宽带相控阵雷达波束控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带宽角工作是现代相控阵雷达的发展方向,而基于移相器的宽带相控阵雷达在进行宽角扫描时,由于渡越时间、孔径效应的影响,使得收发信号不能有效地同相合成,难以实现期望的波束形成和波束指向控制。
     在数字基带用数字延时技术,或在射频用光纤延迟线,取代传统相控阵雷达的移相器,是相控阵雷达实现宽带宽角扫描的两种有效手段,易于实现宽带相控阵雷达的波束形成和波束指向控制。
     光控相控阵雷达是将光实时延迟、光纤传输技术应用到相控阵中,在子阵上采用光实时延时线可以减小渡越时间、孔径效应的影响,使传统相控阵雷达实现宽带宽角扫描的难题得以解决。而光纤传输链路分配灵活、重量轻、体积小;抗电磁干扰;光纤的带宽很大、衰减很小,便于雷达信号的远程传输。
     数字阵列雷达是一种收、发都采用数字技术的全数字化相控阵雷达,能够在数字域实现幅相加权,并通过基带数字延时实现波束指向控制,数字阵雷达容易实现低旁瓣、多波束多目标处理、自适应抗干扰、宽带宽角扫描等功能,当数字阵列雷达的发射信号和接收信号采用宽带信号时,称为宽带数字阵列雷达。
     本论文研究工作针对光控相控阵雷达、宽带数字阵雷达波束指向控制技术展开,在光控相控阵雷达的构架、OTTD的设计与实现、宽带数字阵雷达T/R组件以及数字均衡和数字延时算法实现等方面进行了深入的研究。本文主要工作和贡献如下:
     1、研究了L波段光控相控阵雷达技术。设计了L波段光控相控阵雷达方案,给出了其数学模型,分析了光控相控阵对孔径效应的改善;在国内首次设计实现了L波段基于磁光开关的OTTD,并在国内首次用外场试验证明了光控相控阵雷达宽带宽角工作是有效可行的。
     2、研究了毫米波光控相控阵雷达技术。在前人工作基础上,完善了基于可调谐激光器和光子晶体光纤的色散延时毫米波光控相控阵完整方案;提出了基于中频延时和中频移相的毫米波光控相控阵实现方案,仿真试验证明了提出方法的有效性。
     3、研究了串馈型光控相控阵雷达技术。优化了基于可调谐激光器和布拉格光栅的串馈型光控相控阵雷达实现方法。建立了串馈型光控相控阵雷达分别工作在发射模式和接收模式的数学模型,仿真结果表明串馈型光控相控阵雷达易于实现相控阵雷达的宽带宽角扫描。
     4、研究了宽带数字阵通道均衡理论及高效实现方法。研究了通道均衡的频域算法,讨论并仿真分析了影响通道均衡效果的主要因素,提出了一种在FPGA中实现宽带均衡与DDC融合的高效实现方法,仿真和硬件测试结果证明了这种结构的有效性。
     5、研究了宽带数字阵雷达中的T/R组件及波形产生。运用DDWS技术产生宽带数字波形;分析了DAC时钟抖动对波形性能的影响;设计了Farrow结构分数时延滤波器,并在FPAG中实现了分数延时,测试结果证明这种滤波器结构的正确可行性;最后设计实现了一个S波段宽带数字T/R组件验证模块。
     本文研究了宽带相控阵雷达波束控制的相关新技术,在光控相控阵雷达和宽带数字阵雷达领域做了较为深入的研究,研究结果为今后宽带相控阵雷达的系统设计和实现提供了一定的理论依据和实践参考。
It’s an important development tendency for phased array radar to operate in wideband and wide-angle condition. However, for the phase shifters based phase array radar, it is hard to achieve desired beam forming and steering due to the transition time and aperture effect.
     In order to realize wideband beam steering and beam forming, two effective methods for wideband beam steering and beam forming can be used to replace the phase shifter in traditional phased array radar. They are true time digital delay in baseband and optical true time delay (OTTD) in RF band.
     In optically controlled phased array radar (OCPAR), optical real delay and optical fiber transmission technology are introduced, where the aperture transition time and aperture effects are reduced at sub-array level via OTTD, thus realize the broadband and wide-angle scanning of phased array antennas. Meanwhile, the optical fiber transmission link is flexible, light, with small size and has super anti-electromagnetism interference capability. The wideband and weak attenuation of optical fiber are suitable for long time transmission of radar signals.
