智能装配规划中的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为敏捷制造、虚拟制造等先进制造技术中的一项关键技术,装配规划技术满足企业快速响应市场需求的变化,近年来受到了学术界和工业界的广泛关注。智能装配规划不仅能够提供一种系统搜索满意装配工艺的手段,而且提供了能够按照可装配性、可维护性、可用的装配资源以及整个装配成本的高低等要求,对产品进行优劣分析的一种有力工具。装配规划通过产品的CAD模型,在计算机上创建近乎实际的虚拟环境,以便对产品的装配过程进行模拟与分析,在产品的研制过程中及时对装配方案进行快速评价,预估产品的装配性能,及早发现潜在的装配冲突与缺陷,并将这些装配信息反馈给设计人员,让其尽早发现错误,及时修改,从而优化产品装配过程。运用这样的技术,可摈弃传统设计的物理样机而代之以电子样机,这不但有利于并行工程的开展,而且还可大幅度降低产品设计成本。装配规划对于满足企业产品的快速开发需求和增强企业竞争力具有重要意义。
     本文结合973计划子课题“面向产品创新开发的虚拟设计平台”的研究,针对大型产品结构庞大、零部件装配关系复杂的特点,对智能装配规划中涉及的若干关键技术进行了深入的研究,包括装配建模、装配序列规划和装配任务规划等。
     本文的第一章主要分析智能装配规划产生的背景和研究内容,研究装配规划的产生背景和国内外发展状况,并针对现有方法存在的问题,提出基于知识的装配规划解决方案。
     第二章首先建立了智能装配规划系统的体系结构,然后通过对典型装配模型的特点和装配模型的评价方法的研究,分析了Top-Down设计的基本流程,建立了支持Top-Down设计的多细节层次装配模型,提出了多细节层次装配模型的建立和信息映射算法;提出了基于联接件知识的零件信息表示方法,着重研究了支持多细节层次模型的产品信息表示方法和基于联接语义的装配建模技术。
     第三章是本文的重点之一,主要对智能装配规划中的序列生成方法进行研究。本章以基于联接语义的装配模型为基础,提出了基于知识的推理和几何推理相结合的装配序列规划算法,着重研究了基于典型实例和标准实例的匹配方法和运用有向联接件知识的装配序列求解方法。根据有向联接件的装配特点,对基于联接件知识的有向图生成规则进行了深入研究;
     第四章针对现有拆卸方向求解中存在的问题,通过对单位球面离散化后产生的误差与离散化的细微程度之间关系的研究,提出了基于渐变间距离散化单位球的拆卸方向求解方法和拆卸方向可行性分析方法。
Assembly planning is an important componet of the advanced manufacturing technologies such as agile manufacturing, virtual manufacturing. It attracts concerns from both academic and industrial circles, because it meets the manufacturing's need of responding to market changing fast. Assembly planning aims to identify and evaluate the different ways to construct a mechanical object from its components. The problem can be formulated as follows: given a geometrical and technological description of a product, find an assembly sequence that satisfies the precedence relations between operations and meets certain optimization criteria. With the help of assembly planning, the designers can evaluate the assembly schema conveniently during the product research and design process, to find the assembly defects and revise them as early as possible. In assembly planning, the designers analyse a product without actually making a physical prototype of the product, that means the design is not yet created in its final form but that only a geometric representation of the object is presented to the user for observation, analysis and manipulation. This virtual prototype does not necessarily have all the features of the final product but has enough of the key features to allow testing of the product design against the product requirements. Assembly planning has profound significance in meeting rapid product development (RPD) requirements, increasing global competition for industries, especially when it is a part of the concurrent engineering and computer integrated manufacturing practice.This work is supported by the Special Funds for Major State Basic Research Program (973) of China under grant 2002CB312106. Our research focuses on automatic generation of assembly sequences from assembly model and assembly task allocation according to assembly conditions.On the basis of analyzing the background and history of assembly planning, Chapter 1 reviews the state of the art in assembly planning, then points out the objective of the thesis and presents the research frame.Chapter 2 presents the architecture of KBAPS (Knowledge-based Assembly Planning System). Then it discusses the foundational theory of assembly model and how to establish it. The role of assembly model taking in planning is presented. After analyzing the typical assembly models and the process of top-down design, it presents
