DSP控制的软开关数字化逆变焊接电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对弧焊逆变电源国内外的发展现状进行总结,指出目前焊接电源存在的问题,进而提出软开关数字焊接电源研究的目的和意义。
     本文对焊接电源的数字化特性以及全桥大功率软开关主电路进行了研究。结合软开关实现原理,本文首先对比分析了软开关在提高效率、降低EMI干扰等方面的技术优势,通过SWCADⅢ软件仿真,分析研究了全桥移相零电压零电流(Zero Voltage Zero Current——ZVZCS)软开关电路,详细介绍了该电路的软开关实现过程,并给出了电路模型和关键元件的设计参数。
     焊接电源的数字化是数字化焊机的重要组成部分。传统的模拟控制方法已经不能满足现代焊接生产的需要,其弊端阻碍了焊接电源的发展。本课题采用TI(TexasInstrument)公司最新研制的控制芯片TMS320F2812,以该芯片为核心,构成了数字化焊接电源的控制系统。由TMS320F2812 DSP输出四路相位分别成180°反相的移相PWM脉冲波形,经过IGBT专用驱动模块TX-KA962的驱动,来控制IGBT的导通、关断。霍尔传感器实时采样焊接电压、电流信号,经转换为DSP输入可接受的0~3V的电压信号,再经滤波后反馈给DSP,通过AD模数转换、PI闭环控制算法,输出相应占空比的PWM脉冲信号,获得了恒压、恒流特性的焊接电源。经实验验证,DSP化的数字化电源的性能满足焊接工艺的要求。
Through a brief introduction on the present state and development of the welding inverter, this paper analysis the drawbacks of the welding machine and blurts out the meaning of researches the digital characteristics of the welding power supply dand the main circuit of the full bridge high power soft-switching.
     This paper researches the digital characteristics of the welding power supplyand the main circuit of the full bridge high power soft-switching. First of all, by the theory of the soft-switching, this paper relatively analysis the advantages of the soft-switching and, with the help of the simulation software SWCADⅢ, analyzes the main circuit of the full bridge shift-phased zero voltage zero current(ZVZCS) soft-switching. Then, the paper gives the on and off theory of the soft-switching, the model of the main circuit, the key point and the parameters of the design.
     Welding power supply is a key point of a welding machine. The disadvantages of the traditional analogue control circuit have become a blur of the welding power supply. Because of its excellent performance, this paper applies the up-to-date control chip TMS320F2812, which is producted by the American TI(Texas Instrument) company. The TMS320F2812. The control core of the welding power supply outputs four pulses waveform, which is different from each other of their phase position. After the magnifying of the drive module, the output waveform can drive the IGBT and control the on and off of the power device IGBT TX-KA962. Hall sensor samples welding current in real time, and changes the current to the voltage of zero to 3V, which is supported by the TMS320F2812 DSP, and then feedbacks to the AD input of the TMS320F2812, by the PI control algorithm, realize the aim of the control output constant current characteristics of the welding power source. The result is verified by experiment and the power source based on the DSP can meet the need of the welding process.
引文
1殷树言,陈树君,刘嘉等.逆变焊接技术的现状与发展.焊接技术. 2002,(3): 29~32
    2张秀兰,马红艳,徐绪炯.数字化焊接电源的发展.电焊机. 2003, 33(2): 9~10
    3刘嘉.弧焊逆变电源的数字化控制.北京工业大学博士论文. 2002: 9~13
    4黄石生.新型弧焊电源即其智能控制.机械工业出版社, 2000
    5阮新波,严仰光.直流开关电源的软开关技术.科学出版社, 2000: 222~236
    6陈国呈. PWM变频调速及软开关电力变换技术.机械工业出版社, 2001: 175~185
    7徐曼珍.全桥PWM-DC/DC变换器谐振技术的发展动态.通讯电源技术, 2000, (1): 15~20
    8 G. C. Chen, C. Y. Xu and C. B. Sun. Locus of Flux Linkage for Three-Phase ZVS Inverter. Journal of Shanghai University. 2005, 9(6): 522~527
    9 C. F. Fang, S. Y. Yin, and R. S. Hou. ZVS of Arc Welding Inverter in Light Load. China Welding. 2005, 14(2): 117~120
    10 K. Q. Qu, G. C. Chen, and S. Cheng. Current Polarity Detection and Current Compensation Strategy for PAC Based Three-Phase ZVS PWM Converter. Journal of Shanghai University. 2005, 9(6): 539~543
    11 J. A. Sabate etal. Dcsign Considerations for High-voltage Full Bridge Zero-voltage-switchinged PWM Converter. IEEE APEC. 1990: 274~284
    12 Hefner, R. Allen. Modeling Buffer Layer IGBT's for Circuit Simulation. IEEE Transactions on Power Electronics. 1994, 10(2): 111~123
    13 Miner, C. Su and Hefnerm etal. Insulated Gate Bipolar Transistor (IGBT) Modeling Using IG-Spice. IEEE Transactions on Industry Applications. 1994 30(1): 1~33