     Digital array radar (DAR), where the digital technique is used both in transmitting and receiving, is a fully digitized array antenna radar. It can realize beam forming and beam direction control via the use of amplitude-phase weighting and digital delay in baseband. Therefore, it’s easy to fulfill low sidelobes, multi-beam and multi-target processing, adaptive anti-jamming, wideband and wide-angle scanning for DAR. When the wideband signal waveforms are used in DAR, it is called as Wideband digital array radar (WDAR).
     The beam steering technique of OCPAR and WDAR are deeply researched in this dissertation, including the structure of OCPAR, the design and realization of OTTD, digital T/R moudle, digital delay algorithm and channel digital equalization algorithm. The main work and results are as follows:
     1. The L band OCPAR technique is studied. A design scheme of L band OCPAR is given, and the mathematic model is built to analyze the improvement of aperture effect. An OTTD which is based on magneto-optic switches is designed and manufactured firstly, and the far-field test results verify the improvement of wideband and wide-angle performance for the first time in China.
     2. The millimeter wave OCPAR technique is studied. The methods of achieving millimeter wave OCPAR based on one tunable laser and Photonic Crystal Fiber are optimized. Furthermore, the millimeter wave OCPAR method based on intermediate frequency (IF) delay and shifter is proposed. The simulation results demonstrate the improvement of wideband and wide-angle performance.
     3. The serially fed OCPAR technique is studied. The method of achieving serially fed OCPAR is optimized, the mathematic model of serially fed OCPAR based on one tunable laser and one Bragg fiber-optic grating is built. The simulation results verify that it’s easy to realize wideband and wide-angle scanning with serially fed OCPAR.
     4. The channel equalization theory and effective realize methods are studied. The frequency domain equalization algorithm is investigated to compensate channel mismatch. The effects of several important parameters to digital equalizer are discussed and analyzed with simulations. A simple structure which combines channel equalization and digital down conversion (DDC) in FPGA is proposed. It is proved to be valid, feasible and highly efficient with tests.
     5. The T/R module and waveform generation in WDAR are studied. The DDWS technology is used to generate wideband digital waveforms. And the effect of clock jitter error in digital-to-analog converter is analyzed. The filter based on Farrow structure is designed to achieve fractional delay. From the results on a test board, it can be seen that the fractional delay is accurate and the delay structure is efficient and simple. A digital T/R module in S band is designed and manufactured.
     The work in this dissertation covers the concerned theories and key technologies of wideband phased array radar beam steering in OCPAR and WDAR. The research results provide theoretical evidence and practical experience for the development of phased array radar in the future.
引文
[1]张明友,汪学刚.雷达系统.北京:电子工业出版社,2006
    [2]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006
    [3]何子述,金林,韩蕴洁,严济鸿.光控相控阵雷达发展动态和实现中的关键技术.电子学报,2005,33(12): 2191-2195
    [4]吴曼青,靳学明,谭剑美.相控阵雷达数字T/R组件研究.现代雷达,2001,27(2):57-61
    [5]朱庆明.数字阵列雷达评述.雷达科学与技术,2004,2(3):136-146
    [6]吴曼青.数字阵列雷达的发展与构想.雷达科学与技术,2008,6(6):401-405
    [7] Forrest J.R., Richards, F. P., Salles, A. A. et al. Optical fiber networks for signal distribution in phased array radars. Radar-82 Proceedings of the International Conference, 1982, 408-412
    [8] G. A. K. Optical processor for phased-array antenna beamformation. Optical Technology for Microwave Application, 1984, 75-81