    an approach to build the product model at multiple LOD (Levels of Detail) model and CSBARM (Connection Semantics Based Assembly Relational Model) that integrates both geometric and non-geometric assembly data.Chapter 3 is the key of this thesis. It focuses on the automatic generation of assembly sequences, there are three ways to construct plans for a CSBAT: (1) by retrieving the typical base, (2) by retrieving the standard base, and (3) by geometric reasoning. A novel approach for assembly sequence planning using directed-connector and a case-based approach to generating sequences are proposed. After analyzing the characteristics of directed-connectors, directed-connector knowledge is exploited for assembly sequence planning.In Chapter 4, a novel approach to find the feasible disassembly direction set is presented by applying discrete spherical algorithm to analyzing assembly constraints. Hie global disassembly direction is finally determined by verifying the disassembled part being free from interference on its removal path.Chapter 5 presents an approach for cooperative assembly task planning for a multiple manipulators environment to improve the flexibility and reliability of the automated assembly system. The outline of the agent-based and cooperative assembly task planning system is presented. For the sake of mmirnizing the makespan, the algorithm of task planning takes into account not only the assembly processing time but also the time needed for the manipulators to change tools.In chapter 6, Some applications of assembly planning are described to verify the validity of the algorithm.In chapter 7, all achievements of the thesis are summarized and the future research work is sketched out.
引文
[1] 王艳玮.计算机辅助装配顺序规划关键技术研究.西北工业大学博土学位论文,1999.
    [2] 范菁.虚拟环境下的交互式智能装配规划.浙江大学博土学位论文,2002.
    [3] Sev V. Nagalingam, Grier C.I. Lin. Latest developments in CIM. Robotics and Computer Integrated Manufacturing, 1999, 15: 423-430.
    [4] Fuh J Y H, et al. Modelling, Analysis and Simulation for the Design of a Robotics Assembly System. Computer Intergrated Manufacturing System, 1996, 9(1): 19-32.
    [5] 苏强,林志航,陈康宁.基于TPN的柔性装配系统建模及动态性能分折.西安交通大学学报,1996,30(7):71-78
    [6] Luiz S. Homen de Mello, et al. Computer-Aidded Mechanical Assembly Planning. Kluwer Academic Publishers.
    [7] 季忠齐.产品数字化预装配关键技术研究和实现.浙江大学硕士学位论文,2002.
    [8] 牛新文.基于装配优先图的装配顺序规划.华中科技大学博土学位论文,2002.
    [9] 李磊.数字化产品预装配序列生成、评价与优化研究.西北工业大学博土学位论文,2002.
    [10] 牛新文,丁汉,熊有伦.计算机辅助装配顺序规划研究综述.中国机械工程,2001,12(12):1440-1443.
    [11] Laperriere L, EIMaraphy HA. Planning of Products Assembly and Disassembly. Annals of the CIRP, 1992, 41(1): 5-9.
    [12] Romney B, Godard C, et. al. An Efficient System for Geometric Assembly Sequence Generation and Evaluation. Proceedings of ASME International Computers in Engineering Conference, 1995.
    [13] Zha XF, Lim S, Fok SC. Concurrent Integrated Design and Assembly Planning. Proceedings of the Fourth International Conference on Automation, Robotics, and Computer Vision, Singapore, 1996.
    [14] Arum Swaminathan, K.Suzarme Barber. An experience-based assembly sequence planner for mechanical assemblies. IEEE Transaction on Robotics and Automation, 1996, 12(2): 252-266
    [15] 韩水华,卢正鼎等.基于几何推理的装配序列自动规划研究.计算机辅助设计与图形学学报,2000,12(7):528-532.
    [16] 肖翔,尹文生等.一种基于配合约束的装配顺序产生算法.计算机辅助设计与图形学学报,2001,18(8):730-735.
    [17] 王辉,顾寄南等.基于规则的装配顺序规划方法研究.计算机辅助设计与制造,2002,2:73-75.
    [18] 庄晓,周雄辉,阮雪榆.三维装配约束求解的解析方法.计算机辅助设计与图形学学报,1999,11(6):497-499.
    [19] Marian Romeo M, Luong Lee H S, et al. Assembly sequence planning and optimization using genetic algorithms: part Ⅰ. automatic generation of feasible assembly sequences. Applied Soft Computing Journal, 2003, 2(3): 223-253.
