多腔串联压电泵结构设计及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电泵是近年来发展起来的一种新型流体泵,在流体系统中有着广阔的应用前景。压电泵的输出性能不仅取决于进口和出口截止阀特性,而且与腔体的结构形式息息相关。本文结合国家自然科学基金项目-“主动阀压电泵作用机理与关键技术研究”(项目编号:50575093)和教育部高等学校科技创新工程重大项目培育基金项目-“驱动测试控制功能一体化新型压电机构研究”(项目编号:708028),利用压电双晶片驱动压电泵工作,采用一种轮式平板阀,构造多腔串联结构的小型系列压电泵。在研发多腔串联压电泵的基础上,开展了多腔串联压电泵的结构设计以及试验等方面的研究。
     1、压电泵的国内外研究现状与发展
     压电泵具有结构简单、无电磁干扰、转换效率高、性能可靠等优点,是许多国家学者研究的热点课题,已经有30多年的研发历史。本文在查阅大量国内外相关文献的基础上,总结了压电泵的各种分类方法,并对有阀压电泵、无阀压电泵的国内外研究现状和应用情况进行了综述,了解到目前压电泵产品已经广泛应用于航空航天、化学分析、生物工程等各个领域。由于单腔压电泵的输出压力和输出流量均有限,采用多腔串联结构研发成为了一种良好的方案。国内外对于该方面的研究还处于起步阶段,研究成果较少,深入地了解多腔串联压电泵的工作特性,提高多腔压电泵的输出性能,为压电泵在更广泛领域的应用打下基础。
     2、压电振子振动特性研究
     压电振子是压电泵的动力元件,它的性能直接影响到压电泵的输出能力。利用薄板变形理论,建立了圆形压电振子弯曲变形的曲线方程,推导了压电振子变形量和容积变化量的解析式。对本文选用基板直径为35mm、陶瓷直径为29mm压电双晶片振子变形量进行了理论计算。应用ANSYS仿真软件建立了压电振子的有限元模型,对振子振动时的各阶振型频率和变形量进行了仿真分析。通过试验方法对压电振子的静态特性进行了测试,从而验证了理论分析和有限元仿真结果的正确性。
     3、压电泵被动截止阀的设计
     单向截止阀是决定有阀压电泵输出性能的关键部件,有阀压电泵研究与发展是伴随单向阀的发展而不断进步。针对多腔串联压电泵输出压力高的特点,为提高阀的承载能力和反向截止能力,本文采用一种由厚度5-7μm左右铍青铜加工的轮式平板阀。理论分析了轮式平板阀在静载荷作用下变形量及通流能力,确定了轮式平板阀的几何尺寸,研究了作用在阀两侧的压力差对阀通流能力的影响,并分析了其动态响应特性,为进一步提高输出流量提供了理论依据。
     4、多腔串联压电泵工作性能分析与测试
     多腔串联压电泵可以看作是多个单腔压电泵的串联工作模式,具有较大的输出流量和较好的输出压力。多腔串联压电泵是脉动输出,很难建立精确的数学模型计算分析其输出性能。为此,采用多个压电晶片设计制作了双腔串联、三腔串联和四腔体串联等结构的压电泵系列样机,对各个结构工作时的表现特性进行理论分析,并对输出压力、输出流量、阀的安装位置以及不同驱动方式等情况进行了试验测试。试验结果表明:①从输出压力来看,三腔串联压电泵在整个工作频率段的输出压力约为两腔串联的1.5倍,输出压力比较平稳,而四腔泵输出压力波动较大。但是,随着串联级数的增加,多腔串联压电泵的输出压力持续增大。②从输出流量来看,多腔压电泵在高频段(大于200Hz)工作时,随着腔体数量的增加,输出流量增加较多,在输出电压的工作频率为300Hz时,四腔串联压电泵的输出流量达到了将近1000ml/min。可见,多腔体串联压电泵可以有效地提高压电泵的输出流量性能。
     5、多腔串联压电泵驱动电源设计
     为满足压电振子快速响应的要求,运用FPGA和DDS技术为多腔串联压电泵设计了快速响应的驱动电源。DDS是一种新型的频率合成技术,从“相位”的概念出发进行频率合成,具有较高的频率分辨率。以FPGA芯片作为硬件电路的核心,通过VHDL语言设计的DDS驱动电源的IP核嵌入在FPGA内部。采用模块化的思想,设计了DDS系统外围电路,进行了软件设计,并且对该驱动电源进行了试验测试,结果表明该驱动电源的输出波形(正弦波、三角波和方波)精度较高,当频率和波形等参数改变时响应速度快,达到电源输出稳定性要求。
     6、多腔串联压电泵闭环控制系统设计
     压电泵在工作过程中,易受气泡、杂质等干扰,输出流量有时会不稳定。为此,设计了多腔串联压电泵闭环控制系统,它由缓冲电路、调幅电路、功率放大电路、升压变压器等部分组成,核心部件是在缓冲级之后由FPGA控制数字电位器组成的可变增益的调幅电路。实际的输出流量通过换算转换成电压值后,与参考电压值做比较,存在偏差则调节调幅电路的数字电位器抽头位置,运用FPGA芯片通过增益调整来实现多腔串联压电泵流量的稳定控制,为今后的研究提供新的思路和试验平台。
As a kind of new fluid pump developed in recent years, piezoelectric pump has broadapplication prospects in a fluid system.The output performances of piezoelectric pumpdepend not only on features of inlet and outlet of check valve,but also chamber structureclosely related.Combining with the national natural science fund project " Reserch onmechanism and key technology of active valve piezoelectric pump "(project number:50575093) and fostering fund project of institutions of higher learning engineering supportedministry of education-"Research on drive test control functional integration for new typepiezoelectric institutions "(project number:708028), we adopt piezoelectric bimorph todrive piezoelectric pump work, construct multi-chamber series piezoelectric pump withwheel flat valves,carry on theory design and experimental research for multi-chamber seriespiezoelectric pump
