受电弓机构几何参数优化与主动控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高受流质量是铁路提速中亟待解决的问题,改善受电弓和接触网之间的关系是解决这一问题的关键。这就要求不断地提高接触网和受电弓的动力性能。
     本文从提高受电弓的运动学和动力学性能以改善弓网关系,提高受流质量的角度出发,主要完成了两方面的内容:第一,本文从为保证机车正常运行和稳定受流对受电弓提出的要求出发,对高速受电弓框架结构的几何参数进行了优化;第二,从降低接触压力波动的角度出发,对受电弓的主动控制进行了研究。
     首先,在建立受电弓框架结构的几何关系模型的基础上,根据列车平稳受流对受电弓机构提出的具体要求,以弓头平衡杆的平动为目标,以受电弓机构正常工作所要满足的条件为约束,运用单目标优化技术,对受电弓机构进行了优化,得到了使受电弓性能达到最优的几何参数,并对优化结果进行了深入的分析。通过优化提高了受电弓的运动学性能。
     然后,用拉格朗日方程推导了受电弓的垂向非线性运动微分方程,对非线性的受电弓模型进行了线性化处理,得到了线性化的计算公式。同时,建立了接触网的有限元模型和受电弓/接触网耦合系统的动力学模型。最后,在此基础上,分析了受电弓/接触网系统的工作特点,建立了受电弓主动控制系统的数学模型,利用线性二次型最优控制策略,以给定性能指标为最小值为设计目标,性能指标为表征受电弓动力学特性的状态变量和主动控制力的函数,考虑了完全状态反馈的情况,进行了控制系统的设计。为了验证控制的效果,进行了仿真研究,分析了仿真的结果。并在分析了控制系统参数的作用的基础上,减少了用于反馈的状态变量,降低了控制系统实现的难度。同时,比较了不同速度下的控制结果,得出了在高速下控制效果更优的结论。通过受电弓主动控制系统的设计和对其的仿真研究,理论上降低了弓网系统接触压力的波动,从而改善了受流质量。
Current collecting performance is urgent to be improved for high-speed railway and better relationship between pantograph and catenary is the key to this problem. So this requires improving dynamic performance of pantograph and catenary.
    From the aspects of changing the relationship of pantograph and catenary and improving the current collecting performance, two main topics are discussed in this thesis: firstly, from the locomotive's stable running and current collection's demands for pantograph, the geometric parameters of pantograph's frame structure are optimized; Secondly, to reduce the fluctuation of the contact force between the pantograph and catenary, active control of pantograph is studied
    Above all, the geometric relation model of high-speed pantograph frame structure is developed in this paper. Considering the detailed demands of locomotive's stable current collecting for pantograph mechanism, the objective function of the translation of pantograph-head balancing bar and the confining conditions of the demands which the pantograph mechanism must meet to work properly, are determined. The geometric parameters are calculated by using the single objective optimization technique and a series of parameters obtained optimized the pantograph performance. Also, the optimization result is analyzed thoroughly. Kinetic performance is improved by the use of optimization technique.
    Next, the nonlinear perpendicular kinetic differential equation of pantograph is derived from a Lagarangian Equation. The nonlinear model of pantograph is linearized and the calculation formulas are obtained. At the same time, the finite element model of the catenary and the model of the coupling system of the pantograph/catenary are performed. Finally, based on the studies above, the characteristics of pantograph/catenary are analyzed and the active pantograph is modeled. By using the linear quadratic optimal control law, the design objective is to minimize the performance index, which is a function of the state variables representing the pantograph's dynamic characteristic and the active control force. The control system is designed considering the complete state feedback. To verify the control's effect, the simulation is performed and the result is analyzed. And then, the number of the state variable in the feedback is lowered through analyzing the function of the state variables to the control force, the
    refore, to realize the control law is much easier. At the same time, the results at different speed are compared, and the paper comes to a conclusion that the results at the higher speed is much more obvious. The design of the pantograph's active control system and the study of the simulation results reduce the fluctuation of the contact force theoretically and thus improve the current collecting quality.