    [20] Bourjault A. Contributionune approche methodologique de l'assemblage automatise: elaboration automatique des sequences operatiores. Thesis d'Etat Universite de Franche-Comto, Besancon, France, I984.
    [21] De Fazio TL, Whitney DE. Simplified Generation of All Mechanical Assembly Sequences. IEEE Journal of Robotics and Automation, 1987, 3(6): 640-658.
    [22] De Fazio TL, Whitney DE. Correction to Simplified Generation of All Mechanical Assembly Sequences. IEEE Journal of Robotics and Automation, 4(6), 1988, 705-708.
    [23] Dini G, Santochi M. Automated Sequencing and Subassembly Detection in Assembly Planning, Annals of the CIRP, 1992, 41(1): 1-4.
    [24] 李灿林,蔡铭,童若锋,董天阳等.基于规则和爆炸图的装配序列规划.计算机辅助设计与图形学学报,2004,16(8):1106-1113.
    [25] Homem de Mello L, Sanderson A. And/Or Graph Representation of Assembly Plans. IEEE Transactions on Robotics and Automation, 1990, 6(2): 188-199.
    [26] Homem de Mello L, Lee S. Computer-Aided Mechanical Assembly Planning. Boston: Kluwer Academic Publisher, 1991.
    [27] 张建标,唐荣锡,魏生民等.装配顺序的生成算法研究.机械工程学报,1999,35(5):48-61.
    [28] 张钹,张铃.求解机械装配规划的新方法.计算机学报,1991,14(8):561-569
    [29] Jayaram S, Connacher HI, Lyons KW. Virtual Assembly Using Virtual Reality Techniques. Computer-Aided Design, 1997, 29(8): 575-584.
    [30] Silicon Graphics Computer Systems. Six Degrees of Freedom (demonstration video), 1997.
    [31] Ames AL, Calton TL, et. al. Lessons Learned from a Second Generation Assembly Planning System. IEEE Intl. Symp.on Assembly and Task Planning, 1995, pp.41-47.
    [32] Huang YF, Lee C. Precedence Knowledge of Mating Operation Assembly Planning. Proceedings of the IEEE International Conference on Robotics and Automation, Arizona, May 1989, pp. 216-221.
    [33] Huang YF, Lee C. A Framework of Knowledge Based Assembly Planning. Proceedings of the IEEE International Conference on Robotics and Automation, California, April 1991, pp. 599-609.
    [34] Tonshof K, Menzel E, Park HS. A Knowledge-based System for Automated Assembly Planning. Annals of the CIRP, 1992, 41(1): 19-24.
    [35] 陆玉昌,邵忠岿,林尧瑞.机器人装配专家系统的设计和实现.清华大学学报,1995,35(5),102-107.
    [36] 陈正,张钹.基于知识的装配前趋约束图的生成.软件学报,1998,9(7):487-495.
    [37] 邵毅,余剑峰,李原等.基于VMAP的装配路径规划研究与实现,西北工业大学学报,2001,19(1):118-121.
    [38] Lozano T, Welley MA. An Algorithm for Planning Collision Free Paths among Polyhedral Objects. Communications of ACM, 1979, 22(10): 560-570.
    [39] Chen LL, Woo TC. Computational Geometry on the Sphere with Application to Automated Machining. ASME Trans J Mech Des, 1992, 114 (2): 288-295.
    [40] Oliver JH, Huang HT. Automated Path Planning for Integrated Assembly Design. Computer Aided Design, 1994, 26(9): 57-63.
    [41] Lozano T. Spatial Planning: Configuration Space Approach. IEEE Transaction on Computers, 1983, 32(1): 108-120.
    [42] Lozano T. Simple Motion Planning Algodthrn for General Robot Manipulators. IEEE Journal of Robotics and Automation, 1987, 3(3): 224-238.
    [43] Donald BR. A Search Algorithm for Motion Plan with Six Degree of Freedom. Artificial Intelligence, 1987, 31(3): 295-353.
    [44] Bajaj C, Kim M. S. Generation of Configuration Space Obstacles: the Case of Moving Sphere. IEEE Journal of Robotics and Automation, 1988, 4(1): 94-99.