    [9] Popa A. E. Military and aerospace application of lightwave technology. IEEE MTT-S International Microwave Symposium Digest, 1988, 2: 893-896
    [10] Ng, W. , Walston A., Tangonan G. et al. Wideband fibre-optic delay network for phased array antenna steering. Electronics Letters, 1989, 25(21): 1456-1457
    [11] Seeds A. J. Optical techniques in phased array. Phased Array Radar, IEE Tutorial Meeting, 1989, 4: 1-18
    [12] Tang R., Popa A., Lee J. J. Applications of photonic technology to phased array antennas. Antennas and Propagation Society International Symposium AP-S Merging Technologies for the 90's Digest, 1990, 2: 758-761
    [13] Ng W., Walston A., Tangonan, et al. The first demonstration of an optically steered microwave phased array antenna using true-time-delay. IEEE Journal of Lightwave Technology, 1991, 9: 1124-1131
    [14] Daryoush A.S., Saedi R., Samant N. et al. Optically controlled phased array at C-band. IEEE Antennas and Propagation Society International Symposium, 1992, 1: 466-469
    [15] Paul D. K. Optical beam forming and steering for phased-array antenna. Commercial Applications and Dual-Use Technology Conference Proceedings, 1993, 7-12
    [16] Lee J. J., Robert Y. Loo, Stan Livingston et al. Photonic wideband array antennas. IEEE Transactions on Antennas and Propagation, 1995, 43(9): 966-981
    [17] Horikawa K., Ogawa I., Ogawa H. et al. Photonic switched true time delay beam forming network integrated on silica waveguide circuits. IEEE MTT-S International Microwave Symposium Digest, 1995, 1: 65-68
    [18] Dolfi D, Joffre P, Huignard J P, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays.Applied Optics,1996,35(9):5293-5300
    [19] Jemison W.D., Herczfeld P.R. Acoustooptically controlled true time delays-experimental results. IEEE Microwave and Guided Wave Letters, 1996, 6(8 ): 283-285
    [20] Molony A., Zhang L., Williams J. A. R. et al. Fiber Bragg-grating true time-delay systems: Discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1527-1530
    [21] Corral J. L. Marti J., Regidor S. et al. Continuously variable true time-delay optical feeder for phasedarray antenna employing chirped fiber grating. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1531-1536
    [22] Yian Chang, Boris Tsap, Harold R. Fetterman, et al. Optically Controlled Serially Fed Phased-Array Transmitter. IEEE Microwave and Guided Wave Letters, 1997, 7(3): 69-71
    [23] Boris Tsap, Yian Chang, Harold R. Fetterman, et al. Phased-Array Optically Controlled Receiver Using a Serial Feed. IEEE Photonics Technology Letters, 1998, 10(2): 267-269
    [24] Cayrefourcq I, Schaller M, Fourdin C, et al. Optical switch design for true time delay array antenna.IEEE Proc Optoelectron,1998,145(2):77-82
    [25] Willms J G, Ouacha A, Boer L D, et al. A wideband GaAs 6-bit true-time delay MMIC employing on-chip digital drivers[EB/OL]. TNO Physics and Electronics Laboratory, 2000[2000-7-14].www.tno.nl/instit/fel/os/resources/ GAAS2000_6bit_ TTD.pdf
    [26] Jalali B., Yegnanarayanan S. Optically controlled phased-array antenna using wavelength-selective true time delay. IEEE International Conference on Phased Array Systems and Technology. 2000, 367-370
    [27] Yunqi Liu, Jianliang Yang, Jianping Yao. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photonics Technology Letters, 2002, 14(8): 1172-1174
    [28] Chen Yihong, Chen, R.T. A fully packaged true time delay module for a K-band phased array antenna system demonstration. IEEE Photonics Technology Letters. 2002, 14(8): 1175-1177
    [29] Steyskal H., Cox C., Ackerman E. Digital and optical beamforming techniques. IEEE International Symposium on Phased Array Systems and Technology, 2003, 616
    [30] Chen Yihong, Chen Ray T. K-band phased-array antenna system demonstration using substrate guided wave true-time delay. Optical Engineering, 2003, 42(7): 2000-2005
