射频功率放大器线性化和稳定性的分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射频功率放大器是现代无线通信、雷达、电子对抗等系统收发前端的关键组件之一,它的稳定工作是系统正常运行的必要条件,它的线性度直接影响非恒定包络调制系统的性能,所以射频功率放大器的线性化和稳定性始终是射频电子学研究的热点和难点。本论文研究了用于无线通信的射频功率放大器的线性化和稳定性,完成了以下工作:
     1)包络消除与恢复技术能同时提高射频功率放大器的效率和线性度,本文提出了一种新的分析其交调失真的方法,建立了交调失真随包络通道带宽和包络相位延时差变化的通用简化模型,该简化模型克服了Raab模型只能处理零延时差和无穷包络通道带宽这两个特例的局限性;采用本文模型得出的交调失真等高线图还可以帮助设计者快速准确地选择电路参数。
     2)针对包络消除与恢复结构的特点,提出了一种全新的在基带进行自适应调整延时的线性化方法,这种方法适用于宽带功率放大器的线性化,对于信号带宽为11MHz的IEEE 802.11b宽带无线通信系统,根据这种线性化方法设计的射频功率放大器,能有效达到系统谱罩要求。通过对环路模型的分析,可以得到延时补偿值与包络信号带宽、包络通道带宽等之间的关系。
     3)基于深亚微米CMOS工艺,运用系统辨识的方法分析了射频功率放大器在大信号模式下的稳定性问题,运用反馈网络,消除了射频功率放大器的的不稳定极点,进而消除了可能出现的分谐波振荡。
     4)使用0.18μm的CMOS工艺,分别设计了带稳定电路和不带稳定电路的功率放大器,根据测试结果,分析了深亚微米工艺下电路参数变化对整个功率放大器稳定性特别是对潜在的分谐波振荡的影响。
The radio-frequency (RF) power amplifier (PA) is one of the key components of transceiver front-ends for modern wireless communication systems, RADAR, and electronic countermeasure. Its stability is necessary for system working and its linearity directly affects the performance of non-constant envelope modulation system. Thus the linearization and stabilization of RF PAs are always the hotspot and difficulty of RF electronic research. The linearity and stability of RF PAs for wireless communication are analyzed in this dissertation. The principal contributions of this dissertation include:
     The envelope elimination and restoration (EER) technique has been widely applied to improve the efficiency and the linearity of RF PAs simultaneously. A new method is proposed to analyze the intermodulation distortion (IMD) of RF PAs with EER. A general simplified model for IMD is founded which varies with the bandwidth of envelope path and the differential delay between envelope and phase signals, and overcomes the limitation of Raab’s model which can only solve such two specific instances as zero differential delay and infinite bandwidth of envelope path. A contour map derived from the general model in this dissertation is helpful for the designers to choose circuit parameters quickly and accurately.
     A novel adaptive delay-control method, implemented in the baseband, is presented to improve the linearity of RF PAs with EER. This method can be applied to the linearization of wideband PAs and makes the RF PAs easy to meet the spectral mask specification of IEEE 802.11b wireless communication systems with 11MHz-bandwith effectively. The relationship between the compensated delay and the bandwidth of envelope signal and envelope path comes out by the analysis for loop model.
     Based on deep sub-micron CMOS technology, the stability of PA operated beyond large signal is analyzed by system identification method. The sub-harmonic oscillation is eliminated by feedback network which removes the unstable poles of PA.
     The PAs are fabricated with and without stabilization circuit respectively. Based on the test results, this dissertation analyzes the effects on stability due to circuit parameter fluctuation, especially on potential sub-harmonic oscillation of PAs in deep sub-micron technology.
