木薯抗寒性的表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯是大戟科木薯属,是世界三大薯类作物之一,全球六大粮食作物之一。在我国木薯块根90%用于制取淀粉,已经成为热区重要的能源作物之一。我国木薯种植区属于热带北缘,耐低温是重要的育种目标之一。目前关于植物低温胁迫的研究已有很多,而关于木薯抗寒机理的研究十分有限,采用表达谱测序技术对木薯抗寒性的研究尚未见报道。本研究选择较耐寒的木薯品种,通过高通量表达谱测序技术,数字表达谱分析对木薯在特定条件下、特定时期、特定部位的的转录本进行生物信息学分析和注释,以期对木薯耐寒性分子机理提供依据。
     选择抗寒性较好的华南124(SC124),在生长箱控制条件下,诱导后寒害和正常温度对照2个处理,分别在处理后6小时、24小时、48小时取幼叶、功能叶和块根样品。选取其中12个样品库进行Solexa表达谱测序,同时对全部样品混合进行了一个RNA-Seq测序,建立参考基因集。表达谱分析获得表达基因的Tag丰度信息,参考集转录组注释获得基因序列信息,将二者进行整合后,对表达谱进行了基因功能注释。所取得的主要结果如下:
     (1)通过对SC124低温处理及对照12个样品的表达谱测序,获得独立表达Tag序列种类总数在102804-189320之间,其中丰度大于100的高表达Tags平均占Tag总种类的4.45%,丰度为51-100的Tag总种类的平均约为3.84%,丰度为21-50的Tag平均约占总种类的8.08%,丰度为11-20的Tag种类平均约为9.43%,丰度为5-10的Tag种类平均约为14.12%,而拷贝数小于5的低表达Tags在种类上非常丰富,占mRNA总量近60.05%。
     (2)比较幼叶、功能叶及块根低温处理不同时间差异表达基因,发现在幼叶中三个时间点上调表达基因数量在506-715之间,三个时间点个下调基因数量在812-1425之间;功能叶中三个时间点上调基因表达数量在500-746之间,三个时间点个下调基因数量在553-1043之间;块根中三个时间点基因上调表达数量在439-806之间,三个时间点个下调基因数量在500-862之间;那些低温处理下高表达的基因,暗示着可能在低温胁迫时发挥重要作用。
     (3)通过表达模式分析,得到幼叶、功能叶、块根三个部位的表达模式聚类结果及重要基因的表达趋势。并通过比较三个部位间的表达模式发现,幼叶中下调趋势比其它两个部位明显,而功能叶上调趋势较其它两个部位显著。
     (4)GO分析结果,说明光合作用中的光吸收、叶绿素的生物合成及代谢、色素合成及代谢过程、调控的催化活性、渗透压响应、氧化应激反应、生长素刺激的反应、脂质的生物合成过程、脂质的代谢过程、氧化磷酸化等生物学过程受低温处理影响;
     (5)代谢途径pathway分析得到低温影响显著的代谢通路:光合作用天线色素蛋白,卟啉和叶绿素代谢、植物氧化主要在线粒体中进行磷酸化、在光合生物固碳、植物激素的生物合成、类胡萝卜素合成、α-亚麻酸的代谢、ABC转运。
     (6)通过对受低温影响显著的代谢途径中基因表达丰度分析,发现一批重要的低温胁迫响应基因:如富含甘氨酸蛋白、赤霉素调控蛋白、UDP-糖基转移酶、钙离子转运蛋白、CIPK同源基因、半乳糖转移酶、锌和铜离子转运蛋白、质膜H+-ATPase、APX2等。
Cassava(Manihot esculenta Crantz), a species in Euphorbiaceae, the third potato in the world as well as rank the sixth staple food crop in the world, and it already became an important source of biofuel and industrial starch in China. Cold tolerance of cassava varieties is a special constraints to commercial plantation in higher latitude region of China. Up to now, there were a few reports on cold tolerance of cassava although there were many researches on cold stress mechanism in other crops. Expression profiling based on next-generation sequencing technology known as a powerful tool, here, we choice a cold tolerant variety SC124to take cold treatment in chamber with12samples. Expression profiling sequencing was used for screen of genes response to cold. Another transcriptome sequence data from mixture sample was added into the analysis. All tags and their expression richness of transcripts have been revealed by3'-end sequencing, and combining to RNA-seq annotation we performed the functional annotation of the genes for cold response. The essential results shown as the following:
     SC124, which has the better ability to cold stress, was cold injury induced, then, lobus cardiacus, function leaves and roots was sampling separately at6h,24h,48h. Also the lobus cardiacus, function leaves and roots without low temperature treatment was sampling. Every sample has a tag library which was sequenced with Solexa method separately. Every tag from each tag library was analyzed. We assembled the mixed samples'tag and got the transcripts that was annotated later. The statistic analysis result shows that there is difference not only in numbers but also in species between samples with low temperature treatment and those without. A large different expression exists in each part at different time. We select some genes that has high expression level in low temperature treatment, and these genes are related to cold stress.