引文
[1] 于万聚.高速接触网—受电弓动态受流特性研究.西铁科技.1996,2:3
    [2] 张弘,常百达,韩通新.高速受流专辑.北京:中国铁道出版社,1991
    [3] M. Link und B. Nowak, Zur dynamischen Analyse des Systems Stromabnemer und Fahrleitung, dargestellt am Beispiel des Intercity Experimental, VDI BERICHTE NR. 1986, 603
    [4] Dr. Albrechht Brodkorb, Erlangen und Manfred Semrau, Halle. Simulationsmodell des system Oberleitung—skettenwerk und Stromabnehmer Elektrische Bahnen. 1993, 4
    [5] A.G. Thompson, B. R. Davis, An active Pantograph with Shaped Frequence Response Employing Linear Output Feedback Control. Vehicle System Dynamics, 1990, 19(3):131—149
    [6] O'Connor. Active Control of a high speed pantograph. ASME J. Of Dynamic Systems Measurement and Control, 1997, 119(1)
    [7] G. Poetsch, J. Evans, R. Meisinnger, W. Kortum, W. Baldauf, A. Veitl J. Wallaschek. Pantograph/Catenary Dynamics Control. Vehicle System Dynamics, 1997, 28(2): 159—195
    [8] G. Diana, F. Fossati, F. Resta. High Speed Railway: Collecting Pantographs Active Control and Overhead Lines Diagnostic Solutions. Vehicle System Dynamics, 1998, 30(1): 69—84
    [9] Aldo Balestrino, Ottorino Bruno, Alberto Landi, Luca Sani. Innovative Solutions for Overhead Catenary—Pantograph System: Wire Actuated Control and Observed Contact Force. Vehicle System Dynamics, 2000, 33(2): 69—89
    [10] ArminVeitl, Willi Kortum. Simulation and Control Design for Mechatronic Pantographs. Vehicle System Dynamics Supplement, 1999, 33:431—441
    [11] 蔡成标,翟婉明.机车—轨道振动对受电弓—接触网系统动力学的影响.铁道学报,1998,20(1)
    [12] 傅秀通.轮/轨—弓/网协调耦合动力学数值模拟分析与实验研究,铁道部科学研究院博士学位论文,1996.8
    [13] 梅桂明.受电弓/接触网垂向耦合动力学研究.西南交通大学硕士研究生
    
    学位论文,2001.3
    [14] 邢海军.电力机车受电弓的动态特性与振动控制的研究.西南交通大学硕士研究生学位论文,1999.3
    [15] 孙国正.优化设计及应用.第2版.人民交通出版社,2000.12:4—11
    [16] 张鄂.现代设计方法.西安交通大学出版社,1999.10:66—67
    [17] 何献忠,李萍.优化技术及其应用.第2版.北京理工大学出版社,1995.2
    [18] G.V.雷克莱狄斯,A.拉文德兰,K.M.拉格斯迪尔.工程最优化—方法与应用.孙彦兵,陶维本,丁惠梁,杨立.北京航空航天大学出版社,1990.2
    [19] 马良骥.受电弓机构综合及优化设计.西南交通大学硕士研究生学位论文,1988
    [20] 刘红娇,张卫华,梅桂明.高速受电弓机构几何参数优化.铁道学报,2001,23(6):16—20
    [21] 刘维信.机械最优化设计.清华大学出版社,1993:238—242
    [22] 施光雁,勤加礼.最优化方法.高等教育出版社,1999:63—95
    [23] 蔡成标,翟婉明.高速铁路受电弓—接触网系统动态性能仿真研究.铁道学报,1997,19(5)
    [24] 张卫华.受电弓—接触网系统动态特性的研究.西南交通大学硕士研究生学位论文,1987.7
    [25] D.N.O'Connor. Modeling and Simulation of Pantograph—Catnenary Systems. MS, MIT, 1984
    [26] K·Γ·马克瓦尔特,N·N·符拉索夫.接触网.袁则富,白山.中国铁道出版社,1986
    [27] T. X. Wu, M. J. Brennan. Basic Analytical Study of Pantograph—catenary System Dynamics. Vehicle System Dynamics, 1998, 30(6): 443—456
    [28] M. Arnold, B. Simeon. Pantograph and Catenary dynamics: A Benchmark Problem and Its Numerical Solution. Applied Numerical Mathematics, 2000, 34: 345—362
    [29] Q. Shah, W. M. zhai. A macroelement method for catenary mode analysis. Computer and Structure, 1998, 69:762—772
    [30] W. Seering, K. Armbruster, C. Vesely, D. Wormley. Experimental and Analytical Study of Pantograph Dynamics. Transaction of the ASME, 1991, 113(242)
    [31] 王宁,单圣雄.受电弓与接触网间接触压力的分析.电气化铁道,2000,2:
    
    22—24
    [32] 于万聚.接触网CAD系统.西南交通大学出版社,1998
    [33] 于涤.高速接触网受流的理论分析.铁道学报,1998,20(5)
    [34] 肖建.现代控制系统综合与设计.中国铁道出版社,2000.2
    [35] 付梦印,钟秋海.现代控制理论与应用.机械工业出版社,1997.1
    [36] 张汉全,肖建,汪晓宁.自动控制理论新编教程.西南交通大学出版社,2000.1
    [37] 谢克明.现代控制理论基础.北京工业大学出版社,2000.2
    [38] 薛定宇.反馈控制系统分析与设计—MATLAB语言应用.清华大学出版社,2000.4
    [39] 许波,刘征.Matlab工程数学应用.清华大学出版社,2000.4
    [40] 赵明元,杨绪红,朱衡君.中、高速受电弓设计初探.电力机车技术,2000.2:7—9
    [41] 吴麒,慕春棣.自动控制原理(上册).清华大学出版社,1998.1
    [42] 吴麒,慕春棣.自动控制原理(下册).清华大学出版社,1998.1
    [43] 吴天行.接触网的有限元计算与分析.铁道学报,1996,18(3)
    [44] 吴天行.弓网动态受流仿真研究.铁道学报,1996,18(4)
    [45] 戴南山.高速受流性能探讨.电力机车技术,2001,24(1):17—18
    [46] 陈桂明,张明照,戚红雨,张宝俊.应用MATLAB建摸与仿真.科学出版社,2001
    [47] 丁丽娟.数值计算方法。北京理工大学出版社,1997.8
    [48] 戴唤云.车辆主动悬挂的鲁棒控制研究.西南交通大学博士研究生学位论文,1999.1
    [49] 段治勇.机车车辆主动悬挂初步研究.西南交通大学硕士研究生学位论文,1997.5
    [50] D.Wormley,W.Seering,S.Eppinger,O'Connor.Dynamic Performance Characteristics of New Configuration Pantograph—Catenary Systems. Final Repert,1984.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700