引文
[1] 高葆新,洪兴楠,王波. CDMA 功放电路副谐波负载牵引特性与建模研究. 固体电子学研究与进展,2003,23(1)
    [2] 张海涛,赵争鸣. 一种新的闭环控制电压型功率放大器. 清华大学学报,2003,43(9):1188~1190
    [3] 王波,洪兴楠,高葆新,庞云波. 用 Volterra 级数精确分析 MESFET 功率放大器的副谐波负载牵引特性. 电子与信息学报,2002,24(7):968~975
    [4] Jia Hongyong, Liu Zhinong, Li Gaoqing and Tsien Peihsin. SiGe HBT class AB power amplifier for wireless communications. Chinese Journal of Semiconductors, vol.23(9), 2002, 921~924
    [5] 支传德,杨华中,汪蕙. 射频前端接收机频率规划. 电路与系统学报,2006,11(4):21~25
    [6] 支传德,杨华中,汪蕙. CMOS 射频功率放大器设计方法. 电子技术应用,2006,32(9):1~3
    [7] Chuande Zhi, Huazhong Yang, Rong Luo. Novel stabilization method for eliminating oscillation in RF CMOS nonlinear power amplifiers. In: The 4th IEEE International Conference on Communication, Circuits and Systems, Guilin, China, 2006:2610~2613
    [8] 刘畅. 硅集成电感及 CMOS 射频集成电路研究:[博士学位论文]. 上海:中国科学院上海微系统与信息技术研究所,2002
    [9] 程知群. 砷化镓微波单片集成电路研究:[博士学位论文]. 上海:中国科学院上海冶金研究所,2000
    [10] 殷文春. 直流伺服系统的 PWM 功率放大器应用研究:[硕士学位论文]. 长春:中国科学院长春光学精密机械与物理研究所,2004
    [11] 李树翀,韩振宇,吴德馨. 2.5GHz RF 功率放大器和低噪声放大器模块的设计与实现. 微电子学,2005,35(1):18~24
    [12] 阎敬业,姜景山,张云华. 功率放大器非线性对 Chirp 信号的影响及预补偿方法研究. 电子学报,2005,33(12):2139~2143
    [13] 李志刚,石寅. D 类数字功率放大器电路失真分析及其负反馈方案讨论. 电路与系统学报,2001,6(1):22~26
    [14] 钱永学,刘训春. InGaP/GaAs HBT 微波功率放大器的设计. 半导体学报,2003,24(7):753~757
    [15] Bai Dafu, Liu Xunchun, Yuan Zhipeng and Qian Yongxue. ISM band medium power amplifier. Chinese Journal of Semiconductors, vol.25(6), 2004, 626~632
    [16] 王闯,钱蓉,孙晓玮. 紧凑型 K 波段单级反馈式 MMIC 中功率放大器. 半导体学报,2006,27(6):1094~1097
    [17] Shen Ming, Geng Bo and Yu Peiling. Design of a RF high power amplifier bias circuit. Journal of the Graduate School of the Chinese Academy of Sciences, vol.23(1), 2006, 77~82
    [18] 杨文考. 多载波(OFDM)数字电视系统中放大器的自适应预失真技术研究:[博士学位论文]. 成都:电子科技大学,2002
    [19] 晏泽昕. 2-30MHz 宽带大功率放大器的研究与实现:[硕士学位论文]. 成都:电子科技大学,2004
    [20] 李辉. 1.8GHz 前馈功率放大器的仿真实现:[硕士学位论文]. 成都:电子科技大学,2002
    [21] 陈志芳. 20W GSM 基站功率放大器的研制:[硕士学位论文]. 成都:电子科技大学,2004
    [22] 欧兵. 225-450MHz 宽带线性功率放大器的研制:[硕士学位论文]. 成都:电子科技大学,2003
    [23] 雷张伟. D 类音频功率放大器设计:[硕士学位论文]. 成都:电子科技大学,2002
    [24] 闫国光. GPS 宽带功率放大器研究:[硕士学位论文]. 成都:电子科技大学,2005
    [25] 王芳. Ka 波段功率合成放大技术研究:[硕士学位论文]. 成都:电子科技大学,2005
    [26] 杨万群. L 波段宽带功率放大器研究:[硕士学位论文]. 成都:电子科技大学,2005
    [27] 张翔. 微波线性功率放大器的研究:[硕士学位论文]. 成都:电子科技大学,2005
    [28] 陈贵强. 微波功率放大器的线性化技术:[硕士学位论文]. 成都:电子科技大学,2004
    [29] 郭道元. 微波超线性功率放大器研究:[硕士学位论文]. 成都:电子科技大学,2003
    [30] 周涛. 毫米波固态大功率合成/放大器的研究:[硕士学位论文]. 成都:电子科技大学,2002
    [31] 张剑. 高功率 S 波段 LDMOS FET 功率放大器的研究:[硕士学位论文]. 成都:电子科技大学,2005
    [32] 申明磊. V 波段毫米波功率放大器的研究:[硕士学位论文]. 成都:电子科技大学,2004
    [33] 裴任彤. S 波段微波固态功率放大器:[硕士学位论文]. 成都:电子科技大学,2003
    [34] 李滨,陈玲,魏萍,刘仁厚. 2GHz~20GHz 超宽带功率放大器. 电子科技大学学报,1999,28(2):140
    [35] 何松柏,徐宁,朱君范,虞厥邦. CDMA 射频线性功率放大器. 电子与信息学报,2002,24(8):1139~1142
    [36] 王海龙,王文祥,王吉辉. L 波段窄脉宽 500W 固态功放组件的设计. 电子对抗技术,2004,19(6):42~44
    [37] 邓洪敏,何松柏,虞厥邦. 基于 BP 神经网络的功放自适应预失真. 通信学报,2003,24(11):141~145
    [38] 苏黎,王向展. 一种高效率低谐波失真 E 类射频功率放大器的设计. 国外电子测量技术,2006,25(3):23~26