     1、Domestic and foreign research situation and development of piezoelectric pump
     Although research history of piezoelectric pump is more than30years only, it hasbecome one of research topics of many countries scholars, which has advantages of simplestructure, high efficient conversion, reliable performance, and not affected byelectromagnetic interference. On the basis of related literatures at home and abroad,variousclassification methods of piezoelectric pump are summarized in this paper. Moreover,research status of valve piezoelectric pump and no valve piezoelectric pump are reviewed athome and abroad. And that pressure pump products have been widely used in aerospace,chemical analysis, biological engineering and other fields.Because output pressure and flow ofsingle-chamber piezoelectric pump is limited,multi-chamber series piezoelectric pump becomes a goodsolution. But that is still at the beginning stages in the domestic and overseas,hence research results areless. So it is necessary to research operating characteristics of multi-chamber series piezoelectric pump and improve output capacity of multi-chamber series piezoelectric pumps, which can establish researchfoundation towards practicalization and productization.
     2、Piezoelectric vibrator characteristic research
     Piezoelectric vibrator is powe component of piezoelectric pump,whose performance directly affectsthe output capacity of piezoelectric pump. Based on thin plate deformation theory,curve equation ofcircular piezoelectric vibrator deformation is established and analytical expression of deformation andvolume variation si deduced.We select bimorph piezoelectric vibrator that its base diameter is35mm andceramic diameter is29mm,and so calculate its theoretical deformation.Finite element model ofpiezoelectric vibrator is established by ANSYS software.Subsequently some of the vibration modesfrequencies are obtained by modal analysis,and the amount of demoration is analyzed.Through staticcharacteristics tests of piezoelectric vibrator,we verify the validity of theoretical analysis and finiteelement simulation results.
     3、Design of passive check valve of piezoelectric pump
     One-way check valve is a key part to output performance of valve piezoelectric pump,its researchand development of valve piezoelectric pump is accompanied by one-way valve development. Becauseoutput pressure is relatively high to multi-chamber series piezoelectric pump, we adopt wheel flat valveby eryllium bronze that thickness is about5-7μm in order to improve bearing and reverse blockingcapacity.Deformation and flow capacity is analyzed under static load by theory,and its geometry size ofwheel flat valve is determined. In addition,we turn to study the effect on flow capactity between bothsides of flow capactity pressure difference. It can provide theoretical basis for improving output flow afteranalyzing dynamic response characters.