     Through the bioinformatics analysis, we got conclusions as follow:
     (1) Throgh sequencing of the gene expression profile of12samples, including SC124in low temperature treatments and the control, distinct tagas were found between102804and189320, among which there are4.45%high expression level tags which copy number is above100,3.84%tags which copy number is between51and100,8.08%tags which copy number is21and50, around9,43%tags which copy number is between11and20, around14.12%tags which copy number is between5and10. Those tags which copy number is below5are very rich in species and represents60.05%of the total mRNA.
     (2) Compare the differential expression genes of tip leaves、function leaves and tuber roots at different time under cold stress, we found that506-715genes of tip leaves were up regulated at the three times, while812-1425were down regulated.500-746genes of function leaves were up regulated at the three times, while553-1043were down regulated.439-806were up regulated at the three times, while500-862were down regulated at the three times.That means when cassava is under cold stress, some genes that are in high expression level play a important role in cold stress.
     (3) Expression pattern analysis showed the expression pattern of clustering results of young leaves, function leaves and roots and the trend expression of important genes. By comparion of the expression clust result in three different parts of cassava, it is found that there are more down regulated expression in young leaves while more up regulated expression in function leaves
     (4) GO analysis of light absorption in photosynthesis, photosynthesis, light harvesting, chlorophyll biosynthetic process, pigment biosynthetic process, pigment metabolic process, regulation of catalytic activity, response to osmotic stress, response to oxidative stress, response to auxin stimulus, lipid biosynthetic process, lipid metabolic process, oxidative phosphorylation.
     (5) Genes that has different expression level in cold stress and low temperature stress were analyzed by pathway method and the significant metabolic pathways are Photosynthesis-antenna protein, porphyrins and chlorophyll metabolism, photosynthesis, metabolic pathway, the oxidation mainly in the mitochondria in photosynthetic organisms phosphorylation, solid carbon, plant hormones biosynthesis, carotenoids synthesis of alpha linolenic acid metabolism, ABC transshipment..
     (6) We got a series of differential expression genes that can express in cold stress and low temperature stress. They are in rich Glycine protein, gibberellic acid control protein, UDP-glycosyl transferase, calcium ions transporter, CIPK homologous gene, half of lactose shift enzyme, zinc ion and copper ions transporter, plasma membrane H+-ATPase, APX2.
引文
[1]陈杰中,徐春香.植物冷害及其抗冷生理[J].福建果树,1998(2):21-23.
    [2]简令成,孙龙华,卫翔云等.从细胞膜系统的稳定性与植物抗寒性关系研究到抗寒剂的研制.1994,11:1-22.
    [3]姜卫兵,王业遴,马凯.渗透保护物质在无花果抗寒性发育中的作用[J].园艺学报,1992,19(4):371-372.
    [4]北京农业工程大学.农业机械学:下册[M].北京:农业出版社,1997:198.19(4):371-372.
    [5]卢存福,第七届国际植物抗寒会议概况.植物学通报,21(5):617.
    [6]罗军武,唐和平,黄意欢.茶树不同抗寒性品种间保护酶类活性的差异[J].湖南农业大学学报(自然科学版),2001,21(2):94-96.
    [7]罗培敏.试论我国木薯产业发展策略.热带农业科学[J].2002,22(2):44-48.