    [39] 毛文杰. 基于预失真技术的射频功率放大器线性化研究:[博士学位论文]. 杭州:浙江大学信息科学与工程学院,2003
    [40] 英正庆. 集成天线的射频功率放大器的研究:[硕士学位论文]. 杭州:浙江大学信息学院,2003
    [41] 陈世杰. 基于 DSP 控制的开关功率放大器研究:[硕士学位论文]. 杭州:浙江大学电气工程学院,2005
    [42] 王科平. 高效射频功率放大器的研究:[硕士学位论文]. 杭州:浙江大学信息学院,2006
    [43] 马皓,韩思亮. 新型滑模控制功率放大器. 浙江大学学报,2005,39(11):1801~1806
    [44] 毛文杰,冉立新,陈抗生. 一种基于双查找表自适应预失真结构的射频功率放大器线性化方法.电路与系统学报,2003,8(2):134~138
    [45] 朱玉波. 2.4GHz 无线局域网射频双向放大器设计:[硕士学位论文]. 西安:西安电子科技大学,2005
    [46] 赵新锋. OFDM 系统中的自适应预失真技术:[硕士学位论文]. 西安:西安电子科技大学,2005
    [47] 廖亮. 线性功率放大器研究:[硕士学位论文]. 西安:西安电子科技大学,2005
    [48] 林锡贵,郝跃,冯倩,张进城. AlGaN/GaN HEMT 功率放大器设计. 半导体技术,2006,31(1):52~55
    [49] 郝允群,庄奕琪,李小明. 高效率 E 类射频功率放大器. 半导体技术,2004,29(2):74~77
    [50] 王冲,刘道广,郝跃,张进城. 基于 AlGaN/GaN HEMT 的功率放大器的研究进展. 微电子学,2005,35(3):245~247
    [51] 张鹏,官伯然. 模拟预失真在高功率放大器中的应用. 微电子技术,2005,(12):88~92
    [52] 黄磊,王家礼. 一种改善射频功率放大器非线性的预失真法. 现代电子技术,2002,(12):34~36
    [53] 吕永生,王家礼,王云飞. 一种用于射频功率放大器自适应控制的 RLS 算法. 西安电子科技大学学报,2004,31(6):939~942
    [54] 张素敏. 中频数字预失真法改善功率放大器的非线性. 无线电工程,2005,35(8):59~61
    [55] 王云飞,王家礼,吕永生. 自适应前馈微波超线性功率放大器算法研究. 西安电子科技大学学报,2004,31(6):948~951
    [56] 林强. 射频线性功率放大器研究:[博士学位论文]. 武汉:华中科技大学,2005
    [57] 陈曙. AB 类折叠共源共栅 CMOS 功率放大器设计:[硕士学位论文]. 武汉:华中科技科技大学,2005
    [58] 王玲,马洪,冯镔,漆兰芬. 射频功放在 CDMA 信号激励下的性能分析. 华中科技大学学报,2002,30(11):34~37
    [59] 林强,张祖荫,郭伟. 微波功率放大器非线性失真分析. 微波学报,2004,20(4):79~82
    [60] 刘三清,张诗娟,余岳辉,陈晓飞. 一种宽频带大摆幅的三级 CMOS 功率放大器. 华中科技大学学报,2005,33(5):95~97
    [61] 朱轩昂,林金庭,陈效建. 2~6GHz 单片功率放大器. 固体电子学研究与进展,2001,21(2):119~125
    [62] 陈雪军,高建峰,陈效建,林金庭. 2~26GHz GaAs 单片功率放大器. 电子学报,2000,28(11):140~142
    [63] 曹海勇,陈效建,钱峰. 6~18GHz 单片级联型单级分布功率放大器设计. 电子与封装,2006,6(5):29~32
    [64] 张斌,李拂晓,蒋幼泉. 7~18GHz 单片宽带大功率放大器. 固体电子学研究与进展,2003,23(3)
    [65] 陈新宇,蒋幼泉,黄念宁,陈效建. 16.5~20GHz PHEMT 单片功率放大器. 固体电子学研究与进展,2001,21(4)
    [66] 陈堂胜,沈亚,李拂晓,陈效建. 19W C 波段 MMIC 多芯片合成功率放大器. 固体电子学研究与进展,2001,21(1):5~9
    [67] 林川,王志楠,王因生. 800MHz 800W 固态脉冲功放组件. 固体电子学研究与进展,2000,20(4):343~349
    [68] 陈新宇,高建峰,王军贤,陈效建. Ka 波段 PHEMT 功率放大器. 固体电子学研究与进展,2001,21(4):371~374
    [69] 陈堂胜,杨立杰,王泉慧,陈效建. 高效率 GaAs/InGaAs HEMT 功率放大器. 固体电子学研究与进展,2002,22(2):131~134
    [70] 李辉,陈效建. 匹配电路谐波特性对功率放大器性能的影响. 固体电子学研究与进展,2002,22(1):45~48
    [71] 钱峰,陈新宇,周剑明,陈效建. 移动通信用 GaAs HBT 功率放大器. 固体电子学研究与进展,2001,21(4):375~380
    [72] 贾建华,刘战胜. 关于自适应预失真射频功率放大器线性化研究. 微波学报,2005,21(3):48~50
    [73] 毛孟达,贾建华. 基于导频检测技术的射频前馈功放研究. 现代电子技术,2005,(22):62~64
    [74] 葛万成,李照泉,王军. 基于数字预畸变的 UMTS 功率放大器线性化技术. 同济大学学报,2003,31(1):109~113
    [75] 吴道富,贾建华,刘振宇. 前馈自适应线性功率放大器研究. 同济大学学报,2002,30(6):715~718
    [76] 王军,葛万成,李照泉. 适用于 3G 的功率放大器线性化技术. 通信技术,2003,(8):70~72
    [77] 钱业青. 一种高效的用于 RF 功率放大器线性化的自适应预失真结构. 通信学报,2006,27(5):35~41
    [78] 封丽梅,贾建华. 一种新的用于射频功率放大器的模拟预失真技术. 移动通信,2004,(S3):126~128
    [79] 罗渝霞,贾建华. 自适应前馈射频功率放大器设计. 现代电子技术,2004,(17):11~13
    [80] 贾建华,刘洋. 自适应预失真射频功率放大器线性化. 同济大学学报,2005,33(10):1377~1379
    [81] 杨柯,王志功,李志群. 0.18um CMOS 工艺 5GHz WLAN 功率放大器设计. 电子工程师,2006,32(3):1~3
    [82] 朱晓维. CDMA2000 1X 系统正向前馈线性功率放大器设计. 无线通信技术,2003,(2):53~55