    [45] Gilbert EG., Foo CP. Computing the Distance between Smooth Objects in Three Dimensional Space. IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, 1989, pp.158-163.
    [46] Gilbert EG, Hong SM. A New Algorithm for Detecting the Collision of Moving Objects. IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, 1989, pp.8-14.
    [47] Jacobs P, Canny H. Planning Smooth Paths for Mobile Robotics. IEEE International Conference on Robotics and Automation, Scottsdale, 1989, Arizona, pp.2-7.
    [48] Shiller Z, Gwo YR. Collision-Free Path Planning of Articulated Manipulators. ASME Trans J Meeh Des, 1993, 115(1): 901-908.
    [49] Shan Yangsong, Yoram Koren. Obstacle Accommodation Mot ion Planning. IEEE Trans on Robotics and Automation, 1995, 11(1): 17-27.
    [50] Jayram Sankar, Connacher HI, Lyons KW. Virtual Assembly Using Virtual Reality Techniques. Computer Aided Design, 1997, 29 (8): 575-584.
    [51] Nobro H, Tanimoto SL. A New Interference Check Algorithm Using Octree. Advanced Robotics, 1989, 3: 12-18.
    [52] Hong TH, Oghmeier M. Rotation and translation of Objects Represented by Octree. Proceedings IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, 1989, pp.947-952.
    [53] Ahujia N, Nash C. Octree Representation of Moving Bodies. Computer Graphics and Image Processing, 1990, 26: 207-215.
    [54] 姜华.机械产品的装配规划研究.华中理工大学博士学位论文,1997.
    [55] 谭光宇.计算机辅助机械产品装配序列规划及装配仿真研究.哈尔滨工业大学博士学位论文,1999.
    [56] Homem de Mello LS, Lee S. Computer-Aidded Mechanical Assembly Planning. Kluwer Academic Publishers, 1991.
    [57] Borujault A, Lambert J L. Design of An Automated Hard Disk Unit Assembly System. Proceedings of the 18th International Symposium on Industrial Robots, Lau Sane, Switzerland, 1988, pp. 19-28.
    [58] Delchambre A. Computer-aided Assembly Planning. London: Chapman & Hall, 1992.
    [59] Baldwin DF, Abell TE, Lui MCM, et al. An Integrated Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical Products. IEEE Transactions on Robotics and Automation, 1991, 7(1): 78-79.
    [60] Homem de Mello. A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences. IEEE Transaction Robotics and Automation 1991,2(7): 228-240.
    [61]Abrantes MJ, Hill SD. Computer-aided planning of mechanical assembly sequences. Technical Report 95-7, Monash University, Clayton, Australia, Feb 1996.
    [62]Sukhan Lee. Subassembly identification and evaluation for assembly planning. IEEE Transaction on System, Man, and Cybernetics, 1994,24(3): 493-503.
    [63]Frommherz B. Robot Action Planning. Computers in Mechanical Engineering, 1987, 6(3), 30-36.
    [64] Wilson H, et al. Geometric Reasoning About Mechanical Assembly. Aritificial Intelligence, 1994, 71(2): 371-396.
    [65] Wilson RH. Minimizing User Queries in Interactive Assembly Planning. IEEE Trans on Robotics and Automation, 1995,11(2): 308-311.
    [66] Huang Y F, Lee C S. A framework of knowledge-based assembly planning. IEEE int. Conf. Robotics&Automation. Sacramento, CA, U.S.A, 1991. 4: 599-604.
    [67]Zha XF, Du H. A PDES/STEP-based model and system for concurrent integrated design and assembly planning. Computer Aided Design, 2002,14(8): 1087-1110.
    [68]Zha XF, Lim S, Fok SC. Integrated Knowledge-Based Assembly Sequence Planning. The International Journal of Advanced Manufacturing Technology, 1998, 14: 50-64.
    [69]Sugato Chakabarty, Jan Wolter. A Structure-Oriented Approach to Assembly Sequence Planning. IEEE Transaction Robotics and Automation, 1997,13(1): 14-29.
    [70] Arum Swaminathan, K.Suzanne Barber. An experience-based assembly sequence planner for mechanical assemblies. IEEE Transaction on Robotics and Automation, 1996,12: 252-266.
