双焊枪相贯线自动焊接机机械系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国的散热器生产多是人工焊接。焊接质量不稳定,焊接效率低,工人劳动强度大,且工作环境恶劣,对身体辐射大。为了改善这种状况,亟需研制相应的自动化数控焊接机,以使企业增强竞争力。依据市场需要,设计了一种适应钢铝复合结构散热器的自动化数控焊接专机。
     钢铝复合散热器带有铝翼,焊接空间小,连续立管,实现自动化焊接困难。通过焊接工艺分析与焊接方法的比较,确定采用熔化极活性混合气体保护焊(MAG)进行焊接。
     焊枪的运动轨迹、运动方式与焊枪在焊接时的姿态是搭建机械结构的主要依据。焊缝为管件相贯空间曲线,需用X、Y、Z三轴插补联动才能完成。
     为提高焊接效率,减少焊接变形,完成连续立管焊接,用双焊枪同步焊接,两焊枪各完成半个曲线的对称焊接。双焊枪的初始相对位置精度,由专用检测装置及检测方法完成。
     经焊枪架构与运动分析,采用三角形焊枪构型。为保证焊接最佳角度,用第四轴R轴保证焊枪构型姿态应随焊接实时调整。各轴均采用伺服驱动,同步带和齿形链准确传动,实现Y、Z双焊枪同步联动,用同步信号实现R轴同步转动。
     为实现连续自动化焊接,采用多V型轮摩擦驱动,工件浮动夹紧,使散热器预装框架沿X轴连续运动。Z轴同时承担安装在横梁上的Y轴装置,经同轴驱动与双阻尼配重实现Z轴横梁的平衡同步。
     设计了避开铝翼障碍的装置。焊枪在垂直于运动方向面内与立管夹角可调,通过调整三角形焊枪构型的旋转角度,实现铝翼避障。
     经相贯空间曲线及焊枪姿态数学模型,根据焊接速度,可求解X、Y、Z各轴的运动方程与运动曲线。
     通过X、Y、Z各轴的负载转矩与惯性转矩的归算,可求得伺服电机的负载,为伺服电机的选型提供了可靠的依据。由于R轴为实时调整焊枪的姿态需频繁起停,需要进行R轴步进电机负载惯量、启动负载转矩、启动频率与运行频率的计算。
     各伺服轴的刚度、阻尼和惯量以及伺服驱动装置的增益设定等参数对整个伺服进给系统的稳定性、精度和快速响应特性有较大影响。经简化假设,建立了各轴的交流伺服驱动单元模型及交流伺服电动机模型,再通过机械传动机构的动力学模型,建立了伺服进给系统模型。用Matlab进行动态性能仿真,由阶跃响应特性曲线知各轴均具有良好的动态性能。
     样机制造完成后,对焊机实地调试,并进行了多次焊接试验,得出了理想的焊接参数。并按照设计要求进行了耐压质量检验,达到了设计要求。
At present, most radiators are produced with manual welding in China. It has shortcomings of instable welding quality, low welding efficiency, intensive labor, poor working conditions and a large body radiation. In order to improve the situation, appropriate automatic CNC welding machines need to be urgently developed to make enterprises more competitive. According to market needs, an automatic CNC welding machine adapting to steel-aluminum radiators is designed.
     Steel-aluminum radiators with aluminum fin have the characteristics of small welding space and continuous risers. It is difficult to realize welding automation. Through analysis of welding process and comparison of welding methods, metal active gas arc welding (MAG) is adopted.
     The trajectory and mode of torch’s motion and posture of torch are the main basis for the mechanical structure. Interpolation of X, Y and Z axis is desired to weld the welding seam of intersecting space curve.
     To improve the efficiency, reduce welding distortion and complete the continuous welding of risers, symmetrical synchronous welding with dual-torch is used and each torch completes half-curve. The relative position precision of dual-torch is ensured by the special test equipment and test methods.
     Through analysis of torch’s structure and motion, triangle torch configuration is used. To ensure the best point of welding, a fourth axis R is to ensure torch to be adjusted in real time when welding. All axes are servo-driven. With synchronous belt and silent chain driving, synchronous motion of dual-torch is achieved on Y and Z axis, and synchronous rotation of R-axis is achieved with the sync signal.
     To achieve continuous automatic welding, multi-V-wheel friction drive and floating clamp of work piece is adopted to make the pre-installed framework of radiator move along the X axis continuously. Z axis bears the Y-axis device installed on the beam. Synchronization of Z-axis beam is achieved with coaxial drive and dual damping weight balance.
     The device to avoid obstacles of aluminum fins is designed. The angle between torch and riser in the plane perpendicular to the direction of motion can be adjusted by adjusting the rotation angle of the triangular configuration to avoid obstacles of aluminum fins.
     Equations of motion and motion curves of each axis can be solved based on the intersecting space curve, attitude model of torch and the welding speed.
     The load of servo motor can be obtained by the return calculations of the load torque and inertia torque of each axis. It is the reliable basis for selection of servo motor. Because of the real-time adjustment of torch’s posture, axis R frequently starts and stops. Load inertia, load torque start, start frequency and operating frequency of step motor of axis R need to be calculated.
     Stiffness, damping and inertia of each servo axis and servo drive parameters such as gain on the whole servo feed device have a great impact on stability, precision and response of whole system. Under simplified assumptions, through establishment of modes of the axis AC servo drive unit model, the servo motor model and the dynamics model mechanical transmission, the model of servo feed system is established. Dynamic performance is simulated with Matlab, and the step response curve shows that the welding machine has good dynamic performance.
