自转式无人旋翼机飞行控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器无人化,研制新型结构无人飞行器及高自主级别无人飞行器是当前飞行器技术发展的重要方向之一。本文在该思想的指导下,以某自转式无人旋翼机为平台,针对实际研制工作中遇到的问题,结合相关理论开展研究工作,研究内容包括数学模型的建立、操纵响应性分析、飞行控制策略设计、基于虚拟参考校正方法的控制器参数优化、基于鲁棒非脆弱的控制律重构设计等方面。
     文章首先从无动力旋翼自转特性分析入手,分析了自转式无人旋翼机的结构和建模特点,运用飞行动力学知识并结合该旋翼机的结构特性建立了该无人旋翼机的飞行动力学数学模型。然后结合该无人旋翼机小扰动线性化模型,分析了部分起主要作用的气数导数的意义,并结合相关气动导数,分析了该无人旋翼机的操纵响应性,从而揭示了无人旋翼机独特的操纵响应特性。
     其次,针对该无人旋翼机的操纵特性和飞行动力学特点,设计了包括滑跑起飞控制、高度控制以及固定高度转弯飞行控制在内的相关控制回路,涉及姿态控制、解耦控制、速度控制与位置控制等。研究结果表明,无人旋翼机地面滑跑阶段,纵向对称面两侧受力不平衡,不平衡因素来自于旋翼拉力不对称,故提出了引入地面支反力作为反馈信号以保证起飞段姿态平稳的控制策略,避免侧倾及侧滑;在高度控制方面,桨盘俯仰操纵与发动机推力操纵组合控制实现对高度指令的跟踪,是无人旋翼机独特的操纵特性;在转弯飞行控制方面,当无人旋翼机受到外部扰动偏离预定航迹时,采用了基于侧偏速率和侧偏距离进行航迹修正的控制策略,达到了良好的航迹跟踪效果。
     再次,针对无人旋翼机数学模型复杂、非线性较强等特点,结合自适应控制、系统辨识等知识,运用虚拟参考反馈校正控制方法对无人旋翼机姿态控制回路前向通道控制器和反馈控制器进行设计。该方法避免了对复杂被控对象的建模过程,利用输入-输出实验观测数据,将控制器设计问题转化为代价函数的优化问题,从而可进一步运用辨识优化的方法推导求解控制器设计过程。此外,该方法还具有在线学习能力,可根据实时测得的输入-输出数据,对控制器参数矢量进行及时调整,以适应飞行控制的需要。
     然后,结合当前与今后一段时间无人旋翼机的发展方向,以提高无人旋翼机自主级别为指导思想,在状态反馈回路出现故障的情况下,运用测量输出重构系统状态量作为反馈信号,以保证飞行任务继续执行,致力于让无人旋翼机具有在线控制律重构能力。针对无人旋翼机系统中广泛存在的参数摄动问题,依赖于线性化无人旋翼机系统模型,考虑了系统参数摄动情况下的鲁棒非脆弱H∞控制律重构系统的求解问题,并充分考虑闭环系统的动态响应性,即极点配置问题,运用线性矩阵不等式(LMI)方法,给出不确定系统的H∞非脆弱控制律重构系统的求解方法。仿真试验结果表明,运用该方法设计的控制律重构系统,所重构的控制律能够使不确定系统鲁棒稳定,且能达到所要求的动态响应特性。
     最后,介绍了某无人旋翼机系统开发与研制过程,并详细介绍了飞行控制系统的组成结构及软/硬件设计过程。接着,为验证该无人旋翼机控制策略的有效性,利用地面半物理仿真平台进行仿真研究,介绍了仿真平台组成结构与仿真原理,按照试飞要求进行仿真实验,验证了该仿真平台及控制策略的有效性。
With the development of aerial vehicle currently and in future time, which contains developingunmanned aerial vehicle with novel structural configuration and high autonomous control levels, thisdissertation focuses on the unmanned gyroplane and the correlative control system design. With theproblems emerged in practical work, this dissertation solved the problems with correlative theories.All research work included in this dissertation contains some aspects, such as analysis of modelingand flight dynamics, analysis of stability and control response, design of flight control systems,parameters optimized for controller based on virtual reference feedback tuning method, design ofstates reconfigurable flight control system based on robust and non-fragile H∞theories, and so on.