     4、Performance analysis and test for multi-chamber series piezoelectric pump
     Multi-chamber series piezoelectric pump can be thought of as serial working mode with many single–chamber piezoelectric pump,which has a larger output flow and pressure. Because the output ofmulti-chamber series piezoelectric pump is fluctuating,it is difficult to establish accurate mathematicalmodel to calculate output performance.Therefore, prototype machines such as double-chamber,three-chamber and four-chamber series structure are designed using multiple piezoelectric bimorph,andtheir working performances also analyze further. Moreover output pressure, output flow, valveinstallation position and different drive mode are also tested.
     From the view point of output pressure,experimental results show that output pressure ofthree-chamber series piezoelectric pump is about1.5times than that of double-chamber in the workingfrequency,whose output pressure is more stable,but four-chamber output pressure mostly fluctuates.However with the series increases,output pressure also increases.From the view point of output flowrate,with chamber number increases,output flow is also increased at high frequencies(greater than 200Hz). When the working frequency of output voltage is300Hz,output flow of four-chamber seriespiezoelectric pump reached nearly1000ml/min. Obviously,multi-chamber series piezoelectric pump caneffectively improve output flow performance
     5、Design of drive power supply for Multi-chamber series piezoelectric pump
     To meet requirements of quick response for piezoelectric vibrator, we use FPGA and DDStechnology to design drive power supply that has quickly response. DDS is a kind of frequent synthesistechnology newly, which proceeds to frequent syntheis by phase concept and has high resolution.FPGA chip is the core of the hardware circuit. IP cores of drive supplys power are embedded in internalFPGA chip by VHDL language. We design DDS peripheral circuit and software flow by modularity.Experimental results show that output waves (sine wave, triangular wave and square wave) have highprecision and quick response speed, when parameters such as frequency and waveform changes that canmeet stability requirements.
     6、Design of closed-loop control systemfor multi-chamber series piezoelectric pump
     Piezoelectric pump is vulnerable to bubbles,impurities interference,so sometimes output flow is notstable.Therefore we design closed-loop control system for multi-chamber series piezoelectric pumpincluding buffer circuit,modulation circuit,power amplifier circuit and step-up transformer,whose corecomponent is variable gain modulation circuit contrrolled by digital potentiometer.After actual outputflow converted to avoltage value, is compared with reference voltage value. If deviation exists,digitalpotentiometer tap position is regulated by FPGA chip. It is goode method sto adjust gain of modulationcircuit in order o realize flow stability control,which provide new thinkings for future research andexperiment platform.
引文
[1]朱一锟.流体力学基础[M].北京:北京航空航天大学出版社,1990.
    [2] Chunsun Zhang,Da Xing,Yuyuan Li. Micropumps,microvalves,and micromixers within PCRmicrofluidic chips: Advance and trends [J].Biotechnology Advances,2007,25(5):483-514.
    [3]胡笑奇.非回转非容积型无阀压电泵的动力学分析和实验研究[D].南京:南京航空航天大学,2012.
    [4]周小英.几种无阀压电泵的计算机模拟[D].北京:北京工业大学,2008.
    [5]杨林杰.压电式无阀微泵振动分析及流场数值计算[D].秦皇岛:燕山大学,2005
    [6] Olivier Fracais,Isabelle Dufour.Dynamic simulation of an electrostatic micropumpwith pull-in and hysteresis phenomens[J].Sensors and actuatorsA..1998,70:56-60
    [7] Nam Trung Nguyen,Thai Quang Truong. A fully polymeric micropump withpiezoelectric actruator[J].Sensors and Actuators B.2004,97:137-143
    [8]阚君武,杨志刚,程光明.压电泵的现状与发展[J].光学精密工程.2002,10(6):619-625
    [9] Peter Woias. Micropumps—past,progress and future prospects. Sensors andActuators B,2005,105(1):28-38
    [10] Heidi Gensler,Roya Sheybani,Po-Ying Li. An implantable MEMS micropumpsystem for drug delivery in small animals [J]. Biomedical microdevices,2012,14(3):483-496
    [11]曾平,程光明,刘九龙,孙晓锋等.双腔薄膜阀压电泵的实验研究[J].光学精密工程.2005,13(3):311-317
    [12] Isaku Kanno,Satoyuki Kav\wano,Shunsuke.Characterization of piezoelectrticmicropump driven by traveling waves[J].7th international conference on minizaturiedchemical and biochemical analysis systems,California USA,2003:997-1000
    [13] Takaaki Suzuki,Yuji Teramura,Hidetoshi Hata,Koki Inokuma. Development of amicro biochip integrated traveling wave micropumps and surface Plasmon resonanceimaging sensors[J]. Microsystem Technologies.2007(13):1391-1396
    [14] Morris C J.,Forster FK.Optimization of a circular piezoelectric bimorph for amicropump driver [J].Journal of Micromechanics and Microengineering,2000,10(3):459-465
    [15] Parkshit Verma,Dhiman Chatterjee.Parametric characterization of piezoelectricvalveless micropump[J]. Microsystem Technologies.2011,17(12):1727-1737.