    [71]CL Chen Philip, YH Pao. An integration of neural network and rule-based systems for design and planning of mechanical assemblies. IEEE Transaction on System, Man, and Cybernetics, 1995,23(5): 1359-1371.
    [72] Thomas JP. A Petri Net Framework for Representing Mechanical Assembly Sequences. Preceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, July 1992: 2116-2121.
    [73] Thomas JP, Nissanke N. Properties of Assembly Petri Net. Proceedings of the International Conference on Intelligent Robots and Systems, August 1995,pp.191-196.
    [74] Thomas JP, Nissanke N, et al. A Hierarchical Petri Net Framework for the Representation and Analysis of Assembly. IEEE Transaction Robotics and Automation, 1996, 12(2): 268-279.
    [75] Tatsuya Suzuki, Takahide Kanehara, et al. On Algebraic and Graph Structural Properties of Assembly Petri Net. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems Yokohama, Japan July 1993, pp.2286-2293.
    [76] Stefano Caselli, Francesco Zanichelli. On Assembly Sequence Planning using Petri Nets. IEEE International Symposium on Assembly and Task Planning, August 1995, pp.239-264.
    [77] Zha XF, Lin SYE, Fok SC. Integrated knowledge-based Petri net intelligent flexible assembly planning. Journal of Intelligent Manufacturing, 1998, 9(3): 235-250.
    [78] Zha XF. An Object-oriented knowledge based Petri net approach to intelligent integration of design and assembly planning: Artificial Intelligence Engineering, 2000, 14: 83-112.
    [79] 王艳玮,樊其瑾等.装配顺序分层、分步规划方法.制造业自动化,2001,23(3):15-17.
    [80] 于建明,蔡建国.装配建模及装配顺序分层规划方法研究.机械科学与技术,2000,19(4):671-673.
    [81] 谭光宇,李广慧等.基于图的子装配体识别与装配序列规划.机器人,2001,23(1):68-72.
    [82] ZhouPing Yin, Han Ding, HanXiong Li, et al. A connector-based hierarchical approach to assembly sequence planning for mechanical assemblies. Computer-Aided Design, 2003, 35(1): 38-56.
    [83] 唐朔飞,石淼,李明树.一个基于知识的装配序列规划系统.计算机研究与发展,1993,30(10):63-66.
    [84] 梁斌,邱述斌,巴鲁奇等.装配规划中基于割集的装配顺序生成方法.中国机械工程,1995,6(1):27-29.
    [85] 苏强,林志航.几何可行装配顺序推理方法及实现技术.计算机集成制造系统,2000,6(4):31-35.
    [86] 田立中,付宜利,马玉林等.装配序列规划中拆卸方向的确定.计算机辅助设计与图形学学报,2001,13(12):1110-1113.
    [87] Jing Fan, Jinxiang Dong. KVAS: a knowledge-based virtual assembly system. In Proc. IEEE Systems, Man, and Cybernetics Conference 2001, U.S.A, October 2001: 1041-1046.
    [88] 苏强.计算机辅助装配顺序规划与DFA方法研究及集成系统开发.西安交通大学博土学位论文,1997.
    [89] 王陈春.基于CAD平台的装配序列自动规划.西安交通大学硕士学位论文,2003.
    [90] 苏强,林志航,陈康宁.基于TPN的柔性装配系统建模及动态性能分折.西安交通大学学报,1996,30(7):71-78.
    [91] 田立中,付宜利,马玉林等.装配路径规划中基于动态坐标的A~ 搜索算法.计算机集成制造系统,2002,8(4):316-319.
    [92] 石淼,唐朔飞,李明树.装配序列规划研究综述.计算机研究与发展,1994,31(6):30-34.
    [93] 李雄伟,刘继红,王峻峰.基于Web的协同装配规划.计算机辅助设计与图形学学报,2003,15(3):348-354.
    [94] 殷晨波,钟秉林.基于时间的装配顺序评价方法研究.东南大学学报,1999,29(2):38-43.
    [95] 李原,张涛,余剑峰等.基于操作模型的装配仿真技术研究.机械科学与技术,2000,19(3):503-504.
    [96] 李健.唐忠民等.基于特征的产品装配建模系统.制造业自动化,2000,22(12):70-75.