     Prototype manufacturing is completed, the debugging and a number of welding tests are conducted and the optimal welding parameters are obtained. And quality inspection is done in accordance with the design requirements. It proves the results meet the design requirements.
引文
[1]钱锋.专用数控点焊机的研制[D].江南大学. 2008.
    [2]唐新华.焊接机器人的现状及发展趋势(一)[J].电焊机. 2006(3):1-5.
    [3]唐新华.焊接机器人的现状及发展趋势(二)[J].电焊机. 2006(4):43-46.
    [4]刘丽丽.汽车连杆类焊接专机的设计[D].沈阳工业大学. 2007.
    [5]珠海固得焊接自动化设备有限公司[EB/OL]http://www.zhgood.com/default/products.asp
    [6]杨文杰.电弧焊方法及设备[M].哈尔滨:哈尔滨工业大学出版社,2007:164-230.
    [7]王雅娟,T型管焊缝自动焊接系统的研究与应用[D].新疆大学.2007.
    [8]MIG/MAG-350逆变脉冲气体保护焊机说明书
    [9]曹俊芳,蒋力培,孙亚玲.管道全位置焊接机器人机械系统研制[J].电焊机. 2006(3):10-12
    [10]周锋,汪苏,朱小波.五轴相贯线焊接机器人控制系统研究[J].航空制造技术. 2007(5):4-8
    [11]郑江,许瑛.机械设计[M].北京大学出版社.2006.87-126,198-216.
    [12]张建民.机电一体化系统设计[M].北京:高等教育出版社.2001:164-230.
    [13]卢本,卢立楷.汽车机器人焊接工程[M].机械工业出版社.2006.1:29-46,47-65,66-97,98-112,147-172
    [14]贾秀杰,李剑锋,李方义.基于可重构的焊接夹具设计研究[J].机械设计与制造,2008(10):212-214
    [15]李金伴,马伟民.实用数控机床技术手册[M].北京:化学工业出版社.2007.10:94-106,182-299.
    [16]施耐德电气公司.自动化解决方案指南[M].机械工业出版社.2007.8:134-152,312-328
    [17]霍孟友,尹萍,岳少剑.相贯线接缝自动焊接实时插补控制算法与仿真[J].机电一体化,2006,(3):23-26.
    [18]金建新.机床CNC系统中任意空间曲线的可控步长插补方法[J].机械工程学报,2000,36(4):95-97.
    [19]王永章,杜君文,程国全.数控技术[M].高等教育出版社.2001.12:148-169,275-17.
    [20]邱晓林,李天柁,第宇鸣,肖刚.基于MATLAB的动态模拟与系统仿真工具[M].西安交通大学出版社2003.10:34-80.
    [21]曹承志.电机、拖动与控制[M].机械工业出版社.2002.1:152-177.
    [22]株式会社安川电机.安川伺服电机的规格与外形图说明书[M].2007:4-5
    [23]张海伟.基于X-Y平台的伺服系统建模与仿真[D].西北农林科技大学.2006.
    [24]杨勇.数控伺服系统动态特性仿真及参数优化[D].南京工业大学.2005.
    [25]王爱玲,白恩远,赵学良等.现代数控机床[M]北京:.国防工业出版社2003.4:191-262.
    [26]万筱剑.数控机床进给用交流伺服驱动系统的研究[D].哈尔滨理工大学.2005.
    [27]陈婵娟.数控车床设计[M]北京:.国防工业出版社2006.3:84-87,126-134.
    [28]刘俊泉.交流伺服控制系统的设计仿真与智能控制[D].南京工业大学.2003.
    [29]孙晓波,李双全,王海英.自动控制原理[M].2006.8:11-114.
    [30]胡寿松.自动控制原理[M].科学教育出版社.2006.6:20-219.
    [31]杨叔子,杨克冲.机械工程控制基础[M].武汉:华中科技大学出版社2006.8:1-109,154-84.
    [32]舒志兵,刘峻泉,林锦国等.闭环伺服系统的数学模型研究[J].系统仿真学报.2002(12):1611-1613.
    [33]程靖.基于Matlab/SimuLink的交流电机建模与仿真[J].兵工自动化.2003(2):48-50.
    [34]Liu Rui,Liu Yi-Sheng . Risk simulation modeling of engineering cost based on MATLAB/SIMULINK[J].Journal of China University of Mining and Technology,2005,(9):255-259.
    [35]瞿亮,凌民,傅昱等.基于MATLAB的控制系统计算机仿真[M].清华大学出版社,北京交通大学出版社.2006.1:14-45,87-126,152-187.
    [36]张庆新,刘光德,王颖.基于MATLAB/SIMULINK交流电机调速系统的建模与仿真[J].辽宁工程技术大学学报.2002(3):323-325.
    [37]Werner leonhard.Control of Electrical Drives[M].Berlin:Springer Verlag,2001:5-46.
    [38]M.Ebrahimi,R.Whalley.Analysis,modeling and simulation of stiffness in machine tool drives.Computers & Industrial Engineering[J].2000,(38):93-105.
    [39]Liu Zuo Zong,Luo Fang.Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism[J] . IEEE Transactions on Industrial Electronics,2005,(10):1357-1363.
    [40]郭宇婕,黄立培,邱阳.交流伺服系统的转动惯量辨识及调节器参数自整定[J].2002(9):1180-1183.
    [41]夏燕兰.全数字交流伺服系统增益调整分析[J].江苏机械制造与自动化2001.2:36-37.
    [42]杨川,赵惠英,王小椿.数字交流伺服控制策略与设计[J].制造技术与机床.2001.2:16-18.
    [43]株式会社安川电机.安川说明书[M].2007:61-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700