    [8]罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA-GsH循环酶系统的影响[J].园艺学报,2007,34(6):1405-1410
    [9]李翰如.薯类收获机械[M].中国大百科全书.北京:中国大百科全书出版社,2000.
    [10]李瑶主编.基因芯片数据分析与处理[M].第1版.北京:化学工业出版社,2006.
    [11]邱超,孙含丽,宋超.DNA测序技术发展历程及国际最新动态.硅谷,2008(17):127-129.
    [12]严寒静,谈锋.栀子叶片生理特性与抗寒性的关系[J].植物资源与环境学报,2005,14(4):21-24.
    [13]杨广东,张战备,郭瑜敏,等.脂肪酸与青椒苗期和花期抗冷性关系[J].北方园艺.1999,4:1-2.
    [14]杨莉.马铃薯挖掘机摆动分离筛的仿真与参数优化[D].呼和浩特:内蒙古农业大学,2009.
    [15]于海业,乔建磊,肖英奎,张艳平,王淑杰.钙素对雾培马铃薯幼苗抗冷性的影响分析木[J].农业机械学报.2010.12,4(12):73-74.
    [16]于亮.放眼未来,看新一代测序[J].生物通报,2009,68:2-4.
    [17]赵满全,赵士杰,余大庆.组合分离式马铃薯挖掘机设计与研究[J].农机化研究,2007(4):69-72.
    [18]张振文,李开绵,黄洁,叶剑秋,陆小静.我国木薯产业发展形势与策略[J].广西农业科学,2006.
    [19]Audic, S, Claverie M. The significance of digital gene expression profiles. Genome Res, 1997,7(10):986-95.
    [20]Benjamini, Y. and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics,2001,29:1165-1188.
    [21]Boss P K, D avies C, Robinson S P. xAnalys is of the expression of an thocyan in pathway genes in developing Vitis vinifera L.cv Shiraz grape berries and the implications for pathway regulation. Plant Physio,1111:1059-1066.
    [22]Boyer J S. Plant productivity and environment [J]. Science,1982,218:443-448.
    [23]Castellarin SD, Matthews MA, G Di Gaspero G, Gambetta G A. Water d eficits accelerate ripening and induce changes in gene expression regulating f lavonoid biosynthesis in grape berries. Planta,2007,227:101-112.
    [24]Chen YJ, Kodell R, Sistare F, Thompson KL, Morris S, Chen JJ. Normalization methods for of microarray gene-expression data [J]. J Biopharm/Stat,2003,13(1):74-75.
    [25]Drmanac R, Labat I, Brukner I. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics,1989,4(2):114-128.
    [26]El Kereamy A, Chervin C, Souquet JM, Moutounet M, Monje MC, Nepveu F, M ondies H, Ford CM, van Heeswijck R, Roustan JP. Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Sci,2002,163:49-454.
    [27]El-Kereamya A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M,Raynal J, Ford C, Latche A, Pech JC, Bouzayen M. Exogenous ethylene stmiulates the long-term expression of genes related to an thocyanin biosynthesis in grape berries. Physiologia Plantarum,2003,119:175-182.
    [28]EL-Sharkawy Mabrouk A. Cassava biology and physiology [J]. Plant Mol Biol,2003,53: 621-641.
    [29]Goto-Yamamoto N, Wan GH, Masaki S, Kobayashi S. Structure and transcription of three chalcone synthase genes of grapevine(Vitis vinifera). Plant Sci,2002,162: 867-872.
    [30]Hall D, Luca. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J,2007,49:579-591.
    [31]Hiratsuka S, Onodera H, Kawai Y, Kubo T, Itoh H, Wada R. ABA and sugar effects on anthocyan in form ationin grape berry cultured in vitro. Sci H ortic,2001,90:121-130.
    [32]Harris TD, Buzby PR, Babcock H. Single-molecule DNA sequencing of a viral genome. Science,2008,320(5872):106-09.
    [33]Holnberg N, Farres J, Bailey JE. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgeniv tobacco[J]. Gene,2001,275(1): 115-124.
    [34]http://www.454.corn/.
    [35]http://www.gsjunior.com/.
    [36]http://www.helicosbio.corn/.
