乘用车EHB液压特性建模及车辆稳定性控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子和网络技术的发展,高效、节能、环保、舒适的线控技术与车辆制动系统相结合,线控制动系统应运而生。电子液压制动系统EHB(Electronic Hydraulic Brake)作为向完全线控制动系统-电子机械制动系统EMB(Electronic Mechanical Brake)发展的过渡产品,其对现有车辆制动系统改动较小,成本较低,更容易在当前车辆系统上批量生产、装配。
     电子液压制动系统与传统液压制动系统在结构上存在较大差异。驾驶员的制动命令以电子信号的形式传递给电控单元ECU(Electronic Control Unit),液压控制单元HCU(Hydraulic Control Unit)中的高压蓄能器提供制动所需压力,每个轮缸的压力通过一对高速开关阀的脉宽调制PWM(Pulse Width Modulation)方式控制轮缸中的制动液来实现。HCU性能在很大程度上影响整个制动系统的工作性能,因此对EHB液压系统的研究具有重要的意义。
     本文首先分析了高速开关阀的阀芯运动及其响应特性,并提出对电磁阀的定调制频率的PWM控制策略。在仿真软件AMEsim环境下建立起EHB制动回路的液压系统结构模型,并通过MK20-I型ABS液压系统试验参数辨识的轮缸增减压特性公式验证了该模型的有效性。提出基于单控制变量横摆角速度的稳定性控制策略,并通过典型工况仿真评价控制效果。分别改变液压系统关键液压元件-高速开关阀的调制频率和其动态响应时间,分析其对车辆稳定性控制效果的影响以及电磁阀的工作状态,继而提出液压系统液压元件的性能参数要求及电磁阀控制系统调制频率选择的理论依据。本文最后提出在现有车辆主动液压制动系统的基础上实现EHB液压系统的硬件在环试验台方案及EHB液压系统的结构方案,该方案经过多方论证,具有较强的可实施性。
As a new type of vehicle active control braking systems, EHB(Electronic Hydraulic Braking) system is the development product of the transition from the vehicle conventional hydraulic braking system to EMB(electronic mechanical braking) system.EHB abolished the mechanical connection between brake pedal and brake wheel cylinder, and the driver’s braking order is transmittedto the ECU (Electronic Control Unit) in the form of electronic signal, then ECU identify the driver’s braking intentention while collecting the other vehicle sensors information, making out the optimal cylinder brake pressure by controlling the solenoid valve to regulat cylinder pressureor.The characteristics structure of EHB system bring about revolutionary innovation for the design of modern vehicle.
     As a new braking system, EHB can significantly improve the braking performance and vehicle handling and stability, while providing a variety of support functions, sharing information with other vehicle control systems to cater the development of the vehicle chassis integrating and realize the ultimate intelligent vehicle control.
     Based on the study of EHB system basic structure and working principle, the paper mainly completed EHB hydraulic system modeling and the stability control algorithm research based on EHB. Control methods are used to control the switching of the solenoid valve to regulate the wheel brake cylinder pressure. Change modulation frequency and performance parameters of the electromagnetic valve, and find the factors of influencing vehicle stability control effect. Finally, hardware in-the-loop test of EHB system and the structure of the EHB hydraulic system are built to provide a platform for the following development of the hydraulicsystem hardware and the improvement of the brakeing control algorithm.
     (1) Hydraulic System Modeling
     EHB and the conventional hydraulic braking system are quite different in structure, based on structural features of the EHB system to establish the EHB components hydraulic model, which is of great significance for the development of active control algorithm research. This paper creates an effective brake hydraulic circuit system architecture model, which is verified by conventional hydraulic brake control system’s wheel cylinder hydraulic pressure increase and release process. The hydraulic model can be used for the initial simulation research on EHB. This paper also establish the ESP system hydraulic structure model, and analyse the hydraulic response between EHB and ESP system in theory when come to the intervention of stability control, a conclusion is made that EHB outstanding in brake pressure applying quickly and releasing downright.