     This dissertation firstly develops the work of analysis on the response of rotor with no drivepower from the engine of the gyroplane, then analyzes unique structural configuration and modelingcharacters. In following paper, the flight dynamics mathematical model for the unmanned gyroplaneis established with analysis for its structural configuration, and then a linear model of the unmannedgyroplane is derived. The significance of some main aerodynamic derivatives is analyzed. With theaerodynamic derivatives, the stability and control response of the unmanned gyroplane is analyzed.Consequently the unique control response of the unmanned gyroplane is shown in the dissertation.
     Secondly, considering the control response and flight dynamics characters of the unmannedgyroplane, some correlative control loops, include autonomic take-off control loop, high control loopand turning flight navigation control loop, are designed. These research contains attitude control,decoupled control, velocity control, position control and so on. Some investigations are acquired.Considering taxiing on the ground of the unmanned gyroplane, aerodynamic force from the rotor pullis asymmetry so that the force worked on gyroplane are imbalance. So an autonomic takeoff methodis proposed, in which the longitudinal and lateral control are kept in balance with ground force,attitude and lateral skidding feedback, so that the unmanned gyroplane can climb up smoothly withoutground constraints. To height control loop for the unmanned gyroplane, either rotor pitch control orengine thrust force control can successfully work for height control loop. Base on analysis of thesetwo methods, a new method that integrates rotor pitch control and engine thrust control is proposed,which can show the unique character of gyroplane. And the method presented can also avoiddisadvantage in rotor pitch control or engine thrust force control either. Considering navigationcontrol of turning flight for the unmanned gyroplane, the flight characteristics on circle track wasanalyzed and the velocity control was presented. For the problem of untracking the circle track, a correction strategy was designed with lateral aberrancy. In a word, the height loop and the velocityloop was co-designed on the basis of attitude loop. Finally, a hardware-in-loop simulation wasprovided to demonstrate the effectiveness of the proposed navigation approach and control strategy.
     Next, considering the mathematics model of the unmanned gyroplane is very complex and full ofnonlinear, combining with self-adaptation control theory and system identification system theory,virtual reference feedback tuning method is presented for controller designing in attitude control loopof unmanned gyroplane, in which no model of the plant is needed. Based on input and outputmeasurements in a linear model, the problem of controller design is transformed into optimizing acontrol cost function of a norm type. As to the optimization problem in controller designing, themethod of system identification can be used. Moreover, this method proposed has the capability ofself adapted real time, so that it can modify the controller parameters real time with input and outputdata measured, in order to meet the command of flight control.
     Then, with the development of unmanned gyroplane currently and in future time, to improve theautonomous control levels of unmanned gyroplane, the method of states reconfigurable system designis presented with output data measured while the states feedback loop can not work normally. Thisstates reconfigurable system is designed to provide feedback signals for gyroplane, so that it canensure the mission can be finished normally, enhancing the states configurable capability forunmanned gyroplane. Considering a class of uncertain systems with parametric uncertainties and thedynamic response character, the problem of states configurable system design is researched withlinear model of the unmanned gyroplane. Further more, a robust and non-fragile H∞statesconfigurable system design method is derived in the form of a linear matrix inequality, viz LMI,which can improve the stability of closed system with parametric uncertainties. An illustrativenumerical example and practical simulation is provided to demonstrate the effectiveness of theproposed approach.
     Finally, the engineering realization of control system for the unmanned gyroplane, includingexploitation and developing process, is presented, especially the design process of hardware andsoftware on the unmanned gyroplane. To verify the effectiveness of the control strategy proposed inthis dissertation, a semi-physical simulating system is used and the simulation is practiced accordingto the requirements of test-fly, which demonstrate the effectiveness of the proposed approach.
引文
[1]陆洋,李建波,朱清华.自转旋翼机配平及操纵响应特性[J].南京航空航天大学学报,2008,40(5):577-582.
    [2] Leishman J G. Development of the autogyro: a technical perspective[J]. Journal of Aircraft,2004,41(4):765-781.
    [3]王焕瑾,高正.自转旋翼的气动优势和稳定转速[J].航空学报,2001,22(4):337-339.