    [37]Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis. Anal Chem,1992,64(18):2149-2154.
    [38]Jeong ST, Goto-Yamamoto N, Kobayashi S, EsakaM. Effects of plant homrones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins.Plant Sci,2004,167:247-252.
    [39]Jorgenson JW, Lukacs KD. Capillary zone electrophoresis. Science,1983,222(4621): 266-272.
    [40]Jorgenson JW, kacs KD. Free-zone electrophoresis in glass capillaries. Clin Chem,1981, (9):551-1553.
    [41]Kobayashi S, Ishmiaru M, Ding C K, Yakushiji H, Goto N. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequence between white grapes (Vitis vinif era) and their sports with red skin. Plant Sci,2001,160:543-550.
    [42]Kanehisa, M., M. Araki. KEGG for linking genomes to life and the environment. Nucleic Acids Res,2008,36(Database issue):D480-493.
    [43]Kim JY, Park SJ, Jang B. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions [J].The Plant Journal, 2007,50(3):439-451.
    [44]Kim YO, Kim JS, Kang H. Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana [J]. The Plant Journal,2005,42(6):890-900.
    [45]Kim Yeon OK Kang Hunseung. The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana [J]. Plant and cell physiology,2006,47(6):793-798.
    [46]Kwak KJ, Kim YO, Kang H. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration,or cold stress [J]. Journal of Experimental Botany,2005,56(421):3007-3016.
    [47]Lee SH, Snigh AP, Chung GC. Rapid accumulation of hydrogen peroxide in cucmuber roots due to exposure to low temperature appears to mediate decreases in watert ransport [J]. J Exp Bot,2004,55(403):1733-1741.
    [48]Lyons JM, Raison JK. Oxidative actibity of mitochondria isolated from plant tissue sensitive and resistant to chilling injury. Physiology,1970,45:386
    [49]Lyons JM, Raisonand JK, Steponkus PL. The plant membrane in response to low temperature:an overview[A]. In:yons JM. Low Temeprature Stressin Crop Plants [M]. New York:Academic Press,1979:1-24.
    [50]Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot,2007,58:1935-1945.
    [51]Mori K, Sugaya S, Gemma H. Decreased anthocyanin biosynthes is in grape berries grown under elevated night temperature condition. Scientia Hort,2005,105:319-330.
    [52]Maxam A M,Gilbert W. A new method for sequeneing DNA. ProeNatl Acad Sci USA, 1977,74(2):560-564.
    [53]Mckersie BD, Bowley SR, Harhanto E. Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase[J]. Plant Physiology,1996,111: 1177-1181.
    [54]Pala JP, Li PH. Cell membrane properties in relation to freezing injury [A]. In:Li P H, Sakai S. Plnat Cold and Hardiness and Freezing Stress[M] New York:Academic Press, 1978,93-115
    [55]Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA,1977,74(12):5463-5467.
    [56]Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods, 2008,5(1):16-18.
    [57]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26(10): 1135-1145.
    [58]Sidebottom C, Worrall D. Heat-stable antifreeze protein from grass. Nature,2000,406: 256-263.
    [59]Smith LM, Fung S, Hunkapiller MW. The synthesis of oligonucleotides containing an aliphatic amino group at the 5'terminus:synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res,1985,13(7):2399-2412.
    [60]Wang A, Gehan E A. Gene selection for microarray data analysis using principal component analysis [J]. Stat Med,2005,24:2069.
    [61]Wang W X, Vinocur B, Shoseyov O, Altman A. Biotechnology of plant osmotic stress tolerance:physiological and molecular considerations [J]. Acta Hort,2001,560: 285-292.
    [62]Wheeler DA, Srlnivasan M, Egholm M. The complete genome of an individual by massively parallel DNA sequencing [J]. Nature,2008,452(7189):872-876
    [63]Woolley AT, Mathies RA. Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem,1995,67(20):3676-3680.
    [64]Worrall D, Elias L, Ashford D. A carrlt leucine-rich-repeat protein that inhibits ice recrystallization. Science,1998,282(2):115-117.
    [65]Yeh S, Moffatt BA, Griffith M. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol,2000,124:1251-1263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700