     (2) PWM control logic of solenoid valve
     A number of factors impacts the hydraulic braking system charecteretics, wheel cylinder pressure is regulated by in-solenoid and out-solenoid valve, the dynamic response of the control strategy willt impact the accuracy of wheel cylinder pressure greatly. Solenoid valves of HCU are the highest manufacturing processing hydraulic components, and their performance parameters and control strategies are of the great significance on the characteristics of the hydraulic system. In this paper the structure of high-speed on-off valve and the valve core principle are discussed, the paper also analysis the response of the valve core under different modulation frequency and duty cycle and the change of .wheel cylinder pressure. Setting a proper modulation frequency to make sure that electromagnetic valve can be worked in a greater linear range. While modeling, the response time will be incorporated into the electromagnetic valve opening or closing time, through the simulation analysis of restricting the duty cycle of electromagnetic valve or not, in the spool in a certain relative displacement standard conditions, the electromagnetic valve duty cycle may not be restricted due to the spool in a certain relative displacement to amend the solenoid valve lag time because of simplifying the process of modeling electromagnetic with neglecting lag time to ensure that the duty cycle of solenoid valve is set under the conditions of not work in their death or saturated region. The PWM control method of solenoid valve can effectively regulated wheel cylinder pressure. The simulation results show that the spool relative displacement were almost 0.5 above, and the electromagnetic valve did not enter dead or saturated zone.
     (3) Primer study on v ehicle stability control method based on yaw rate
     Based on vehicle dynamic stability control theory, a single-variable control of vehicle yaw rate stability control strategies and algorithms was established combined with structural characteristics of EHB hydraulic system. Reference to vehicle linear model with two degree of freedom, an additional vehicle yaw torque is decided by comparing vehicle actual state to normal one. Translate the torque into the corresponding additional wheel brake pressure, wheel cylinder pressure is controlled in closed-loop from getting pressure sensor information which provided by pressure sensor in wheel cylinder.
     (4) Simulations analysis on vehicle stability control system under typical conditions
     Simulations for stability control system which is based on EHB are implemented, the results illustrate that the stability control algorithm proposed in the paper can ensure significant control effects to prevent vehicle from losing control. Furthermore, the control system can make brake application on individual wheel properly and quickly with the wheel cylinder pressure following the target pressure appropriately. The duty cycle of solenoid valve is in its linear area and the relative displacement of valve core is 0.5 or more and never goes into dead zone and saturation region.
     (5) The influence of EHB key hydraulic components performance and control frequency on vehicle stability control effect
     It provides theoretical basis for the requirements of the parameters of EHB hydraulic system and the development of control system to estimate the influences of PWM frequency and dynamic response time of the high speed switch valve on the control effects of vehicle dynamic control system. On one hand, turning down the PWM frequency of solenoid valve may cause the delay of the wheel cylinder pressure modulation and bigger fluctuation and eventually impact the control effect. On the other hand, system pressure can compensate the delay of pressure building using the high-pressure source when the dynamic response time is big, but this can cause the solenoid valve with no action and delay of cylinder pressure modulation because under this condition the solenoid valve can not fully response and has small relative displacement in a long time, and eventually may impact the control effect. So the conclusion is only proper design of components of hydraulic system especially the performance parameters which can ensure great dynamic response of hydraulic system that consistent with the control strategy can make good use of stability control system.
     (6) Scheme of EHB hardware-in-the-loops test and hydraulic system
     The EHB system hardware in the loop test bench blue print and EHB hydraulic system structure scheme are proposed based on the lab condition after extensive survey and argumentation. This constructs a platform for the validation of the research results in this paper, study of the characteristics of hydraulic system and improvement of active braking system. The test bench can fulfill basic braking function of EHB system as well as active control logic of ABS, ASR and ESP, and produce failure model for EHB while maintaining basic brake function of vehicle. The plan has advantages of low-cost, low-risk, shorter development cycle and perform well.
引文
[1] 任少卿,陈慧岩,黄江波等.汽车防滑控制系统ABS/ASR基本原理及发展趋势.汽车电器,2006年第3期p1~p5
    [2] Alfred Straub. DSC (Dynamic Stability Control) in BMW 7 Series Cars[C]. International Symposium on Advanced Vehicle Control, 1996.