    [4]朱清华.旋翼机总体设计的几个问题[J].航空科学技术,2006,5:29-30.
    [5] Hollmann.M. Modern gyroplane design[M]. Monterey:1992.
    [6] Gavrilets V. Autonomous aerobatic maneuvering of miniature helicopters[D]. Cambridge:Massachusetts Institute of Technology,2003.
    [7] Spanoudakis P, Tsourveloudis N, Valavanis K. Design specifications for and unmanned VTOL[C].Proceedings of the2004IEEE International Conference on Robotics and Automation. New Orleans:IEEE Society,2004:3616-3621.
    [8] Do K D, Jiang Z P, Pan J. Global output feedback tracking control of a VTOL aircraft[C].Proceedings of the42th IEEE Conference on Decision and Control. Hawaii: IEEE Society,2003:4914-4919.
    [9] Setlur P, Dawson D, Fang Y, et al. Nonlinear tracking control of the VTOL aircraft[C].Proceedings of the40th IEEE Conference on Decision and Control. Orlando: IEEE Society,2001:4592-4597.
    [10] Martin P, Devasia S, Paden B. A different look at output tracking: control of a VTOLaircraft[J].Automatica,1996,32(1):101-107.
    [11] Ekblad M. Reduced–order modeling and controller design for a high performance helicopter[J].Journal of Guidance, Control and Dynamics,1990,13(3):439-449.
    [12] Gordon Leishman. Development of the Autogiro: a Technical Perspective[J]. Journal of Aircraft.2004,41(4):765-781.
    [13]郑苏. ZX-1型自转旋翼机适航性研究[硕士学位论文].南京:南京航空航天大学,2009.
    [14]王俊超. ZX-1型旋翼机高速型总体方案设计研究[硕士学位论文].南京:南京航空航天大学,2010.
    [15] Gordon Leishman. A Chronicle of Early British Rotorcraft[J]. The60nd Annual Forum andtechnology Display of the A. H. S.2004:1569-1583.
    [16] R.D.Connor. Grasshoppers and Jump-Takeoff: The Autogiro Programs of the U.S. Army AirCorps[J]. The62nd Annual Forum and technology Display of the A.H.S.2006:1647-1670.
    [17] Jay Carter. CarterCopter Aircraft[J]. The59nd Annual Forum and Technology Display of theA.H.S. Phoenix, AZ,2003(276):479-485.
    [18] Bruce H Charnov. From the Cierva C.4to the Cartercopter: an Analysis of How the AutogiroBecame the Gyroplane[J]. The60nd Annual Forum and technology Display of the A.H.S. Baltimore,2004(106):1145-1158.
    [19] Troy C. Schank. The McDonnell Aircraft Corporation Tip-Jet, Convertiplane Programs. The62nd Annual Forum and technology Display of the A.H.S.2006:1671-1684.
    [20] D.Gibbings. The Fairey Rotodyne-Technology Before Its Time[J]. the Aeronautical Journal.2004(108):565-574.
    [21] R.D.Connor. Grasshoppers and Jump-Takeoff: The Autogiro Programs of the U.S.Army AirCorps. The62ndAnnual Forum and technology Display of the A.H.S.2006:1647~1670.
    [22] Stevenk, Tayman. Wind Tunnel Tests of a42Inch Diameter Self-Starting Autogyro Rotor.NRL/MR/1994.
    [23] Jayant Sirohi, Inderjit Chopra. Design and Testing of a Rotor for Autonomous Autorotation. The60nd Annual Forum and technology Display of the A.H.S. Baltimore, MD,2004(46).
    [24] D.Jensen. Unmanned Autogyro For Cinematography and Reconnaisance. AIAA-2001.
    [25] Safety Regulation Group. CAP643/british Civil Airwirthiness Requirements./www.caa.co.uk:2003.
    [26] T Mullett. Back to the Future of Rotorcraft: a Rotor Configuration whose Virtues wentUnexamined for Decades. The61nd Annual Forum and technology Display of the A.H.S.2005(21):568-576.
    [27]朱清华.自转旋翼飞行器总体设计关键技术研究[博士学位论文].南京:南京航空航天大学,2007.
    [28]李泽强.数字化设计技术在自转旋翼机设计中的应用研究[硕士学位论文].南京:南京航空航天大学,2009.