    14 J. G.. Cho, J. A. Sabate and F.C.Lee. Zero-voltage and Zero-current-Switching Full Bridge Converter for High Power Applications. IEEE Transactions on Power Electronics. 1996, 11(4): 622~627
    15 J. G. Cho, G. H. Rim and F. C. Lee. Zero-voltage and Zero-current-Switching Full Bridge Converter with Secondary Active Clamp. IEEE. PESC. 1996: 657~663
    16 J. G. Cho etal. Novel Zero-voltage and Zero-current-Switching Full Bridge PWM Converter Using A Simple Auxiliary Circuit. IEEE Transactions on Industry Applications. 1999, 35(1): 15--20
    17 K. Q. Qu, G. C. Chen and C. Sun. Current Polarity Detection and Current Compensation Strategy for PAC Based Three-Phase ZVS PWM Converter. Journal of Shanghai University. 2005, 9(6): 539~543
    18邓衍平,谢运祥,陈坤鹏等.一种新型的ZVS关断电路的研究.电源技术应用. 2004, 8(2): 25~28
    19许峰,徐殿国,柳玉秀.一种新型的全桥零电压零电流开关PWM变换器.中国机械工程学报. 2004, 24(1): 147~152
    20陆春华,和卫星.移相式零电压零电流高频软开关的研究与应用.电焊机. 2003, (3): 9~12
    21 L. Q. Zhou, X. B. Ruan. Zero-current and Zero-voltage Switching PWM Boost Full-btidge Converter. Transaction of Nanjing University of Aeronautics & Astronautics. 2003, 20(1): 60~66
    22阮新波,严仰光.直流开关电源的软开关技术.科学出版社, 2000: 222~236
    23 M. Mazo, P. Martin and L. Boquete. System Based on Digital Signal Processors (DSPs) for Communication Between Industrial Processes with Critical Time. Microprocessors and Microsystems. 1997, 21:99~104
    24 Johnson J A, Carlson N M and Smartt H B. Process Control of GMAW Sensing of Metal Transfer Mode. Welding Journal. 1991, 70(4):91~98
    25盖志武,彭涌涛,焦树人等. PWM弧焊逆变电源的MATLAB仿真研究.电焊机. 2003(1): 25~27
    26周志军.软开关电源设计与仿真研究.武汉大学硕士学位论文. 2004
    27赵家瑞.弧焊逆变电源主电路拓扑的发展现状.电焊机. 2000, 30(8): 13~16
    28陈树君,卢振洋,黄鹏飞等.双零软开关弧焊逆变电源.焊接学报. 2002, 23(3): 1~5
    29苏奎峰,吕强,耿庆锋. TMS320F2812原理与开发.电子工业出版社, 2005:11~16
    30蔡晓,任立环,陶俊卫. ZVZCS-PWM全桥变换器中谐振元件参数的选择.电力电子技术. 2002, 36(2): 46~49
    31宋东风,胡绳荪,卢亚静.基于DSP的脉冲MIG焊数字化控制系统.电焊机. 2006, 36(2): 48~51
    32李剑华,王志强,孙宝文.软开关弧焊逆变器中功率变压器的参数设计.电焊机. 2001,31(10): 30~31
    33陈长江. IGBT逆变式手弧焊电源主电路的设计.武汉船舶职业技术学院学报. 2004, 9(2): 8~9
    34郑思潜,李鹤岐,黄石生.数字化焊接.现代制造. 2004, 28: 14~18
    35刘嘉.弧焊逆变电源的数字化控制.北京工业大学博士论文. 2002:9~13
    36李鹤岐,徐德进,李芳.脉冲MIG焊机数字化控制设计.电焊机. 2002, 32(8): 1~4
    37华学明,吴毅雄,焦馥杰.数字化焊接电源系统的特征.焊接技术. 2002, 31(2): 6~7
    38丁京柱.全数字化CO_2气体保护焊机研究.北京工业大学博士论文. 2002: 58~67
    39 B. D. De Dinechin, C. Monat, and P. Blouet. DSP-MCU Processor Optimization for Portable Applications. Microelectronic Engineering. 2000, 54: 123~132
    40张春波.数字化编码式焊接电源的研究.上海交通大学硕士论文. 2003: 43~45
    41 J. P. He, C. B. Zhang and G.. Sun. Research On Menu-typed Man-machine Interaction System of Digital TIG Welding Machine. China Welding. 2004, 13(2): 128~131
    42罗环敏,罗剑兵,许华明等.基于单片机和DSP的数字化IGBT逆变焊机研究.电焊机. 2004,34(8): 38~41
    43何建萍,张春波,吴毅雄等.基于DSP与MCU通信的数字化焊机实时控制系统.焊接学报. 2003,24(4): 59~64
    44 J. A. Johnson, N. M. Carlson, and H. B. Smartt. Process Control of GMAW: Sensing of Metal Transfer Mode. Welding Journal. 1991, 70(4): 91~98
    45杜贵平.等离子软开关逆变式电源及其应用研究.华南理工大学博士学位论文. 2003
    46 TMS320F28x Event Manager (EV) Peripheral Reference Guide (Data Sheet). Texas Instrument. 2004, SPRU065
    47 C.C. Hua. Two-lever Switching Patent Deadbeat DSP Controlled PWM Inverter. Power Electronics, IEEE Transaction on, 1995, 10(3): 310~317
    48 TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide (Data Sheet). Texas Instrument. 2004, SPRU069
    49 A. P. Rodrigues, C. M. B. Correia, and C. A. F. Varandas. Multiple DSP System for Real Time Parallel Processing and Feedback Control on Fusion Experiments. Fusion Engineering and Design. 1999, 43: 401~405
    50陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社, 1998: 1~22
    51刘竹,肖介光.逆变式弧焊机.四川科学技术出版社, 1995
    52黄石生,余文松等.大功率逆变电源PWM控制技术的研究.电焊机. 2004, (3): 6~10
    53史美萍,邹逢兴.微机实时监控系统软件扰干扰设计.电子技术应用. 1994, 11: 9 ~10
    54刘光武,刘东,姚志成编著.单片机系统实用抗干扰技术.人民邮电出版社, 2004: 150~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700