    [3] A Brief History of Electronic Stability Controls and their Applications. http://www.safetyresearch.net/Library/SRS028.htm
    [4] 宗长富,刘凯.汽车线控驱动技术的发展.汽车技术,2006年第3期p1~p4
    [5] 林逸,沈沉,王军等.汽车线控制动技术及发展.汽车技术,2005年第12期p1~p3转p43
    [6] 汪洋.车辆电控机械制动系统的设计与分析.南京航空航天大学硕士学位论文,2005
    [7] 陈祯福.汽车底盘控制技术的现状和发展趋势.汽车工程,2006,28(02)p105~p113
    [8] Ford Hybrid Cars.http://www.hybrid-vehicles.net/ford-hybrid-cars.htm
    [9] 汪洋,翁建生.车辆电控机械制动系统的研究现状和发展趋势.商用汽车,2005年第11 期
    [10] Mike Donnelly,Craig Siegel,and Dale Witt.Design Analysis of an Electronically-Controlled Hydraulic Braking System Using the Saber Simulator.SAE 940182
    [11] 朱敏惠.新一代制动系统创新技术-博世 SBC 感应制动控制系统.汽车与配件,2002年第 47 期
    [12] Wolf-Dieter Jonner,Hermann Winner,Ludwig Dreilich,and Eberhardt Schunck. Electrohydraulic Brake System-The First Approach to Brake-By-Wire Technology.SAE 960991
    [13] UK Patent GB 2367868A 17.04.2002
    [14] UK Patent GB 2367869A 17.04.2002
    [15] United States Patent US 2003/0038538 A1 Feb.27,2003
    [16] United States Patent US 6547342 B1 Apr.15,2003
    [17] United States Patent US 2003/0222497 A1 Dec.4,2003
    [18] United States Patent US 2003/0205928 A1 Nov.6,2003
    [19] United States Patent US 6669311 B2 Dec.30,2003
    [20] Nobuyuki Ueki,Jun Kubo,Toshio Takayama,Issei Kanari,Masaaki Uchiyama.Vehicle Dynamics Electric Control Systems for Safe Driving
    [21]Automobile Engineering International Online: Top 10 Technologies 2000
    [22] http://www.auto1688.com.cn/news/108/auto200611060940426657.html
    [23]刘凯.基于EHB的制动防抱和稳定性控制研究.吉林大学硕士学位论文,2006
    [24]曲再鹏.依维柯汽车均一路面EHB控制系统的研究.吉林大学硕士学位论文,2005
    [25]赵双.汽车电子感应制动控制系统 SBC 的研制.西华大学硕士学位论文,2006
    [26]http://www.conti-online.com/generator/www/cn/cn/continental/cas/themes/products/electronic_brake_and_safety_systems/new_ways_in_braking_technologies/ehb_0602_cn.html
    [27]黎启柏.液压元件手册.冶金工业出版社,1999 年 12 月
    [28]苗建中,郑云川.螺纹插装式高速开关阀.液压与气动,1993 年第 6 期
    [29]黎启柏.电液比例控制与数字控制系统.机械工业出版社,1997
    [30]李玉贵,杨晓明,高学杰.PWM 高速开关阀静特性研究.太原重型机械学院学报,2002年 3 月第 23 卷第 1 期
    [31]杜巧连,陈旭辉,吴文山.PWM 高速开关阀的特性分析与应用研究.液压气动与密封,2002 年 6 月第 3 期
    [32] 林锐.高速开关阀的研究及数字仿真.武汉理工大学硕士学位论文,2005
    [33] 孔晓武.高速开关阀动态性能试验装置及其应用研究.机电工程,2005 年第 22 卷第28 期,p38~40
    [34]张斌.用于汽车制动力分配的数字电液比例系统.吉林大学硕士学位论文,2005
    [35]林勇刚.汽车制动力数字电液比例调节系统的研究.吉林工业大学硕士论文,2001
    [36] 朱冰.基于 PWM 的轻型越野车 TCS 驱动轮制动控制研究.吉林大学硕士学位论文.2000
    [37] 陈宏亮,李华聪.AMESim 与 Matlab Simulink 联合仿真接口技术应用研究.液体传动与控制,2006 年 1 月第 1 期(总第 14 期)p14~16
    [38] 苏东海,于江华.液压仿真新技术 AMEsim 及应用.计算机应用技术,2006 年第 11期总第 33 卷 p35~37
    [39] 李吉,李华聪.仿真软件 AMEsim 应用研究.航空计算技术,2006 年 1 月第 36 卷第 1期 p56~58
    [40] 余佑官,龚国芳,胡国良.AMESim 仿真技术及其在液压系统中的应用.液压气动与密封.
