光纤倏逝波生物传感器系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤倏逝波生物传感器作为生物传感器的一个重要分支,有着30多年的发展历史。由于其具有独特的优势在水质监测、食品卫生检测、生物战剂检测等方面有着巨大的应用潜力。本文在研究了光纤倏逝波生物传感器工作原理和基本结构的基础上,构建了光纤倏逝波生物传感器系统。
     由于探针产生的荧光信号属于微弱信号,并且伴随则强激光信号和系统噪声,因此怎样从强噪声中提取出微弱的荧光信号是整个系统的关键。针对这个问题,本文从两个方面着手解决:一方面通过结合倏逝波理论和模式匹配理论,采用几何光学的方法对组合型探针结构进行了设计,提高了探针的效率。另一方面由于传统光纤倏逝波生物传感器检测平台分立元件多,系统噪声大的缺点,构建了FPGA+LabVIEW系统平台。通过在FPFA上构造片上子系统,采用NiosⅡ软核处理器作为控制器,实现了对A/D采样、DDS信号产生、UART通讯口的控制。该系统集数据采集、数据传输、调制信号产生于一体,极大的减少了系统分立元件的个数,提高了系统集成度和信噪比。上位机则使用LabVIEW软件,实现了锁相检测、上位机与FPGA的串口数据通讯,界面显示等功能。
     最后对所构建的光纤倏逝波生物传感器系统进行了实验研究,实验结果表明,系统对Cy5溶液的浓度检测可达0.1umol/L,能满足实际生物物质检测中较高精度的应用要求。系统具有稳定性好、体积小和结构简单的特点,适合现场检测的系统结构要求。
Evanescent wave-based optical fiber biosensors is an important branch of biosensor, it has 30 years of development history. Because of its unique advantages, it has great potential for application in terms of water quality monitoring, food hygiene inspection, detection of biological warfare agents. In this paper detection and processing systems is build, based on the study of the principle and the basic structure of the Evanescent wave-based optical fiber biosensor.
     Because of the weak fluorescence signal from probe which accompanying with the strong laser signal and system noise, so how to extract a weak fluorescent signal from the strong noise is critical to the whole system. In order to solve the problem, we work in two aspects. In on hand, the probe structure is design by using geometrical optics method, through a combination of Evanescent wave theory and pattern matching theory. It can improve the efficiency of the probe. On the other hand, because of the more discrete components and high system noise in traditional evanescent wave-based optical fiber biosensors, we build a platform based on FPGA+LabVIEW. An on-chip system is build, the A/D sampling, signal generator DDS and UART interface are control by Nios II soft-core microprocessor.The system that including data acquisition, data transmission, modulation signal integrated, greatly reduced the number of discrete components system, improve the system integration and SNR. An application softwave providing signal detection by digital lock-in amplifier, data communication with FPGA and Interface display is builded by using LabVIEW.
     Finally, the experiment is carried on after building the Evanescent wave-based optical fiber biosensors. The experimental results show that the system sensitivity reach to 1nmol/L when detect the Cy5 solution. This biosensors can use in the actual detection of biological material in high precision application requirements. This system has long-term stability, small volume and simple structure which make it suitable for filedwork.
引文
[1]Rabbany S Y,Donner B L,Ligler F S.Optical immunosensors[J].Critical Reviews in Biomedical Engineering,1994,22(56):307-346
    [2]Anderson G P,Golden J P,Ligler F S,et al.An evanescent wave biosensor-part Ⅰ:fluorescent signal acquisition from step-etched fiber optic probes[J].IEEE Transactions on Biomedical Engineering,1994,41(6):578-583
    [3]Mohammad A,Larry L,Hench.Effect of taper geometries and aunch angle on evanescent wave penetration depth in optical fibers[J].Biosensors and Bioelectronics,2005,(20):1312-1319
    [4]Gupta B D,Dodeja H,Tomar A K.Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J].Optical and Quantum Electronics,1996,(28):1629-1639
    [5]Culshaw B,Muhammad F,Stewart G.Evanescent wave methane detection using optical fibers[J].Electronics Letters,1992,28(24):2232-2234
    [6]Vlastimil M,Miroslav C,Made P,et al.Optical fiber with novel geometry for evanescent-wave sensing[J].Sensors and Actuators B,1995,(29):416-422.