    [29]王焕瑾,高正.自旋翼机的历史、特点和优势[J].直升机技术,2001(3):22-28.
    [30]朱清华,李建波,倪先平,张呈林.旋翼机自转旋翼气动特性及跳飞性能研究[J].空气动力学学报,2008(26):282-296.
    [31]王焕瑾. Rotorcycle的气动设计及其“高速型”方案的可行性研究[博士学位论文].南京:南京航空航天大学,2002.
    [32]郝春杰,王道波.无人驾驶自转旋翼机高度控制[J].航空兵器,2011(1):13-16.
    [33]郝春杰.无人驾驶自转旋翼机控制技术研究[硕士学位论文].南京:南京航空航天大学,2011.
    [34] Enns D.F. Multivariable flight control for an attack helicopter[J]. IEEE Control SystemsMagazine.1987,7(2):34~38.
    [35]黄一敏,郭锁凤.直升机多模态控制律的全飞行包线设计[J].飞行力学.2000,18(3):26~30.
    [36] Kim H.J., Shim D.H. A flight control system for aerial robots: algorithms and experiments[J].Control Engineering Practice.2003,11(12):1389~1400.
    [37]杨一栋,黄屹,李林华.直升机自动过渡悬停飞行控制系统设计[J].南京航空航天大学学报.2004,36(2):201~205.
    [38] Xiang Y., Yan L., Xinmin W., et al. Reliable linear quadratic control for a helicopter withactuator faults: state-feedback case[C]. The9th International Conference on Control, Automation,Robotics and Vision, ICCARV,2006:1~5.
    [39] Khan A.Q., Mustafa G., Iqbal N. LQG/LTR based controller design for three degree of freedomhelicopter/twin rotor control system[C]. the9th IEEE International Multitopic Conference, INMIC,2005:1~5.
    [40] Pieper J.K., Baillie S. Linear-quadratic optimal model-following control of a helicopter inhover[C]. American Control Conference,1994:3470~3474.
    [41] Townsend B.K. The application of quadratic optimal cooperative control systems to a CH-47helicopter[J]. Journal of the American Helicopter Society.1987(1):33~44.
    [42] Patton R.J., Patton R.J. Sensitivity properties of multirate feedback control systems based oneigenstructure assignment[J]. IEEE Transactions on Automatic Control.1995,40(2):337~342.
    [43] Antequera N., Santos M., De C.J. A helicopter control based on eigenstructure assignment[C].IEEE Conference on Emerging Technologies and Factory Automation,2006:719~724.
    [44] Walker D.J., Postlethwaite I. Advanced helicopter flight control using two-degree-of-freedom H∞Optimization[J]. Journal of Guidance, Control, and Dynamics.1996,19(2):461~468.
    [45] Walker D.J., Turner M.C., Smerlas A.J. Robust control of the longitudinal and lateral dynamicsof the BELL205helicopter[C]. Proceedings of the American Control Conference, San Diego,California,1999:2742~2746.
    [46] Walker D.J. Gain-scheduled flight control via two-degree-of-freedom H∞optimization[J].Journal of Systems&Control Engineering.1997,211(4):263~267.
    [47] Prempain E., Postlethwaite I. Static output feedback stabilisation with H∞performance for a classof plants[J]. Systems and Control Letters.2001,43(3):159~166.
    [48] Postlethwaite I., Smerlas A., J W.D. H∞control of the NRC Bell205fly-by-wire helicopter[J].Journal of the American Helicopter Society.1999,44(4):276~284.
    [49] Smerlas A.J., Walker D.J., Postlethwaite I. Evaluating H∞controllers on the NRC Bell205fly-by-wire helicopter[J]. Control Engineering Practice.2001,9(1):1~10.
    [50] Postlethwaite I., Prempain E., Turkoglu E. Design and flight testing of various controllers for theBell205helicopter[J]. Control Engineering Practice.2005,13(3):383~398.
    [51] Turner M.C., Walker D.J., Alford A.G. Design and ground-based simulation of an limitedauthority flight control system for the Westland Lynx Helicopter[J]. Aerospace Science andTechnology.2001,5(3):221~234.