    [83] 吴大刚,王蕴仪. 光子带隙结构用于改善功率放大器的性能. 东南大学学报,2002,32(6):857~860
    [84] 宗国翼,朱恩,李智群. 可用于无线局域网 802.11a 标准的 5GHz CMOS 功率放大器设计. 电子器件,2005,28(1):161~163
    [85] 朱晓维,李成进,邹乐. 数字自适应前馈功放线性化研究. 微波学报,2003,19(1):62~66
    [86] 赵洪新,陈忆元,洪伟. 一种基带预失真 RF 功率放大器线性化技术的模型仿真与实验. 通信学报,2000,21(5):41~47
    [87] 王方林. CMOS 蓝牙射频发送器的研究和设计:[博士学位论文]. 上海:复旦大学微电子学系,2004
    [88] 郭德彬,周峰,唐璞山. 一种 900MHz 20mW CMOS 功率放大器的设计. 微电子学,2002,32(1):62~66
    [89] Q. Wu, H. Xiao and F. Li. Linear RF power amplifier design for CDMA signals: a spectrum analysis approach. Microwave journal, 1998, 22~40
    [90] F. N. Sechi. Design procedure for high efficiency linear microwave power amplifiers. IEEE Trans. MTT, vol.28(11), 1980
    [91] A. H. Coskun and S. Denir. A mathematical characterization and analysis of a feedforward circuit for CDMA application. IEEE Trans. MTT, vol.51(3), 2003, 767~776
    [92] T. Wang and T. Brazil. The estimation of volterra transfer functions with application to RF power amplifier behavior evaluation for CDMA digital communications. In: IEEE MTT-S, 2000, 425~428
    [93] R. Larkin. Multi-signal intermodulation and stability consideration in use of linear repeaters. In: IEEE VTC, 1991, 747~752
    [94] S. T. Maas. Third-order intermodulation distortion in cascaded stages. IEEE Microwave and Guided Wave Letters, vol.5, 1995
    [95] J. H. Mikkelsen, T. E. Kolding, T. Larsen, T. Klingenbruun, K. I. Pedersen and P. Mogensen. Feasibility study of DC offset filtering for UTRA/FDD/WCDMA direct-conversion receiver. In: IEEE NORCHIP Conference, 1999, 34~39
    [96] M. Faulkner and M. A. Briffa. Amplifier linearization using RF feedback and feedforward techniques. In: Proc. VTC, 1995
    [97] W. H. Doherty. A new high effciency power amplifier for modulated waves. In: Proc. IRE, vol. 24, 1936, 1163~1182
    [98] L. R. Kahn. Single sideband transmission by envelope elimination and restoration. In: Proc. IRE, vol. 40, 1952, 803~806
    [99] H. Chireix. High power outphasing modulation. In: Proc. IRE, vol. 23, no. 11, 1935, 1370~1392
    [100] Nuttapong Srirattana. High-efficiency linear RF power amplifiers development: [Phd]. USA: Georgia Institue of Technology, 2005
    [101] G. Hanington, P. F. Chen, and P. M. Asbeck. A 10MHz DC to DC converter for microwave power amplifier efficiency improvement. In: IEEE MTT-S Int. Microwave Symp. Dig., 1998
    [102] G. Hanington, P. F. Chen, P. M. Asbeck, and L. E. Larson. High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications. In: IEEE Trans. Microwave Theory Tech., vol. 47, 1999, 1471~1476
    [103] S. Narahashi and T. Nojima. Extremely low distortion multi-carrier amplifier self-adjusting feedforward amplifier. In: Proc.ICC, 1991, 1485~1490
    [104] T. J. Bennett and R. F. Clements. Feedforward - an alternative approach to amplifier linearization. Radio and Elect. Eng.,1974,44(5):257-262
    [105] J. K. Cavers. Adaptation behavior of a feedforward amplifier linearizer. IEEE.Trans.on Vehicular Technol.,1995,44(1):31-39