    [97] 李海龙,董金祥等.基于约束的装配体技术.计算机辅助设计与图形学学报,1997,9(3):249-255.
    [98] 吴威,隋爱娜.具有位置/力混合控制的虚拟装配模型.北京航空航天大学学报,2001,27(4):377-380.
    [99] 张建标.数字化产品预装配中的装配顺序规划研究.西北工业大学博士学位论文,1998.
    [100] Hirai JI, Nagata T. Agent-oriented and distributed assembly task planning for multiple manipulators. Proceedings of the 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Munich, Germany, IEEE Press, 1994. 113-118.
    [101] Del Valle C, Camacho EF. Automatic assembly task assignment for a multirobot environment. Control Engineering Practice, 1996, 4(7): 915-921.
    [102] Kolisch R. Integrated scheduling, assembly area- and part-assignment for large-scale, make-to-order assemblies. International Journal of Production Economics, 2000, 64(1): 127-141.
    [103] Fraile JC, Paredis CJJ, Wang CH, et al. Agent-based planning and control of a multi-manipulator assembly system. Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Michigan, USA, IEEE Press, 1999. 1219-1225.
    [104] 董兴辉,高陆,徐晓慧等.协同装配信息集成建模及装配顺序规划研究,计算机辅助设计与图形学学报,2003,15(7):823-827
    [105] http://www.863cims.net/monographictech/index.html.
    [106] 徐世新等. http://www.cims.edu.cn/Monographic Tech/cimstotal/cax_news/cadcam/cadcam-keytech/cadcam-keytech-emb.htm
    [107] 李海龙等.基于模板的自项向下并行装配设计.计算机辅助设计与图形学学报,1999,11(5):441-445.
    [108] Wesley MA, Liberman LI, et al. A Geometric Modeling System for Automated Mechanical Assembly. IBM J. Res Dev, 1980, 24(1): 64-74.
    [109] Eastman CM. The design of assemblies. SAE Technical Paper Series, Society of Automotive Engineers, 1981.
    [110] Lee K, et al. A hierarchical data structure for representing assembly: part Ⅰ. Computer-Aided Design, 1985, 17(1): 15-19.
    [111] Lee K, et al. Inference of the positions of components in an assembly: part 2. Computer-Aided Design, 1985, 17(1): 20-24.
    [112] Bourjault A, Henrioud JM. LEGA: Computer-Aided Generator of Assembly Plans. Computer-Aided Mechanical Assembly Planning. Boston: Kluwer Academic Publishers, 1991: 191-215.
    [113] Zdrahal Z, Valasek M. Modeling tasks in engineering design: Cybernetics and Systems: An International Journal, 1996, 27(2): 105-117.
    [114] 袁波,周昀,胡事明等.层次化单元装配模型.计算机辅助设计与图形学学报,2000,12(6):450-454.
    [115] 孙正兴等.一种面向方案设计的装配建模表示方法.计算机辅助设计与图形学学报,2000,12(1):28-33.
    [116] 施普尔,克劳舍著,宁汝新等译.虚拟产品开发技术.机械工业出版社,2000.
    [117] Brunetti G, Golob B. A feature-based approach towards an integrated product model including conceptual design information. Computer Aided Design, 2000, 32(14): 877-887.
    [118] Deng YM, Britton GA, Tor SB. Constraint-based functional design verification for conceptual design. Computer Aided Design, 2000, 32(14): 889-899.
    [119] Zha XF, Du HJ, Qiu JH. Knowledge-based approach and system for assembly oriented design Part Ⅰ: the approach. Engineering Application of Artificial Intelligence, 2001, 14(1): 61-75.
    [120] Shah JJ, Tadepalli R. Feature based assembly modeling. Computer Engineering, 1992, 1(1): 253-260.
    [121] 刘振宇,谭建荣,张树有.面向虚拟装配的产品层次信息表达研究.计算机辅助设计与图形学学报,2001,13(3):223-228.
    [122] 刘学慧.虚拟现实中三维复杂几何形体的层次细节模型的研究.中国科学院软件研究所,1998.
    [123] Gobbetti E, Bouvier E. Time-critical multi-resolution rendering of large complex models. Computer Aided Design, 2000, 32(13): 785-803.