    [52] Voorsluijs G.M., Bennani S., Scherer C.W. Linear and Parameter-dependent Robust ControlTechniques applied to a Helicopter UAV[C].38th AIAA Guidance, Navigation, and ControlConference, Providence, Rhode Island, August16-19,2004.
    [53] Walker D.J. Multivariable control of the longitudinal and lateral dynamics of a fly-by-wirehelicopter[J]. Control Engineering Practice.2003,11(7):781~795.
    [54] Prempain E., Postlethwaite I. Static H∞loop shaping control of a fly-by-wire helicopter[J].Automatica.2005,41(9):1517~1528.
    [55] Luo C.C., Liu R.F., Yang C.D. Helicopter H∞control design with robust flying quality[J].Aerospace Science and Technology.2003,7(2):159~169.
    [56] Walker D J. Multivariable control of the bell412helicopter [A].45th IEEE Conference onDecision and Control[C]. san Diego, CA,2006:1527-1533.
    [57] Keel L H, Bhattacharyya S P. Robust, fragile, or optimal [J]. IEEE Trans on Automatic Control,1997,42(8):1098-1105
    [58]曾丽兰.基于H∞回路成形的无人直升机非脆弱鲁棒飞行控制研究[博士学位论文].南京:南京航空航天大学,2006.
    [59]王宏强.旋翼/涵道风扇式无人直升机飞行控制若干问题研究[博士学位论文].南京:南京航空航天大学,2009.
    [60]董文瀚.孙秀霞,林岩.飞机纵向运动模型参考反推自适应PID控制[J].控制与决策,2007,22(8):853-858.
    [61]胡孟权,王建培.自适应模糊-滑模控制在重构飞行控制中的应用[J].航空学报,2002,23(6):538-541.
    [62]刘亚,胡寿松.基于模糊模型的鲁棒自适应重构飞行控制[J].航空学报,2004,25(2):143-147.
    [63]刘小雄,章卫国,武燕,李广文.直接自适应鲁棒飞行控制技术研究[J].西北工业大学学报,2008,26(3):341-345.
    [64]刘燕斌,陆宇平,何真.高超音速飞机鲁棒自适应控制的研究[J].宇航学报,2006,27(4):620-624
    [65]周丽.基于回馈递推方法的近空间飞行器鲁棒自适应控制[博士学位论文].南京:南京航空航天大学,2008.
    [66]刘小雄.飞行控制系统故障隔离与自适应重构技术研究[博士学位论文].西安:西北工业大学,2006.
    [67] Isidori A., Marconi L. Robust nonlinear motion control of a helicopter[J]. IEEE Transactions onAutomatic Control.2003,48(3):413~426.
    [68] Mistler V., Benallegue A. Exact linearization and noninteracting control of a4rotors helicoptervia dynamic feedback[J]. IEEE Transactions on Automatic Control,2001:586~593.
    [69] Avila V, Brogliato B, Dzul A. Nonlinear modelling and control of helicopters[J]. Automatica.2003,39(9):1583~1596.
    [70] Yang C.D., Liu W.H. Nonlinear H∞decoupling hover control of helicopter with parameteruncertainties[C]. Proceedings of the American Control Conference,2003:3454~3459.
    [71] Lee S., Ha C., Kim B.S. Adaptive nonlinear control system design for helicopter robustcommand augmentation[J]. Aerospace Science and Technology.2005,9(3):241~251.
    [72]胡春华,朱纪洪,孙增圻.纵列式无人直升机建模及其精确线性化方法研究[J].控制与决策.2004,19(9):1074~1077.
    [73]黄文明,徐锦法,高正.直升机神经网络反馈线化飞行控制[J].南京航空航天大学学报.2001,33(4):351~354.
    [74]邓寅喆,黄圣财等.超小型无人驾驶直升机研究现状[J].机电一体化.2004(1):18~21.
    [75]周姜滨,袁建平等.高空长航时无人机导航系统研究[J].西北工业大学学报.2008,26(4):463~467.
    [76]曹秋生,张会军.高空长航时无人机的发展特点及技术难点探讨[J].中国电子科学研究院学报.2008,3(1):8~13.
    [77] Stephen A.C., Kenneth J.K., Peter P. Unmanned aircraft systems roadmap2005-2030. Office ofthe Secretary of Defense, USA,2005.