    [16]李洪.非对称波纹腔底无阀压电泵的研究[D].北京:北京工业大学,2007.
    [17]何秀华,张睿,蒋权华.基于MEMS的压电泵及其研究进展[J].排灌机械.2007,25(4):64-68.
    [18]程光明,朱志伟,孟凡玉,孙静等.基于BP神经网络压电泵输入输出系统的辨识[J].机床与液压.2010,(7):95-98.
    [19]杨瑞锋.双振子压电微泵设计与理论分析[D].兰州:兰州理工大学,2007.
    [20]刘登云,陈洪涛,杨志刚,程光明.压电叠堆泵的初步研究[J].液压与气动,2007,(3):71-73.
    [21] Junwu Kan,Kehong Tang,Guojun Liu,Guoren Zhu,Chenghui Shao. Developmentof serial-connection piezoelectric pumps[J].Sensors and ActuatorsA..2008,144(2):321-327.
    [22] Shoji S,Nakagawa S,Esashi N.Micropump and sample-injector for integratedchemical analysis system[J]. Sensors and Actuators,1990,21(23):189-192.
    [23] A.Richter, A.Plettner, K.A.Hofmann, H.Sandmaier.A micromachinedlectrohydrodynamic pump[J].Sensors and ActuatorsA,1991,29(2):159-168.
    [24]彭太江.多腔体有阀压电泵设计理论及应用研究[D].吉林:吉林大学,2003.
    [25] Zhang Tao,Wang Qing Ming. Valveless piezoelectric micropump for fuel delivery indirect methanol fuel cell devices[J].Journal of Power Sources.2005,140(1):72-80.
    [26] Zhang Tao,Wang Qing Ming. Performance of miniaturized direct methanol fuel celldevices using micropump for fuel delivery [J]. Journal of PowerSources.2006,158(1):169-176.
    [27] W.J.Spencer,W.T.Corbett, L.R.Dominguez, et al.An electronically controlledpiezoelectric insulin pump and valves[J].IEEE Trans.Sonics Ultrasonics.1978,S-25(3):153-156.
    [28] Smits J G. Piezoelectric Micropump with three valves working peristaltically[J].Sensors and ActuatorsA.1989,21(1-3):203~206.
    [29]樽崎哲二.双层振动子泵[P].日本,发明专利.昭57-137671,1978.
    [30] S.Bohm,W.Olthuis,P.Bergveld.Plastic micropump constructed with conventionaltechniques and materials[J].Sensors and ActuatorsA.1999,77(3):223-228.
    [31] X.yang,Z.Zhou,H.Cho,and X.Luo.Study on a PZT-actuated diaphragm pump for airsupply for micro fuel cell[J].Sensors and ActuatorsA.2006,130:531-536.
    [32] H.K.Ma,B.R.Hou,H.Y.Wu,C.Y.Lin,J.J.Gao,M.C.Kou.Delelopment and applicationof a diaphragm micropump with piezoelectric device[J].MicrosystemTechnologies.2008,14(7):1001-1007.
    [33] H.K.Ma,B.R.Hou,C.Y.Lin, J.J.Gao. The improved performance of one-sideactuation diaphragm micropump for a liquid cooling system[J].InternationalCommunications in Heat and Mass Transfer.2008,35(8):957-966.