    [106] P. B. Kenington. Efficiency of feedforward amplifiers. In: Proc.G, vol. 139, 1992, 591~593
    [107] V. Petrovic and A. N. Brown. Application of Cartesian feedback to HF SSB transmitters. In: Proc. HF Commu. Systems and Tech., 1985, 81~85
    [108] S. M. Whittle. A practical Cartesian loop transmitter for narrowband linear modulation PMR systems. In: IEE Colloquium on ‘Linear RF Amplifiers and Transmitters’, 1994, 1~5
    [109] Y. Akaiwa and Y. Nagata. Highly efficient digital mobile communications with a linear modulation method. IEEE J. Selected Areas in Communications, vo5. 5, 1987, 890~895
    [110] M. A. Briffa and M. Faulkner. Dynamically biased Cartesian feedback linearization. In: Proc. VTC, 1993, 672~675
    [111] M. Johansson, T. Mattsson, L. Sundstrom and M. Faulkner. Linearization of multicarrier power amplifiers. In: Proc. VTC, 1993, 684~687
    [112] M. Faulkner and M. A. Briffa. Amplifier linearization using RF feedback and feedforward techniques. In: Proc. VTC, 1995
    [113] A. K. Chattopadhyay, N. K. De and S. K. Dutta. Microprocessor based feedforward controller for a CSI-IM drive with state feedback. In: Proc. Industry Applications Society Annual Meeting, 1991, 1727~1733
    [114] V. Petrovic and W. Gosling. Polar loop transmitter. Electronics Letters,1979,15(10):286-288
    [115] H. Kosugi, T. Matsumoto and T. Uwano. A high efficiency linear power amplifier using an envelope feedback method. In: Electronics and Communications in Japan, 1994, vol.77(3):50~57
    [116] L. R. Khan. Single sideband transmission by envelope elimination and restoration. In: Proc. IRE, Vol.40, July 1952
    [117] D. C. Cox. Linear amplification with nonlinear components. IEEE Trans. Communications, 1974, 1942~1945
    [118] H. Chireix. High power outphasing modulation. In: Proc. IRE, vol. 23, no. 11, 1935, 1370~1392
    [119] D. C. Cox and R. P. Leck. Component signal separation and recombination for linear amplification with nonlinear components. IEEE Trans. Communications, vol.23, 1975, 1281~1287
    [120] S. A. Hetzel, A. Bateman and J. P. McGeehan. LINC transmitter. Electronics Letters,1991,27(10):844-846
    [121] A. Bateman. The combined analogue locked loop universal modulator (CALLUM). In: Proc. VTC, 1992, 759~763
    [122] K. Y. Chan and and A. Bateman. Linear modulators based on RF synthesis: Realizatioin and analysis. In: IEEE Trans.Circuits and Systems-I, vol. 42(6), 1995, 321~333
    [123] T. Sowlati, D. Rozenblit, R. Pullela, et al. Quad-band GSM/GPRS/EDGE polar loop transmitter. IEEE Journal of Solid State Circuits, vol.39(12), 2004, 2179~2189
    [124] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson and P. M. Asbeck. Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications. IEEE Trans. MTT, vol.53(4), 2005, 1244~1255
    [125] B. Sahu and G. A. Rincon-Mora. A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply. IEEE Trans. MTT, vol.52(1), 2004, 112~120