    [41] 祁雪乐,宋建,王会义,李亮.基于 AMESim 的汽车 ESP 液压控制系统建模与分析.机床与液压,2005.No.8
    [42] 汪继斌.汽车 ABS 液压调节器建模与分析.吉林大学硕士学位论文,2007
    [43] 谢敏松,李以农.汽车 ABS 液压调节器建模与分析.天津汽车,2007 年第 4 期 p16~18 转 31
    [44] Andrea Fortina,Mauro Velardocchia,Aldo Sorniotti.Braking System Components Modelling. SAE 2003-01-3335
    [45] Luigi Petruccelli, Mauro Velardocchia and Aldo Sorniotti. Electro-Hydraulic Braking System Modelling and Simulation. SAE, 2003-01-3336
    [46] David F. Reuter, E. Wayne Lloyd, James W. Zehnder II.Hydraulic design considerations for EHB systems.SAE,2003-01-0324
    [47] 齐志权,刘昭度,马岳峰等.Jetta GTX 轿车 MK20-I 型 ABS 液压系统数学模型.液压与气动,2005 年第 1 期
    [48] Andrea Fortina, Mauro Velardocchia and Aldo Sorniotti.Braking SystemComponent Modelling.SAE 2003-01-3335
    [49] 郭孔辉,刘溧,丁海涛等.汽车防抱制动系统的液压特性.吉林工业大学自然科学学报,1999 年第 4 期 p1~p5
    [50] 刘溧.汽车 ABS 仿真试验台的开发与液压系统动态特性的研究.吉林工业大学博士学位论文,2000
    [51] Mauro Velardocchia.A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units.SAE,2006-01-1281
    [52] 初亮,侯召鹏,魏文若等.B 级轿车电子稳定性控制算法研究,汽车电子技术分会第七届年会论文集
    [53] 余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究.汽车工程,2006 年(第 28 卷)第 9 期
    [54] 刘巍.驱动工况汽车稳定性控制算法研究.吉林大学硕士学位论文,2004
    [55] 贾豫东,宋健,孙群,用于电子稳定性程序的汽车模型和控制策略.公路交通科技,2004,21(5)
    [56] 赵治国.车辆动力学及非线性控制理论研究.西安:西北工业大学,1998
    [57] 程军.车辆动力学控制器的模拟.汽车工程,1999,21(4)199~205
    [58] 余志生.汽车理论.机械工业出版社,2000 年 8 月
    [59] 喻凡,林逸.汽车系统动力学.机械工业出版社,2005
    [60] 郭孔辉.汽车操纵动力学.吉林科学技术出版社,1991
    [61] [德]M.米奇克.汽车动力学(第二版):C 卷.陈萌兰译.北京:人民交通出版社,1997.
    [62] 姚国成.汽车稳定性控制策略的仿真研究.吉林大学硕士学位论文,2007
    [63] 周红妮.车辆稳定性控制方法与策略的比较研究.武汉科技大学硕士学位论文,2006
    [64] 丁海涛,郭孔辉,张建伟等.汽车 ESP 硬件与驾驶员在回路仿真汽车 ESP 硬件与驾驶员在回路仿真.汽车工程,2006,28(4)
    [65] Damrongrit Piyabongkarn, John Grogg, Qinghui Yuan, Jae Lew and Rajesh Rajamani. Dynamic Modelling of Torque-Biasing Devices for Vehicle Yaw Control.SAE 2006-01-1963
    [66] 王德平,郭孔辉.车辆动力学稳定性控制的控制原理.机械工程学报,2000.03(Vol.36)No.3,p97~99
    [67] 郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响.汽车工程,2004年(第 24 卷)第 2 期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700