    [34] Konishi, Nobuhiro Shibata,Tadashi Ohmi,Tadahiro.Impurity Back DiffusionTthrough An Ultrahigh Vacuum Turbomolecular Pump Under Large Gas Throughput[J]. Journal of Vacuum Science&Technology.1996,14(5):2958-2965.
    [35] O.C.Jeong,T.Morimoto,S.Konishi.Peristaltic PDMS pump with perfect dynamicvalves for both gas and liquid[J].Proc. IEEE MEMs.2006,782-785.
    [36] Sirohi,Chopra. Design and development of a high pumping frequencypiezoelectric-hydraulic hybrid actuator[J]. Journal of intelligent material systems andstructures.2003(14):135-147.
    [37] Y. Kojima,T. Okusawa,K. Tsubouchi,et al. Fundamental investigation of apiezoelectric pump for a trace liquid feed[J]. JSME International Journal Series C.1995,38(3):531-537.
    [38] S.Shoji, S.Nakagawa and N.Esashi. Micropump and sample-injector for integratedchemical analysis system [J]. Sensors and ActuatorsA.1990,21(1-3):189-192.
    [39]焦小卫,黄卫清,赵淳生.压电泵技术的发展及其应用[J].微电机.2005,5:66-69.
    [40]阚君武,杨志刚,唐可洪.新结构药品输送压电泵的泵送特性[J].生物医学工程学.2004,21(2):297-301.
    [41]刘九龙.压电泵为动力源的计算机芯片水冷系统研究[D].吉林:吉林大学,2006.
    [42]曾平,程光明,刘九龙,杨志刚等.集成式计算机芯片水冷系统的研究[J].西安交通大学学报.2005,39(11):1207-1210.
    [43]刘长庚,周兆英,王晓浩.压电驱动微型喷雾器的研究[J].压电与声光.2001,23(4):272-274.
    [44]冯焱颖,兆英,叶雄英.压电致动微喷的压力波特征分析[J].微纳电子技术.2003,40(7):506-511.
    [45]赵淳生,焦小卫,黄卫清.压电泵[P]. F04B43/04,01L41/08,2004.
    [46]路计庄.新型无阀压电泵开发与压电泵工作噪声的研究[D].北京:北京工业大学,2007.
    [47]程秀兰,蔡炳初,徐东.基于硅结构的微流体控制系统[J].微细加工技术.2002,(2):58-65.
    [48] My Pham,Nam Seo Goo. Development of a Peristaltic Micropump with LightweightPiezo-CompositeActuator Membran Valves[J].2011,12(1):69-77.
    [49] M.YakutAil,Cuifang Kuang,Jamll Khan. ADynamic Piezoelctric MicropumpingPhenomenon[J]. Microfluid Naofluidics.2010,9(2):385-386.
    [50] Raffaele Ardito,Emanuele Bertarelli,Alberto Corigliano,Giacomo Gafforelli. Onthe application of piezolaminated composites to diaphragmmicropumps[J].2013,99:234-240.
    [51] Jung-Ho PARK,Kazuhiro YOSHIDA,Yoshihiro NSKSSU,Shinichi YoKOTA. AResonantly-Driven Piezoelectric Micropump for Microfactory[C]. Proc. of ICMT,2002:417-422.
    [52] Keller, Charles Anderson. Novel Concepts in Piezohydraulic Pump Design [D]. Athesis of Georgia institute of technology.2004.
    [53]]程光明,何丽鹏,曾平,李鹏等.圆形双振子式主动阀压电泵设计与性能实验[J].农业机械学报.2010,41(5):204-208.
    [54] Lee Dong Gun, Siu Wing, Carman Gregory P. Design of a Piezoelectric-hydraulicPump with Active Valves [J]. Journal of Intelligent Material Systems and Structures,2004,5(20):107-116.
    [55] Lee Dong Gun, Siu Wing, Carman Gregory P. Piezoelectric Pump with InnovativeNon-Mechanical Active Valves [D]. UCLA, Active Materials Lab.2004.