    [31] Shifu Yuan. Photonic delay line architecture using MEMS based photonic switch. The International Society for Optical Engineering Proceedings of SPIE, 2003, 5201: 23-33
    [32] Jong Dug Shin, Back Song Lee, Boo-Gyoun Kim. Optical true time-delay feeder for X-band phased array antennas composed of 2×2 optical MEMS switches and fiber delay lines. IEEE Photonics Technology Letters, 2004, 16: 1364-1366
    [33] D. A. Henderson, C. Hoffman, Rober Culhane, et al. Kilohertz Scanning, All-Fiber Optical Delay Line Using Piezoelectric Actuation. Proceedings of SPIE The International Society for Optical Engineering,2004, 5589:99-106
    [34] Brie Howley., Zhong Shi, Yongqiang Jiang, et al. Thermally tuned optical fiber for true time delay generation. Optics & Laser Technology , 2005,37(1): 29-32
    [35] Adrian Garrod.Digital Modules for Phase Array Radar. IEEE International Radar Conference, 1995, 726-731
    [36] H. Szu, R. Stapleton, Frank Willwerth. Digital Radar Commercial Applications. 2000 IEEE International Radar Conference, 2000, 717-722
    [37] Wang Yan, Wu Manqing. The development of DBF phased array radar system. 2001 CIE International conference on radar proceeding, Beijing, China,2001:61-64
    [38] B Cantrel1. Development of a Digital Array Radar(DAR). IEEE Aerospace and Electronic Systems Magazine, 2002, 17(3): 22-27
    [39] Daniel J Rabideau. An S-Band Digital Array Radar Testbed. IEEE International Symposium on Phased Array System and Technology, 2003, 113-118
    [40] Wang Yan, Wu Manqing. The development of DBF phased array radar system. 2001 CIE International conference on radar proceeding, Beijing, China,2001, 61-64
    [41]陈四根.阵列信号处理相关技术研究:[博士学位论文].哈尔滨工业大学,2004
    [42]苏保伟.阵列数字波束形成技术研究:[博士学位论文].国防科技大学,2006
    [43]陈其璋.宽带波束形成算法设计与实现:[博士学位论文].浙江大学,2008
    [44] Frost O L. An algorithm for linearly constrained adaptive array processing . Proceedings of the IEEE ,1972 , 60(8) : 926-935
    [45] Tuan-Do-Hong, P. Russer. Signal processing for wideband smart antenna array applications. IEEE Microwave Magazine, 2004, 5(1):57-67
    [46]王永良,陈辉,彭应宁.空间谱估计理论与算法.北京:清华大学出版社,2004
    [47] AH Quazi. An Overview on the Time Delay Estimate in Active and Passive Systems for Target Localization. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29 (3): 527-533
    [48] Pridham RG, Mueei RA .Digital interpolation beamforming for low-pass and bandpass signals. Proceedings of the IEEE, 1979, 67(6): 904-919
    [49] F.O.L.An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, 1972, 60(8):926-935
    [50]文树梁.宽带相控阵雷达Stretch处理聚焦波束形成技术.航天电子对抗,2004(1):55-59
    [51] A.V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing.刘树棠译.西安交通大学出版社,2005
    [52] Mailloux R J. Array grating lobes due to periodic phase, amplitude, and time delay quantization. IEEE Transactions on Antennas and Propagation, 1984, 32(12): 1364-1368
    [53] C.W. Farrow. A Continuously Variable Digital Delay Element. IEEE International Symposium on Circuits and Systems, 1988, 2461-2465
    [54] Timo I. Laakso, Vesa V?lim?ki, Matti Karjalainen. Splitting the unit delay- tools for fractional delay filter design. IEEE Signal Processing Magazine, 1996, 13(1): 30-60
    [55] Vesa V?lim?ki. Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filter. Doctoral dissertation. Helsinki University of Technology, Laboratory of Acoustics and Audio signal processing, 1995
    [56] T.-B. Deng. Symmetry-based low-complexity variable fractional-delay FIR Filter. Communications Information Technologies(ISCIT’04), 2004, 194–199
    [57]林仙立,高小榕.基于分数延迟的有限冲击响应型梳状滤波器.清华大学学报,2004, 12(44):29-31
    [58]王峰,傅有光.一种宽带非因果时延滤波器设计方法.现代雷达.2006.28(5):55-57
    [59] Frigyes I., Seeds A. J. Optically generated true-time delay in phased-array antennas. IEEE transactions on microwave theory and technique, 1995, 43(9): 2378-2386