    [7]Brummel K E,Wright J,Eldefraw M E.A fiber optic biosensor for cyclodience insecticides[J].J Agric Food Chem,1997,45(11):3292-3298
    [8]Xing WI,Ma LR,Jiang ZH,et al.Portable fiber-optic immunosensor for detection of methsulfuron methy[J].Talanta,2000,52(5):879-884
    [9]Mallat E,Barzen C,Abuknesha R,et al.Part per trillion level determination of isoproturon in certified and estuarine water samples with a direct optical immunosensor[J].Anal Chim Acta,2001,426(2):209-214
    [10]DeMarco D R,Saaski E W,McCrae D A,et al.Rapid detection of Escherichia coli O157:H7 in ground beef using a fiber-optic biosensor[J].J Food Protection,1999,62(7):711-716
    [11]翟俊辉,黄惠杰,杨瑞馥,等.光纤生物传感器用于核酸的特异性检测[J].分析化学,2003,31(1):34-37
    [12]Tempelman L A,King K D,Anderson G P,et al.Quantitating Stophlococcal enterotoxin B in diverse media using a portable fiber-optic biosensor[J].Anal Biochem,1996,233(1):50-58
    [13]邓立新,冯莹.基于相关检测的光纤倏逝波生物传感器研究[J].传感技术学 报,2006,18(3):783-785
    [14]陈银根.微弱信号检测技术的研究[J].江西科学,2004,26(3):193-196
    [15]陈国平,寿文德.光纤生物传感器[J].中国医疗器械杂志,2002,26(2):119-123
    [16]徐国雄,黄震.生物芯片检测系统中荧光信号强度及系统灵敏度分析[J].光子学报,2004,33(10):1192-1195
    [17]黄惠杰,翟俊辉,赵永凯,等.多探头光纤倏逝波生物传感器及其性能研[J].中国激光,2004,31(6):719-722
    [18]邹燕,冯丽爽,张春熹,等.锁相放大器在微弱光信号检测中的应用[J].电测与仪表,2005,(11):15-18
    [19]刘清格,邵定蓉,李署坚.相关检测技术在近红外光谱分析中的应用[J].谱学与光谱分析,2005,25(12):1978-1981
    [20]张冈,姚洪涛,王程远,等.数字锁相放大器中窄带低通滤波器的设计[J].测控技术,2007,26(6):37-39
    [21]高晋占.微弱信号检测[M].北京:清华大学出版社,2004:245-253
    [22]Harry H,Gao,Zhongping Chen.Tapered fiber tips for fiber optic biosensors[J].Opt Eng,1995,34(12):3465-3470
    [23]Ankiewicz A,Pask C,Synder A W,et al.Total internal reflection fluorescence microscopy in cell biology[J].Traffic,2001,(2):744-764
    [24]邓立新,冯莹,魏立安,等.基于倏逝波的光纤生物传感器研究[J].光子学报,2005,34(11):1688-1692
    [25]王路威.半导体激光器的发展及其应用[J].成都大学学报(自然科学版),2003,22(3):34-38
    [26]闫志刚.半导体激光器调制技术的比较[J].无线电通信技术,2002,28(3):5-6
    [27]梁芳,强锡富,孙晓明.一种简便实用的半导体激光器调制电路[J].光学精密工程,1999,7(1):96-99
    [28]赖方明,闫海涛,郭冬梅,等.半导体激光器自混合干涉的调制及光电检测电路[J].南京师范大学学报(工程技术版),2006,6(2):26-29
    [29]宋登元,王小平.APD、PMT及其混合型高灵敏度光电探测器[J].半导体技术2000,25(3):5-9
    [30]江月松,阎平,刘振玉.光电技术与实验[M].北京:北京理工大学出版社,2000:70-88
    [31]王海科,吕云鹏.光电倍增管特性及应用[J].仪器仪表与分析监,2005,(1):1-4