    [56] Ki Sung Lee, Bonghwan Kim, Mark A.Shannon.An electrostatically driven valve-lessperistaltic micropump with a stepwise chamber [J]. Sensors and Actuatours A:Physical,2012,18:183-189
    [57] M.N.Hamdan, S.Abdallah,A.Al-Qaisia. Modeling and study of dynamic performanceof a vlaveless micropump [J].Journal of Sounde and Vibration,2010,(329)15:3121-3136
    [58] Xue fei Leng, Jian Hui Zhang, Yan jiang.Theory and experimental verification ofspiral flow tube-type valveless piezoelectric pump with gyroscopic effect [J].Sensorsand Actuators:Physical,2013,(195)1:1-6
    [59] Raffaele Ardito,Emanuele Bertarelli,Alberto Corigliano.On the application ofpiezolaminated composites to diaphragm micropumps[J].Composite Structures,2013,99(4):231-240
    [60]高晓光.PZT压电薄膜无阀微泵[J].功能材料与器件学报.2008,14(4):793-798.
    [61] A.Olsson,G.stemme,and E.Stemme. Simulation studies of diffuser and nozzleelements for valve-less pump fabricated using deep reactive ionetching[J].Proceedings of the IEEE9th International Workshop on Micro ElectroMechanical systems. Diego,Calif,UsA.1996.
    [62] A.Olsson,G.Stemme,and E.Stemme. Simulation studies of diffuser and nozzleelements for valve-less micropumps[J]. Proceedings of the International Solid StateSensors and Actuators Conference.Chicago,USA.1997.
    [63] A.Olsson,O.Larsson,J.Holm,L.Lundbladh,O.Hhman,G.Stemme.Valve-less diffusermicropumps fabricated using thermoplastic replication[J]. Sensors and ActuatorsA.1998,64(1):63-68.
    [64] Erik Stemme,Goran Stemme. A valveless diffuser/nozzle-based fluid pump[J].Sensors and ActuatorsA,1993,39:159-167.
    [65] Torsten Herlach.Working principle and performance of the dynamic micropump[J].Sensors and actuatorsA.1995(50):135-140.
    [66]程光明,杨志刚,曾平.压电泵泵腔体积变化最小研究[J].压电与声光.1998,20(6):389-394.
    [67]寇杰.连续可变锥角的锥形流管无阀压电泵的优化与实验研究[D].北京:北京工业大学,2007.
    [68] Chang-Ju Park,Byung-Phil MUn, Sung_Keun Yoo,Jong-Hyun Lee. Cross-sectionalshape effect of a diffuser micropump on flow rates [J]. The institute of engineeringand technology.2011,682-685.
    [69]林晓光,张建辉.螺旋流管无阀压电泵实验与研究[D].南京:南京航空航天大学,2012.
    [70]胡笑奇,张建辉,夏齐霄,黄俊.柔性尾长对尾鳍式压电泵的影响[J].机械工程学报.2012,48(8):167-173.
    [71] Cicero R,D.L.Sandrol. A biomimetic piezoelectric pump: computational andexperimental characterization [J].Sensors and ActuatorsA.2009,152(1):110-118.
    [72]胡笑奇,张建辉,黄毅,夏齐宵等.一种仿生型无阀压电泵[J].振动、测试与诊断.2012,32增刊:132-135.
    [73]曾平,刘国君,杨志刚,程光明.球阀式压电薄膜泵的初步研究[J].压电与声光.2005,27(2):118-120,130
    [74] Michael Vossele, M. Jugl, M. Blaesing,D. Hradetzky,S. Messner. Integration ofmicroneedle-arrays and micro pumps in disposable and cheap drug deliverydevices[J].4th European Conference of the International Federation for Medical andBiological Engineering.2009:2364-2367.
    [75] Didier Maillefer, Stephan Gamper, Beatrice Frehner, Patrick Balmer.A highperformance silicon micropump for disposable drug delivery systems[J].Proceedingsof the MEMS2001conference, Interlaken Switzerland.2001:413-417.
    [76]彭太江,杨志刚,阚君武.压电泵在CPU芯片液体冷却系统中的应用研究[J].制冷学报.2009,30(3):30-34.
    [77]孙晓锋,杨志刚,邵泽波,段浩等.泵用圆形压电双晶片弯曲变形分析[J].排灌机械工程学报.2013,31(1):31-35.