    [60] Ackerman E., Wanuga S., Kasemset D. et al. Integrated 6-bit photonic true-time-delay unit for lightweight 3-6 GHz radar beamformer. IEEE MTT-S International Microwave Symposium Digest, 1992, 2: 681-684
    [61] P.J.Legg, D. K. Hunter, I. Andonovic, et al. Inter-channel crosstalk phenomena in optical time division multiplexed switching networks. IEEE Photon Technology Letters, 1994, 5(6): 661-663
    [62] Christian Schaffer. Influence of Crosstalk in Switchable Optical Time-Delay Networks for Microwave Array Antennas. IEEE transactions on microwave theory and techniques, 1997, 45(8): 1519-1521
    [63] Eggemann R., Grosskopf G., Patzak E. et al. Experimental investigations of a novel optical delay network structure for true time delay antennas at 10 GHz. International Topical Meeting on Microwave Photonics(MWP '99), 1999, 1: 161-164
    [64] Fetterman H.R., Chang Y., Scott D.C. et al. Optically controlled phased array radar receiver using SLM switched real time delays. IEEE Microwave and Guided Wave Letters, 1995, 5(11): 414-416
    [65] Esman R.D., Monsma M.J., Dexter J.L. et al. Microwave true time-delay modulator using fibre-optic dispersion, Electronics Letters, 1992, 28(20): 1905-1908
    [66] Esman R.D., Frankel M.Y., Dexter J.L. et al. Fiber-optic prism true time-delay antenna feed. IEEE Photonics Technology Letters, 1993, 5(11): 1347-1349
    [67] David A. Cohen, Yian Chang, A. F. J. Levi, et al. Optically Controlled Serially Fed Phased Array Sensor. IEEE Photonics Technology Letters, 1996, 8(12):1683-1685
    [68] Yian Chang, Harold R. Fetterman, et al. Optically-controlled serially-fed phased array transmitter. Microwave Photonics, International Topical Meeting on Microwave Photonics Technical Digest, 1996, 201-204
    [69] Yian Chang, H. R. Fetterman, Boris Tsap, et al. Optically controlled serially fed phased array radar. IEEE MTT-S International Microwave Symposium Digest, 1998, 3: 1367-1370
    [70] H. R. Fetterman, H. Erlig, Y. Chang, et al. Serial Feed Optical Approaches To Phased Array Antennas. Phased Array Systems and Technology Proceedings, 2000, 353-356
    [71] Jemison W.D., Herczfeld P.R. Acoustooptically controlled true time delays. IEEE Microwave and Guided Wave Letters, 1993, 3(3): 72~74
    [72]邱昆.光纤通信导论.成都:电子科技大学出版社,1995
    [73]黄章勇.光电子器件和组件.北京:北京邮电大学出版社,2001
    [74]黄章勇.新型光无源器件.北京:北京邮电大学出版社,2003
    [75]吕洪国.现代网络频谱测量技术.北京:清华大学出版社,2000
    [76] David A.Tulchinsky, Paul J.Matthews. Ultrawide-band fiber-optic control of a millimeter wave transmit beamformer. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(7): 1248-1253
    [77] C.K. Sun, R.J. Orazi, S.A. Pppert, et al. A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation. IEEE Photonics technology letters,1996, 8(9):1166-1168
    [78] J.M. Fuster, J.Marti, J.L.Corral, et al. Generalized study of dispersion induced power penalty mitigation techniques in millimeter wave fiber optic links. IEEE Journal of lightwave technology,2000, 18(7): 933-940
    [79] Yongqiang Jiang, Zhong Shi, Brie Howley, et al. Highly dispersive photonic crystal fibers for true-time-delay modules of an x-band phased array antenna. Proceedings of the SPIE, 2004, 5360:253-258
    [80] Ronald D.Esman, Michael Y.Frankel, J.L.Dexter, et al. Fiber-optic prism true time delay antenna feed. IEEE Photonics technology letters,1993, 5(11): 1347-1349
    [81] Yongqiang Jiang, Brie Howley, Zhong Shi, et al. Dispersion-enhanced photonic crystal fiber array for a true time-delay structured x-band phased array antenna. IEEE Photonics technology letters,2005, 17(1): 187-189
    [82] Cox C.H., Ackermann E., Helkey R., et al. Techniques and performance of intensity modulation direct-detection analog optical links. IEEE Trans. on Microwave Theory Technology, 1997, 45: 1375-1383