    [32]武兴建,吴金宏.光电倍增管原理、特性与应用[J].国外电子元器件,2001,(8):13-17
    [33]史玖德.光电管与光电倍增[M].北京:国防工业出版社,1981:1-10
    [34]李廷高.真空电子器件[M].北京:电子工业出版社,1995:20-21
    [35]郭从良,孙金军,方容川,等.光电倍增管的噪声分析和建模[J].光学技术,2003,29(5):636-640
    [36]周立功.嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2006:11-12
    [37]Altera Corporation.Cyclone Ⅱ DevicHandbook(All Sections).2005
    [38]龚贤武,汪贵平,李登峰.12位高速、低功耗A/D转换器ADS7822及其应用[J].现代电子技术,2006,(12):146-150
    [39]Texas Instruments Incorporated.TLV5616C,TLV5616I Handbook,1999
    [40]徐宁仪,周祖成.Avalon总线与SOPC系统架构实例[J].半导体技术,2003,28(2):17-20
    [41]Altera Incorporated.NIOS Ⅱ Processor Reference Handbook,2005,1-4
    [42]Altera Corporation.Quartus Ⅱ Version 5.1 Handbook.2005,1-7
    [43]彭澄廉,周博,邱卫东,等.挑战SOC——基于NIOS的SOPC设计与实践[M].北京:清华大学出版社,2004,36-55
    [44]迟忠君,徐云,常飞.频率合成技术发展概述[J].现代科学仪器,2006,(3):21-28
    [45]刘晨,王森章.直接数字频率合成器的设计及FPGA实现[J].微电子学与计算机,2005,21(5):63-65
    [46]袁小平,汤中淤,陈悦,等.基于Nios Ⅱ的SOPC系统设计[J].能源技术与管理,2007,(6):131-132
    [47]高枫,王玉松.基于Nios Ⅱ自定制Avalon设备的设计与实现[J].中国测试技术,2007,33(4):105-108
    [48]钮文良,姜余祥,韩玺.基于Nios Ⅱ的UART设计方法研究[J].北京联合大学学报(自然科学版),2007,21(2):54-57
    [49]林华.基于FPGA的嵌入式系统设计[J].微计算机信息,2008,24(2):173-176
    [50]Alter Corporation.Configuring Cyclone FPGA.2005,15-19
    [51]李秀娟,刘宪伟,赵建平,等.基于Nios Ⅱ的SOPC系统开发与应用[J].电子技术,2007,(3):57-59
    [52]元泽怀,唐平.基于硬件抽象层HAL的Nios Ⅱ嵌入式处理器系统设备管理模式研究[J].现代电子技术,2007,(2):87-89
    [53]邹翔,孙肖子.基于图形化编程语言LabVIEW虚拟仪器的方法[J].现代电子技术,2003,(1):36-38
    [54]陈锡辉,张银鸿.LabVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2007:1-3
    [55]杨乐平,李海涛,杨磊.LabVIEW程序设计与应用[M].北京:电子工业出版社,2005:384-392
    [56]邓焱,王磊等.LabVIEW7.1测试技术与仪器应用[M].北京:机械工业出版社,2004:7-8
    [57]廖传书,李素芬,孙旦均.基于LabVIEW与串行口的直接数据通信[J].中国水运(理论版),2006,4(4):130-131
    [58]王珏,郑建.基于LabVIEW的串口调试系统设计[J].江西科学,2007,25(6):755-757
    [59]Oguro T,Sekigawa K.On some four-dimensional almost Kaehler Einstein manifolds[J].KodaiMath J,2001,(24):226-258.
    [60]杨大柱.基于LabVIEW的数字滤波器设计[J].现代机械,2006,(6):19-20
    [61]周伟林,杨华勇,李清峰.基于LabVIEW的数字滤波器的设计[J].微计算机信息,2006,22(5):163-164
    [62]邓小红.光纤消逝波吸收传感器的参数设计与分析:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005
    [63]姜广文.光纤倏逝波生物传感器理论分析及信号处理实验研究:[硕士学位论文].长沙:国防科技大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700