    [78]刘凯.压电驱动式主动阀压电泵理论与试验研究[D].长春:吉林大学,2004.
    [79]刘国君.迭片式系列微型压电泵的设计理论及实验研究[D].长春:吉林大学,2006.
    [80]李鹏.主动阀压电泵的理论与实验研究[D].长春:吉林大学,2007.
    [81]孙静.ANSYS有限元分析在压电泵研究中的应用[J].技术与教育.2009,23(1):8-11.
    [82]孙晓锋.双振子压电泵设计理论与结构优化技术研究[D].长春:吉林大学,2009.
    [83] Guo-Hua Feng and Eun Sok Kim.Micropump based on PZT unimorph and one-wayparylene valves. Journal of Micromechanics andMicroengineering.2004,14(4):429-435.
    [84] E. H. Yang, S. W. Han,S. Yang. Fabrication and testing of a pair of passive bivalvularmicrovalves composed of p+silicon diaphragms [J]. Sensors and Actuators A:Physical.1996,57(1):75-78.
    [85] R E Oosterbroek, J W Berenschot, S Schlautmann.Designing, simulation andrealization of in-plane operating micro valves, using new etching techniques[J].Journal of Micromechanics and Microengineering,1999,9(2):194–198.
    [86]孙晓锋,杨志刚,姜德龙,何丽红,姜斌.并联压电泵腔体初始容积设计[J].排灌机械工程学报,2005,30(52):543-547
    [87]林敬国.整体开启阀式压电泵理论与试验研究[D].长春:吉林大学,2005.
    [88] Nam-Trung Nguyen, Thai-Quang Truong, Kok-Keong Wong, et al.Micro checkvalves for integration into polymeric microfluidic devices[J]. Journal ofMicromechanics and Microengineering.2004,14(1):69–75.
    [89]盛宏玉.结构动力学辅导与习题精解[M].合肥:合肥工业大学出版社,2007.
    [90]孙晓锋.压电泵驱动的电脑芯片水冷系统理论与实验研究[D].长春:吉林大学,2005.
    [91]孙晓锋,李欣欣,杨志刚,刘九龙等.带整体开启阀的双腔串联压电薄膜泵[J].吉林大学学报(工学版).2006,14(4):648-651
    [92]刘亮.双腔型气体压电泵设计理论与关键技术研究[D].长春:吉林大学,2008.
    [93]孙晓锋;杨志刚;姜德龙.两种双腔串联压电泵结构设计与性能比较[J].排灌机械学报.2011
    [94]何丽鹏.微小型主动阀压电泵的结构设计理论及控制系统的研究[D].长春:吉林大学,2011
    [95]曾菊荣.基于FPGA和DDS技术的任意波形发生器设计[J].现代电子技术.2010,33(24):32-35
    [96]雷求胜,唐宁,陈科.基于AD9954的多模式调制器的设计[J].电子设计工程.2011,19(2):17-20
    [97]叶泽刚.基于DDS的超声电机驱动信号源芯片[D].西安:西安科技大学,2007
    [98]杨大柱.基于FPGA的直接数字频率合成器的设计[J].现代机械.2009(5):12-16
    [99]朱钰铧.基于FPGA的直接数字频率合成器的设计实现[J].安庆师范学院学报(自然科学版).2004,10(3):29-31,41.
    [100]张思卿,张机.基于DDS的频率合成技术[J].济源职业技术学报.2007,6(4):17-21.
    [101]汪国强.EDA技术与应用[M].电子工业出版社,2012.
    [102]俞吉波,孔雪,郑哲,祝永新等.FPGA实际可用性评估与发展趋势分析[J].计算机工程.2011,37(13):282-284.
    [103]朱凯科.FPGA动态可重构设计方法研究[D].杭州:浙江大学,2006.
    [104]黄刚,申欲晓.DDS在信号发生器中的应用[J].机械工程与自动化.2007,5:153-156.
    [105]孙耀杰,杜森,王国君,董津生.数字电位器的研究及应用[J].电子设计工程,2010,18(6):161-163.
    [106]高光天.数字电位器AD8402/AD8403原理及应用[J].电子技术应用,1996,10:54-56.
