W Hijink. Discrete Part Design by Taking Manufacturing Restrictions into Account. Annals of the CIRP, 1990, 1991, 40(1):171~174
    [53] Prat M J, Wilson P R. Requirements for support of form features in a solid modeling system. Final Report R-85-ASPP-01, CAM-i. Inc., Arlington, Tex., 1985
    [54] Chung J C, Cook R L, Patel D, Simmons M K. Feature-based geometry construction for geometric reasoning. ASME Computers in Engineering Conf, San Francisco, ASME Pr, 1988
    [55] Shah J J, Rogers M T. Expert form feature modeling shell. Computer-Aided Design, 1988, 20(9): 515~524
    [56] 王晓东. 基于Ontology 知识库系统建模与应用研究:[博士学位论文]. 华东师范大学,2003
    [57] 朱承,曹泽文等. 知识库系统建模框架的发展与现状. 计算机工程,2002, 28(8):3~5
    [58] Morris K, Ullman J, Gelder A. Design Overview of the NAIL! System. In Proceedings of the 3rd International Conference on Logic Programming, London, England, Springer-Verlag, 1986
    [59] Chimenti D, Gamboa R, Krishnamurthy R, Naqvi S, et al. The LDL System Prototype. IEEE Transaction on Knowledge and Data Engineering, 1990, 2(1): 76~9
    [60] 舒宜强. 面向对象的方案设计专家系统的理论、方法、开发工具及工程应用:[博士学位论文]. 华中理工大学,1992
    [61] Chandrasekaran B, Todd R Johnson, Jack W Smith, Task-structure analysis for knowledge modeling, Communications of the ACM, 1992, 35(9):124~137
    [62] Angele J, Fensel D, Landes D, Studer R. Developing Knowledge-Based Systems with MIKE. Journal of Automated Software Engineering, 1998, 5(4):389~418.
    [63] Eriksson H, Shahar Y, Tu S W. et al. Task Modeling with Reusable Problem-solving Methods: Artificial Intelligence. 1995, 26(3): 293~326
    [64] Shadbolt N, Motta E, Rouge A. Constructing Knowledge-based Systems. IEEE Software, 1986, 10(6): 34~38
    [65] Steels L. The Componential Framework and Its Role in Reusability In David(eds). Second Generation Expert Systems. Springer-verlag, Berlin. 1993
    [66] Uschold M, Gruninger M. Ontologies: Principles, methods and applications. The Knowledge Engineering Review, 1996, 11(2):93~155
    [67] Heijst G V. The Role Ontologies in Knowledge Engineering: [Ph.D. Thesis]. University of Amsterdam, 1995
    [68] Heijst G V, Schreiber A T, Wielinga B J. Using Explicit Ontologies in KBS Developement. International Journal of Human-computer Studies, 1997, 16(2/3): 183~292
    [69] Fensel D, Groenboom R. Specifying Knowledge-based Systems with Reusable Components. In: Proceedings 9th lnt. Conference on Software Engineering and Knowledge Engineering(SEKE’97), Madrid, 1997:349~357
    [70] Studer R, Eriksson H, Gennari J H, et al. Ontologies and the Configuration of Problem-soving Methods. Proc. Of the 10th Knowledge Acquisition for Knowledge-based Systems Workshop, Banff, 1996
    [71] Kitamura Y, Mizoguchi R. Ontology-based description of functional design knowledge and its use in a functional way server, Expert Systems with Application, 2003, 24(2): 153~166.
    [72] Yoshioka M, Umeda Y, et al. Physical Concept Ontology for the Knowledge Intensive Engineering Framework.Advanced Engineering Informatics, 2004, 18(2), 95~113.
    [73] Kochan A. Jaguar uses knowledge-based tools to reduce model development times. Assembly Automation, 1999, 19(2): 11~11(1)
    [74] http://www.ktiworld.com.
    [75] 陈明星,沈萌红. CATIA 环境下基于知识的机械产品参数化造型设计研究. 机械,2003,30(6):17~18
    [76] 顾晓华,仲梁维. 基于知识工程的参数化设计. 机械设计与制造工程,2001(4):17~18,31
    [77] 熊欣,马洪阁. CATIAV5 将知识工程应用于汽车零部件开发. CAD/CAM 与制造业信息化,2004(1):96~98
    [78] 陶善新,唐文献,李莉敏. 基于知识驱动的产品开发系统研究与实现. 计算机工程与应用,2003,39(22):129~131
    [79] 王玉新. 数字化设计. 北京:机械工业出版社,2003
    [80] 赵波. 基于KBE 的机械产品设计. 机械设计,2004,21(7):7~8,54
    [81] 景旭,李莉敏. 基于UG/KDA 的广义知识库系统的研究与实现. 计算机工程,2003, 29(4):124~126
    [82] 姜龙,孙海波. Pro/ENGINEER 的行为建模技术应用. CAD/CAM 与制造业信息化,2004(1):94~95
    [83] 孟宪颐,赵国恩. 基于Pro/Engineer 分析特征的结构优化设计. 北京建筑工程学院学报,2004,20(1):37~41
    [84] 丁岩. 新一代的CATIA V5. CAD/CAM 与制造业信息化,2003(4):72~76
    [85] Unigraphics Solutions Inc, UG 知识熔接技术培训教程. 北京:清华大学出版社,2002
    [86] 吴俊军. 基于历史的形状特征建模理论研究与实践:[博士学位论文]. 武汉:华中理工大学,1999
    [87] Christoph M. Hoffman, Robert Joan-Arinyo. Parametric Modeling. CAGD handbook, 2001.