    [126] D. Rudolph. Out-of-band emission of digital transmissions using Kahn EER technique. IEEE Trans. MTT, vol.50(8), 2002, 1979~1983
    [127] D. Milosevic, J. van der Tang and A. van Roermund. Intermodulation products in EER technique applied to class-E amplifiers. In: Proc. Of the International Symposium on Circuits and Systems, 2004, 637~640
    [128] K. C. Peng, J. K. Jau and T. S. Horng. A novel EER transmitter using two-point delta-sigma modulation sheme for WLAN and 3G applications. In: MTT-S Digest, 2002, 1651~1654
    [129] N. Wang, X. Peng, V. Yousefzadeh, et al. Linearity of X-band class-E power amplifiers in EER operation. IEEE Trans. MTT, vol.53(3), 2005, 1096~1102
    [130] P. Reynaert and M. S. J. Steyaert. A 1.75GHz polar modulated CMOS RF poweramplifier for GSM-EDGE. IEEE Journal of Solid State Circuits, vol.40(12), 2005, 2598~2608
    [131] D. Rudolph. Kahn EER technique with single-carrier digital modulations. IEEE Trans. MTT, vol.51(2), 2005, 548~552
    [132] 万戈,李薰春,王玮宏. DRM 发射机自动延时调整分析. 广播与电视技术,2005,32(11):30~32
    [133] J. K. Jau and T. S. Horng. Linear interpolation scheme for compensation of path delay difference in an EER transmitter. In: Asia-Pacific Microwave Conference, 2001, 1072~1075
    [134] B. Bakkaloglu, S. Kiaei and R. Dwyer. Bandwidth extension technique for polar modulated RF transmitters. IEE Electronics Letters, vol.42(8), 2006, 548~552
    [135] M. Suzuki, T. Yamawaki, T. Tanoue, et al. Proposal of transmitter architecture for mobile terminals employing EER power amplifier. In: The 57th IEEE Vehicular Technology Conference, 2003, 1327~1330
    [136] J. H. Chen, K. U-yen and J. S. Kenney. An envelope elimination and restoration power amplifier using a CMOS dynamic power supply circuit. In: MTT-S Digest, 2004, 1591~1522
    [137] F. H. Raab. Intermodulation distortion in Kahn technique transmitters. IEEE Trans. MTT, vol.44(12), 1996, 2273~2278
    [138] Chuande Zhi, Huazhong Yang. More practical inter-modulation distortion in envelope elimination and restoration RF power amplifiers. In: The 49th IEEE International Midwest Symposium on Circuits and Systems, Puerto Rico, USA, 2006
    [139] 支传德,杨华中. 射频包络消除与恢复功率放大器性能分析. 半导体学报,已录用
    [140] F. H. Raab. Envelope elimination and restoration system requirements. In: Proc. RF Technology Expo ’88, 1988, 499~512
    [141] A. Diet, C. Berland , M. Villegas and G. Baudoin. EER architecture specification for C band OFDM transmitter. IEEE Microwave and Wireless Components Letters, vol.14(8), 2004, 389~391
    [142] G. Baudoin, C. Berland, M. Villegas and A. Diet. Influence of time and processing mismatches between phase and envelope signals in linearization systems using envelope elimination and restoration, application to Hiperlan2. In: Proc. IEEE MTT-S, 2003, 2149~2152
    [143] J. K. Jau and T. S. Horng. Linear interpolation scheme for compensation of path delay difference in an envelope elimination and restoration transmitter. In: Proc.APMC, 2001, 1072~1075