    [107]冯颖.激光接收电路数字电位器法可变增益控制.探测与控制学报,2009,31(4):9-13,18
    [108]李锡瑞.基于数字电位器Max5481的原理及应用[J].数字技术与应用,,2009,12:71-72.
    [109]冯伯翰,邱志明.基于LA4102芯片制作功率放大器[J].科技信息,2007(6):79-80.
    [110]罗伟.自制小型变压器[J].家庭电子.1999,10:56-57.
    [111]马海军,曲尔光.基于X9241数字电位器的可控增益放大器[J].现代电子技术,2008(3):160-162.
    [112]杨志刚,孙晓锋,张德君,程光明等.双腔串联两阀与三阀压电泵的性能研究[J].光学精密工程,2007,15(2):219-223.
    [113] M. Shen,L.Dovatb,M.A.M.Gijsa. Magnetic active-valve micropump actuated by arotating magnetic assembly [J]. Sensors and Actuators B: Chemical,2011,151(1):52-58
    [114] Shih-Chi Chan, Chia-Ray Chen, Cheng-Hsien Liu.A bubble-activated micropumpwith high-frequency flow reversal[J]. Sensors and Actuators A: Physical,2010,163(2):501-509
    [115] Seung-Mo Haa,Wong Choa, Yo min Ahn.Disposable thermo-pneumatic micropumpfor bio lab-on-a-chip application [J]. Microelectronic Engineering,2009,86(4):1337-1339
    [116] Lung-Jieh Yanga, b, Tzu-Yuan Lina. A PDMS-based thermo-pneumatic micropumpwith Parylene inner walls[J]. Microelectronic Engineering,2011,88(8):1894-1897
    [117] Meiling Zhu, Martin Wacklerle, Markus Herz, Martin Richteb. Optimization designof multi-material micropump using finite element method[J]. Sensors and ActuatorsA: Physical,2009,149(5):130-135
    [118] Mtthew L. Cantwell,Farid Amirouche, Johann Citerin. Low-cost high performancedisposable micropump for fluidic delivery applications [J] Sensors and Actuators A:Physical,2011,168(1):189-194
    [119] Yang Fang, Xiaobo Tan. A novel diaphragm micropump actuated by conjugatedpolymer petals: Fabrication, modeling, and experimental results [J]. MicroelectronicEngineering,2010,158(1):121-131
    [120] F. Trenkle, S. Haeberle, R. Zengerle.Normally-closed peristaltic micropump withre-usable actuator and disposable fluidic chip[J]. Sensors and Actuators B: Chemical,2011,154(2):137-141
    [121] Yves Fouillet, O. Fuchs, S. Maubert, M. Cochet. A Silicon Micropump withOn-Chip Flow Meter [J]. Procedia Engineering,2012,47:314-317
    [122] Hiroshige Kumamaru, Satoshi Okamoto, Koki Arimoto.Experimental study onmicropump using reciprocating motion of magnetic ball covered with magneticfluid[J]. Physics Procedia,2010,9:238-242
    [123] Yi-Chun Wang, Jui-Cheng Hsu, Ping-Chi Kuo. Loss characteristics and flowrectification property of diffuser valves for micropump applications[J]. InternationalJournal of Heat and Mass Transfer,2009,52(1):328-336
    [124] Jianke Kang, Gregory W. Auner.Simulation and verification of a piezoelectricallyactuated diaphragm for check valve micropump design[J]. Sensors and Actuators A:Physical,2011,167(2):512-516
    [125] Bonnie Tingting, Hsin-Hung Liao,Yao-zhou Yang. A novel thermo-pneumaticperistaltic micropump with low temperature elevation on working fluid[J]. Sensorsand ActuatorsA: Physical:2011,165(1):86-93
    [126] H.K. Ma, H.C. Su,J.Y. Wu. Study of an innovative one-sided actuating piezoelectricvalveless micropump with a secondary chamber[J]. Sensors and Actuators A:Physical,2011,171(2):297-305
    [127] S. Chandika, R. Asokan, K.C.K. Vijayakumar.Flow characteristics of the diffuser/nozzle micropump—A state space approach [J]. Flow Measurement andInstrumention,2012,28:28-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700