    [83] Ackerman E. I., C. H. Cox. State of the art in analog fiber-optic link technology. IEEE Signals. URSI International Symposium on Systems and Electronics, 1998, 372-377
    [84] Ackerman E.I., Cox C.H. RF fiber-optic link performance. IEEE Microwave Magazine, 2001, 2(4): 50-58
    [85] R. J. Mailloux. Phased Array Antenna (Second Edition). Norwood: Artech House, 2005
    [86] D. D. Aalfs, E. J. Holder. Impact of wideband channel-to-channel mismatch on adaptive array. 2000 IEEE Proceedings of SAMSP, 2000, 459-463
    [87] Shunjun Wu, Yingjun Li, Adaptive channel equalization for space-time adaptive processing, IEEE International Radar Conference, 1995, 624-628
    [88] J. C. Medley, F. C. Dacke, F. J.Adams, The impact of channel dispersion errors and equalisation filtering on subarrayed adaptive beamforming, 2005 IEEE International Radar Conference, 2005, 703-708
    [89]王峰,傅有光,孟兵,等.基于傅里叶变换的雷达通道均衡算法性能分析及改进.电子学报,2006, 34(9):1677-1680
    [90] Yong Ran, Xuegang Wang, Lin Zou, Performance of the improved channel equalization method for Wideband Digital Array Radar. International Conference on Communications, Circuits and Systems (ICCCAS 2009), 443-445
    [91] Simon Haykin. Adaptive Filter Theory (Fourth Edition). Englewood Cliffs: Prentice Hall, 2002
    [92]申秋明.数字阵列雷达接收机通道均衡技术研究与实现:[硕士学位论文].成都:电子科技大学,2005
    [93]郑立岗.数字接收机若干技术研究及系统实现: [博士学位论文].四川成都:电子科技大学,2004
    [94] Wang Hong, Lu Youxin, Wang Xuegang, Wan yonglun, Efficient structures for wideband digital receiver, Journal of Systems Engineering and Electronics, 2006, 17(3): 483-486
    [95]王洪.宽带数字接收机关键技术研究及系统实现:[博士学位论文].四川成都:电子科技大学,2007
    [96]杨小牛,楼才义,徐建良.软件无线电原理与应用.北京:电子工业出版社,2001
    [97]陈祝明.软件无线电技术基础.北京:高等教育出版社,2007
    [98] USA: Altera Corporation, StratixⅡDevice Handbook Volume1 & Volume2, 2009
    [99]李衍忠.超宽带脉压雷达信号产生系统研究:[博士学位论文].成都:电子科技大学,2000
    [100] Y. C. Jenq. Digital spectra of nonuniformly samples signals: fundamentals and high-speed waveform digitizers. IEEE Transactions on Instrumentation and Measurement. 1988,37(2): 245-251
    [101] S. Mitsuru, A. Yukio, W. Tsutomu. Jitter Analysis of High-Speed Sampling Systems. IEEE Journal of Solid State Circuits, 1990, 25(1):220-224
    [102] Y.C. Jenq. Digital-to-Analog(D/A) Converters with Nonuniformly Sampled Signals. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1): 56-59
    [103] S.S. Awad. Analysis of Accumulated Timing-Jitter in the Time Domain. Instrumentation and Measurement Technology Conference, 1997, 1:640-645
    [104] Y.C Jenq. Direct Digital Synthesizer with Jittered Clock. IEEE Transactions on Instrumentation and Measurement, June 1997, 46(3):653-655
    [105] S.S. Awad. Analysis of Accumulated Timing-Jitter in the Time Domain. IEEE Transactions on Instrumentation and Measurement, 1998, 47:69-73
    [106] N. Kurosawa, H. Kobayashi, H. Kogure, et al. Sampling Jitter and Finite Aperture Time Effects in Wideband Data Acquisition Systems. IEICE Transactions on Fundamentals, 2002, E85-A(2):335-346
    [107] N. Kurosawa, H. Kobayashi, H. Kogure, et al. Sampling Clock Jitter Effects in Digital-to-Analog Converters, Measurement, 2002, 31:187-199
    [108] S.W. Sin, U.S. P, R.P. Martins. Quantitative Noise Analysis of Jitter-Induced Nonuniformly Sampled-and-Held Signals. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '03), 2003, 6(1): 253-256
    [109] L. Angrisani, M. D’Apuzzo, M. D’Arco. Modeling Timing Jitter Effects in Digital-to-Analog Converters. IEEE proceedings of Intelligent Signal, 2005, 254-259
    [110] L. Michael, F. Gerhard. The Effects of Aperture Jitter and Clock Jitter in Wideband ADCs. computer Standards & interfaces, 2007, 29: 11-18
    [111] Uwe Meyer-Baese.数字信号处理的FPGA实现(第二版).北京:清华大学出版社, 2006
    [112]陈邦媛.射频通信电路.北京:科学出版社,2002
    [113] Reinhold Ludwig, Pavel Bretchko.射频电路设计-理论与应用(王子宇,张肇仪等译).北京:电子工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700