    [88] Choi B K, Barash M M, Anderson D C. Automatic recognition of machined surface from a 3D solid model. CAD, 1984, 16(2): 81~86.
    [89] Henderson M R, Anderson D C. Computer recognition and extraction of form features: a CAD/CAM link. Computer in Industry, 1984, 3(4): 329~339.
    [90] Shah J J. Expert form feature modelling shell. Computer-Aided Design, 1988, 20(9): 515~524.
    [91] Christoph M Hoffman, Robert Joan-Arinyo. CAD and the product master model. Computer-Aided Design, 1998, 30(11): 905~918.
    [92] Jiri Kripac. A mechanism for persistently naming topological entities in history-based parametric solid models. Computer-Aided Design, 1997, 29(2): 113~122.
    [93] Wu Junjun, Zhang Tianbing, Zhang Xinfang, et al. A Face Based Mechanism for Naming, Recording and Retrieving Topological Entities. Computer-Aided Design, 2001, 33(10):687~698.
    [94] Hoffmann C M, Arinno R J. On user defined features. Computer Aided Design, 1998, 30(5): 321~332.
    [95] Bidarra R, Idri A, Noort A, et al. Declarative user-defined feature classes. ASME, DETC, Atlanta, 1998, 263~274
    [96] 王彦伟. 实体造型中变量化技术应用研究:[博士学位论文]. 武汉:华中科技大学,2004
    [97] 邱宣怀,郭可谦等. 机械设计. 北京:高等教育出版社,1997
    [98] 徐灏. 机械设计手册(第3 卷). 北京:机械工业出版社,1992
    [99] Regli W C, Hu X, Atwood M, et al. A Survey of Design Rationale Systems: Approaches, Representation, Engineering with Computers, 2000, 16: 209~235
    [100] Karen L. Myers, Nina B. Zumel, Pablo Garcia: Acquiring design rationale automatically. Artificial Intelligence for Engineering Design, Analysis and Manufacturing archive, 2000, 14(2):115~135
    [101] Karen L. Myers, Nina B. Zumel, Pablo Garcia. Automated Capture of Rationale for the Detailed Design Process. Proceedings of the Eleventh National Conference on Innovative Applications of Artificial Intelligence , AAAI Press,1999
    [102] Gruber T R, Russell D M. Generative design rationale: Beyond the record and replay paradigm. Lawrence Erlbaum Associates, 1996, 323~349
    [103] 顾兆林,郁永章. 涡旋压缩机设计计算研究. 流体机械,1996, 24(2):48~52
    [104] 顾兆林,郁永章. 涡旋压缩机基本参数选择及结构参数λ=H/Pt. 压缩机技术,1996(3):9~12
    [105] 吴家喜.涡旋压缩机涡旋盘的优化研究:[硕士学位论文]. 南京:河海大学, 2000
    [106] 顾兆林.涡旋压缩机工作过程的分析和模拟:[硕士学位论文]. 西安:西安交通大学,1990
    [107] In-Ho Lee, Joo-Heon Cha, Myon-Woong Park, et al. An integrated inference architecture for machine tools design involving complex knowledge. The international Journal of Advanced manufacturing Technology, 2003, 22: 321~328
    [108] Kuechler WL, N. Lim, VK Vaishnavi. A Smart Object Approach to Hybrid Knowledge Representation and Reasoning Strategies, Proceedings of the 28th Hawaiian International Conference on Systems Sciences, Los Alamitos, CA, IEEE Computer Society Pr, 1995
    [109] 何朝明,唐倩. 基于实例的变型设计系统. 机械,2002,29(4):31~33
    [110] 潘双夏,张帅. 基于工程约束的产品参数化建模策略研究. 计算机辅助设计与图形学学报,2001, 13(9):840~845
    [111] 刘晓平,黄永红. 工程约束表示模型与求解算法研究. 计算机学报,1999, 22(11):1153~1157
    [112] Reddy S, Fertig K, Smith D. Constraint Management Methodology for Conceptual Design Tradeoff Studies. Proceedings of the 1996 ASME Design Engineering Technical Conference. Irvine, California, 1996
    [113] 陈立平.几何约束系统最大归约理论及应用研究:[博士学位论文]. 武汉:华中理工大学, 1995
    [114] 王波兴.几何约束系统若干关键技术的研究与实践:[博士学位论文]. 武汉:华中科技大学, 2001
    [115] 卢开澄. 图论及其应用. 北京:清华大学出版社,1981
    [116] Roman M. Wong, Siddhartha Bhattacharyya. Task-Structure Analysis: A Modularized Approach for Modeling Knowledge Intensive Processes. HICSS 2002: 90
    [117] 张钹, 张铃. 问题求解理论及应用. 北京:清华大学出版社,1990
    [118] 李龙澍,倪志伟,叶红. 一种知识库系统软件体系结构框架的研究系统仿真学报,2004, 16(7):1472~1476
    [119] 钟佩思,徐文胜等. 层次化领域知识库的有效性检查研究机械设计. 2001, 18(2):1~3,45
    [120] 钟佩思. 面向并行设计智能决策支持的知识库系统研究:[博士学位论文]. 哈尔滨:哈尔滨工业大学,1999
    [121] 齐元胜. 基于设计知识重用的集成产品快速开发技术的理论与实践:[博士学位论文] .武汉理工大学,2002
    [122] 蔡文沁,彭培林,姜寿山. 航空产品设计知识的表示与重用技术研究. 计算机集成制造系统. 2004, 10(1):55~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700