    [78] Proud RW, Hart J J. Methods for Determining the Level of Autonomy to Design into a HumanSpaceflight Vehicle A Function Specific of the2003Performance Metrics for Intelligent SystemsWorkshop. Gaithersburg MD,2003
    [79]唐强,朱志强,王建元.国外无人机自主控制研究.系统工程与电子技术[J].2004,26(13):418~422.
    [80] Headquartersr United States Air force Unmanned Aircraft Systems Flight Plan2009-2047. USAFWashington DC2009.
    [81]科洛科洛夫C.H.直升机控制运动动力学.中国飞行试验学院,1997.
    [82]包劲松,刘强,张晓谷.旋翼动态升力实验及理论分析.航空学报.1999,20(02):100~103.
    [83]张晓谷,包劲松.动力入流对旋翼操纵导数影响的研究.南京航空航天大学学报.1992,24(5):485~495.
    [84] Chen R.T.N. A survey of nonuniform inflow models for rotorcraft flight dynamics and controlapplications. Vertica.1990,14(2):147~184.
    [85]杨超,洪冠新.入流模型对直升机配平及动态响应的影响.北京航空航天大学学报.1999,25(5):539~542.
    [86]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2005.
    [87]杨一栋.直升机飞行控制[M].北京:国防工业出版社,2007.
    [88] S.S.Houston. Identification of Autogyro Longitudinal Stability and Control Characteristics.Journal of Guidance, control and Dynamics.1998,21(3):391-399.
    [89] Vassilios M.S,Stewart S.H,Douglas G.T. Flight Dynamics Issues Relating to AutogyroAirworthiness and Flight Safety.The54th Annual Forum of the A.H.S,Washington,D C,1998.
    [90]陈巍.无人直升机飞行控制系统设计与研究[硕士学位论文].南京:南京航空航天大学,2007.
    [91]彭召勇.无人直升机飞行控制技术研究[硕士学位论文].南京:南京航空航天大学,2007.
    [92]王德宇.小型无人直升机飞行控制系统研究[硕士学位论文].长沙:国防科学技术大学,2005.
    [93]陈海.无人机自主控制综述及自主着陆控制系统设计[硕士学位论文].西安:西北土业大学,2007
    [94]宫林.无人机起飞与降落的控制技术[硕士学位论文].南京:南京航空航天大学,2009.
    [95]盛守照,王道波,姜斌,赵超.一种无人直升机自动起降控制策略[J].航空学报,2010,31(2):363-367.
    [96]张利刚,王勇.轮式起降无人机安全起飞纵向控制[J].北京航空航天大学学报,2009,35(10):1183-1187.
    [97]贺成龙,陈欣,李春涛.无人机地面滑行自主起飞的建模与控制[J].航空学报,2008,29:S215-S219.
    [98]张华亮,周洲.飞翼无人机地面滑跑建模与航向控制[J].系统仿真学报,2008,20(24):6759-6752.
    [99]唐斌.无人机自动起飞/着陆控制技术研究[硕士学位论文].南京:南京航空航天大学,2007.
    [100]张辽,张允昌,韩亮.直升机旋翼系统仿真建模研究[J].系统仿真学报,2006,18(suppl.2):166-168.
    [101] Srikanth Saripalli, Gaurav S., Sukhatme,et al. An Experimental Study of the AutonomousHelicopter Landing Problem[J], Springer Tracts in Advanced Robotics,2003,5:466-475.
    [102]张学军.直升机稳定转弯飞行中的运动学问题研究[J].海军航空工程学院学报,2006,21(2):234-240.
    [103]邢小军,闫建国.直升机全包线协调转弯控制律设计及仿真[J].飞行力学,2011,29(1):42-45.
    [104]杨俊鹏,祝小平.无人机倾斜转弯非线性飞行控制系统设计[J].兵工学报,2009,30(11):1504-1509.
    [105]凌琼,卢京潮,张家明.基于神经网络的直升机协调转弯控制律设计[J].飞行力学,2008,26(3):33-36.
    [106]陈海,王新民,焦裕松等.无人机覆盖路径规划中转弯机动的运动学分析[J].飞行力学,2010,28(2):31-34.