    [144] F. H. Raab and D. J. Rupp. High efficiency sing-sideband HF/VHF transmitter based upon envelope elimination and restoration. In: The 49th IEEE HF Radio Systems and Techniques Conference, 1994, 21~25
    [145] D. K. Su and W. J. McFarland. An IC for linearizing RF power amplifiers using envelope elimination and restoration. IEEE J. Solid State Circuits, vol.33(12), 1998, 2252~2258
    [146] Chuande Zhi, Huazhong Yang. A new adaptive delay method for wideband Kahn’s RF power amplifiers. IEEE Transactions on Consumer Electronics, 2006, 52(3):962~965
    [147] Chuande Zhi, Huazhong Yang. A new adaptive delay method for wideband Kahn’s RF power amplifiers. In: The 10th IEEE International Symposium on Consumer Electronics, St. Petersburg, Russia, 2006:474~477
    [148] H. W. Bode. Network analysis and feedback. In: Amplifier Design, New York: Van Nostrand, 1945
    [149] A. Platzker and W. Struble. A rigorous yet simple method for determining stability of linear N-ports networks. In: GaAs IC Symp. Dig., 1993, 251~254
    [150] Balth Van Der Pol. Forced oscillations in a circuit with nonlinear resistance. The London, Edinburgh, and Dublin Philosophical Magzine and Journal of Science, 1927, Ⅲ(13):65~81
    [151] N. Minorsky. Nonlinear Oscillations, D. Van Nostrand Company, Princeton, NJ, 1962, 469~470
    [152] S. Mons, J. C. Nallatamby, R. Quéré, P. Savary and J. Obregon. A unified approach for the linear and nonlinear stability analysis of microwave circuits using commercially available tools. IEEE Trans. On MTT, vol.47(12), 1999, 2403~2409
    [153] D. Teeter, A. Platzker and R. Bourque. A compact network for eliminating parametric oscillations in high power MMIC amplifiers. In: Proc. of IEEE MTT-S, 1999, 967~970
    [154] V. Rizzoli and A. Neri. State of the art and present trends in nonlinear microwave CAD techniques. IEEE Trans. On MTT, vol.36(2), 1988, 343~365
    [155] V. Rizzoli and A. Lipparini. General stability analysis of periodic steady state regimes in nonlinear microwave circuits. IEEE Trans. On MTT, vol.33(1), 1985, 30~37
    [156] A. Anakabe, J. M. Collantes, J. Portilla, J. Jugo, et al. Analysis and elimination of parametric oscillations in monolithic power amplifiers. In: Proc. of IEEEMTT-S, 2002, 2181~2184
    [157] J. Jugo, J. Portilla, A. Anakabe, A. Suárez and J. M.Collantes. Closed-loop stability analysis of microwave amplifiers. IEE Electronics Letters, vol. 37(4), 2001, 226~228
    [158] A. Suárez, V. Iglesias, J. M.Collantes, J. Jugo and J. L. Garcia. Nonlinear stability analysis of microwave circuits using commercial software. IEE Electronics Letters, vol. 34(13), 1998, 1333~1335
    [159] T. A. Fjeldly, T. Ytterdal and M. Shur. Introduction to Device Modeling and Circuit Simulation, John Wiley & Sons, New York, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700