    [124] Karabassi EA, Papaioarmou G., Fretzagias C, et al. Exploiting multi-resolution models to accelerate ray tracing. Computers & Graphics, 2003, 27(1): 91-98.
    [125] Cohen MF. Interactive spacetime control for animation. In proc. of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York: ACM Press, 1992: 293-302.
    [126] Kanai S, Takahashi H, Makino H. ASPEN: computer-aided assembly sequence planning and evaluation system based on predetermined time standard. Annals of CIRP, 1996, 45(1): 35-39.
    [127] Fox BR, Kempf KG. Opportunistic scheduling for robotics assembly, in Proc. IEEE Int. Conf. Robotics Automat, 1985, pp.880-889.
    [128] Fahlman SE, A planning system for robot construction tasks. Artificial Intell, 1974, 5: 1-49.
    [129] Fikes RE, Nilsson NJ. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intell, 1971, 2: 189-208.
    [130] 季忠齐,童若锋,林兰芬等.基于图论和启发式搜索的装配序列规划算法,计算机工程.2003,29(13):115-117.
    [131] Luiz S, Homem de Mello. Representations of Mechanical Assembly Sequences: IEEE Transaction Robotics and Automation, 1991, 7(2): 211-227.
    [132] Pelillo M, Siddiqi K, Zukker S. Matching hierarchical structures using associated graphs. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1999, 21: 1105-1120.
    [133] Xu Xiaogang, Liu Wenyin, Jin Xiangyu, et al. Sketch-based user interface for creative tasks. In Proc. The 5th Pacific Conference on Computer Human Interaction, Beijing, 2002, pp.560-570.
    [134] Chiu Hung-Pin, Tseng Ding-Chang. Invariant handwritten Chinese character recognition using fuzzy min-max neural networks. Pattern Recognition Letters, 1997, 18: 481-491.
    [135] Suganthan PN, Yah H. Recognition of handprinted Chinese characters by constrained graph rnatching. Image and Vision Computing, 1998, 16: 191-201.
    [136] Yeung Minerva, Yeo Boon-Lock, Liu Bede. Segmentation of video by clustering and graph analysis. Computer Vision and Image Understanding, 1998, 71: 94-109.
    [137] Ahmadyfard AR, Kittler J. Using relaxation technique for moon-based object recognition. Image and Vision Computing, 2002, 20: 769-781.
    [138] Chen Ruey-Shun, Lu Kun-Yung, Yu Shien-Chiang. A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 2002, 15(5): 447-457.
    [139] 张建标,魏生民,杨彭基.装配顺序规划中的子装配体稳定性.西北大学学报(自然科学版),1999,29(4):289-292.
    [140] Eng TH, Ling ZK, Olson W, et al. Feature-based assembly modeling and sequence generation. Computers & Industrial Engineering, 1999, 36(1): 18-33.
    [141] Woo TC, Dutta D. Automatic disassembly and total ordering in three dimensions. Journal of Engineering for Industry, 1991, 113(2): 207-213.
    [142] Zahed S, David W R. A virtual prototyping approach to product disassembly reasoning. Computer-Aided Design, 1997, 29(12): 847-860.
    [143] Jimenez P, Thomas F, Torras C. 3D collision detection: a survey. Computers and Graphics, 2001, 25(2): 269-285.
    [144] Sridharan K. Efficient computation of a measure of depth between convex objects for graphics applications. Computers and Graphics, 2002, 26(5): 785-793.
    [145] Sigal A, Bernard C, Ayellet T. Self-customized BSP trees for collision detection. Computational Geometry, 2000, 15(1): 91-102.
    [146] Finin T, Fritzon R, McKay D, McEntire R. KQML—A Language and Protocol for Knowledge and Information Exchange. Tech. Report, University of Maryland, Baltimore, 1993.
    [147] Wooldridge M, Jennings NR. Intelligent Agents: Theory and Practice. The Knowledge Engineering Review, 1995.10(2): 115-152.
    [148] Genesereth MR, Ketchpel SP. Software Agents. Communication of the ACM, 1994, 37(7): 48-53.
    [149] Rao AS, Georgeff MP. BDI Agents: From Theory to Practice. In: Proceedings of the 1st International Conference on Multi-Agent Systems, San Francisco, USA, June, 1995, pp.312-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700