    [107]黄一敏,郭锁凤.直升机控制系统的内/外回路设计概念及其应用[J].南京航空航天大学学报,1999,31(3):287-292.
    [108] Ding F, Chen T. Performance Analysis of Multi-innovation Gradient Type IdentificationMethods[J]. Automatica,2007,43(1):1-14.
    [109] Dinn F, Chen T. Parameter Estimation of Dual-rare Stochastic Systems by Using An OutputError Method[J]. IEEE Trans on Automatic Control,2005,50(9):1436-1441.
    [110] T.Soderstrom. Errors-in-Variables Methods in System Identification[J]. Automatica,2007,43(6):939-958.
    [111]王建宏,王道波.飞机颤振模态参数辨识的期望最大化法.南昌航空大学学报,2010,24(2):35-40.
    [112]王建宏,王道波.多个未知时延的MISO系统的递推辨识.控制与决策,2010,25(1):93-98.
    [113]王建宏,王道波.基于遗忘因子算法的无人机颤振模态参数辨识.中国空间科学技术,2009,6(12):7-13.
    [114] M.C.Campi. A. Lechini. An Application of The Virtual Reference Feedback Tuning Method toA Benchmark Problem[J]. European Journal of Control,2003,9(2):66-76.
    [115] Guido. Guardabassi. Virtual Reference Direct Method: An Offline Approach to DatabasedControl System Design[J]. IEEE Transactions of Automatic Control,2002,45(5):954-960.
    [116] M.C.Campi. Virtual Reference Feedback Tuning: A Direct Method for The Design of FeedbackControlllers[J].Automatica,2002,38(4):1337-1346.
    [117]唐得志,王道波,王建宏.闭环系统的虚拟参考反馈校正控制设计[J].华中科技大学学报(自然科学版),2011,39(2):48-52.
    [118]邵文,左信.基于改进VRFT算法的PID控制器参数整定[J].化工自动化及仪表,2008,35(6):18-20.
    [119] Wang H Q, Wang D B. Modeling and hover control of a novel unmanned coaxialrotor/ducted-fan helicopter [A]. IEEE International Conference on Automation and Logistics, Ji’nan,China,2007:1768-1773.
    [120] Oh S R. Approaches for a tether-guided landing of an autonomous helicopter [J]. IEEETransaction on Robotics,2006,22(3):536-544.
    [121] Mian A. A., Wang D. B., Wang H Q.. Affine Nonlinear control strategy for an AutonomousUnderactuated Aerial Robot. International Conference on Information Management and Engineering,Kuala Lumpur, Malaysia,3-5April,2009.
    [122] Kin H J, Shin D H. A flight control system for aerial robots algorithms and experiments [J].Control Engineering Practice,2003,11(12):1389-1400.
    [123] Gribble J J, Dorato P. Linear quadratic Gaussian/loop transfer recovery design for a helicopterin low-speed flight [J]. Journal of Guidance, Control and Dynamics,1993,16(4):754-761.
    [124] Takahashi M D, Shieh Y Y. Synthesis and evaluation of an H2control law for a hoveringhelicopter [J]. Journal of Guidance, Control and Dynamics,1993,16(3):579-584.
    [125] Zeng Li-lan, wang Dao-bo, Guo Cai-gen. survey of Flight Control Technology for UnmannedHelicopter [J]. Control and Decision,2006,21(4):361-366.
    [126] Luo C C, Liu R F, Yang C D. Helicopter H∞control design with robust flying quality [J].Aerospace of Science Technology,2003,7(2):159-169.
    [127] Postlethwaite I, Prempain E. Design and flight testing of various H∞controllers for the bell205helicopter [J]. Control Engineering Practice,2005,13(3):383-398.
    [128] Walker D J. Multivariable control of the bell412helicopter [A].45thIEEE Conference onDecision and Control [C]. san Diego, CA,2006:1527-1533.
    [129] Prempain E, Postlethwaite I. Static H∞loop shaping control of a fly-by-wire helicopter [J].Automatica,2005,41(9):1517-1528.
    [130] Zhou Wuneng, Su Hongye, Chu Jian. Robust H-infinity Output Feedback Control with Varianceand Pole Constraints for Time-varying Uncertain systems[J]. Control Theory&Applications,2007,24(1):103-108.
    [131] Yang Xiaoguang, Zhang Qingling, Li Li. Static Output Feedback Control for ContinuousUncertain Fuzzy Systems[J]. Control and Decision,2008,23(5):585-588.
    [132]王玉惠,吴庆宪,姜长生,黄国勇.具有闭环极点约束的空天飞行器再入姿态的模糊保性能控制[J].航空学报,2007,28(3):654-660.
    [133]王武,杨富文.不确定时滞系统的时滞依赖鲁棒非脆弱H∞控制[J].控制理论与应用,2003,20(3):473-476.
    [134] Keel L.H., Bhattacharyya S.P. Authors' reply on comments on “robust, fragile, or optimal”.IEEE Transactions on Automatic Control.1998,43(9):1268-1269.
    [135] Makila P.M. Comments on "robust, fragile, or optimal?". IEEE Transactions on AutomaticControl.1998,43(9):1265~1268.
    [136] Dorato P. Non-fragile controller design: an overview. Proceedings of American ControlConference, Philadelphia, PA, Jun.24-26,1998:2829~2831.
    [137] Moreira M.V., Basilio J.C. Fragility problem revisited: overview and reformulation. IETControl Theory&Applications.2007,1(5):1496~1503.
    [138] Ashfaq Ahmad Mian, Wang Daobo, Wang Hongqiang. Affine Nonlinear control strategy for anAutonomous Underactuated Aerial Robot. International Conference on Information Management andEngineering, Kuala Lumpur, Malaysia,3-5April,2009.
    [139] Wang H.Q, Wang D. B, Niu X.W. Modeling and hover control of a novel unmanned coaxialrotor/ducted-fan helicopter. Jinan, China,2007:1768~1773.
    [140] Yang G H, Wang J L. Non-fragile H∞Control for Linear Systems with Multiplicative ControllerGain Variations[J]. Automatica,2001,37(5):727-737.
    [141]汪锐,冯佳昕,赵军.一类线性不确定切换系统的非脆弱控制器设计方法.控制与决策.2006,21(7):735~738.
    [142] PalharesRM, Peres P LD. Robust H∞Filter Design with Pole Constraints for Discrere-timeSystem [J]. Journal of the Franklin Institute,2000,337(6):1696-1703.
    [143]王武,杨富文.具有控制器增益变化的不确定时滞系统鲁棒H∞控制[J].自动化学报,2002,28(6):1043-1046
    [144] Yang G H, Wang J L. Robust Non-fragile Kalman Filtering for Uncertain Linear Systems withEstimation Gain Uncertainty [J]. IEEE Transaction on Automatic Control2001,46(2):343-348.
    [145] Yang G H, Che W W. Non-fragile H∞Filter Design with Additive Gain Variations [C]Proceedings of45th IEEE Conference on Decision and Control San Diego [C].2006:4775-4780
    [146]王武,郭祥贵,杨富文.线性系统的非脆弱H∞滤波[J].控制与决策,2008,23(5):503-506.
    [147] Garcia G, Bernussou J. Pole Assignment for Uncertain Systems in a Specified Disk by StateFeedback[J]. IEEE Transactions on Automatic Control,1995,40(1):184-190
    [148] Singh V. Robust Stability of Cellular Neural Networks with Delay: Linear Matrix InequalityApproach[J]. IEE Proc. Contr. Theor. Appl.,2004,151(1):125-129.
    [149] Etele J. Overview of wind gust modeling with application to autonomous low level control.Ottawa: Defence Research and Development Canada,2006.
    [150]赵元锋,唐永哲,赵宝庆.飞机迎角在垂直阵风干扰中的卡尔曼滤波估计[J].飞行力学,2006,24(3):53-55.
    [151]黄国勇.变推力轴线无人机飞行控制技术研究[博士学位论文].南京:南京航空航天大学,2009.
    [152]张伟.仿真可信度研究[博士学位论文].北京:北京航空航天大学,2002.
    [153]陈欣,夏云程,董小虎.一种全数字半物理飞行控制实时仿真系统[J].南京航空航天大学学报,2001,33(4):200~202.
    [154]康凤举,杨惠珍,高立娥等.现代仿真技术与应用[M].北京:国防工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700