机器视觉球面孔位快速精密测量系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术、通信技术及超大规模集成电路技术的发展,世界范围内的各种加工测量新技术和新产品不断涌现,精密量具、量仪等测量装置正朝着数字化、信息化的高新技术方向发展。
     数字化测量技术是数字化制造技术中的关键技术。高速、高效、高精度、高可靠性、多功能的先进数字化测量技术和仪器装备、服务,推动着数字化制造技术和装备的发展。两者之间互为依托的关系决定了发展精密测量技术的必要性和迫切性。因此,加强精密测量基础理论的研究,采用数字化测量技术及产品来迅速提升机械制造业的水平,代表着当今科技发展的方向和要求。
     球面孔系位置精密测量一直是测量领域的一个难题,随着航空、航天以及国防工业的发展,这类测量任务日益增多,且精度和效率要求也越来越高。三坐标测量机虽可实现球面及更复杂表面的精密测量,但效率较低,难以满足自动化测量的要求。更先进的三坐标测量机能够同时满足精度和速度的要求,但动辄数百万美元的价格,也非一般用户所能接受。虽然万能工具显微镜也能进行类似测量,但需由人工操作完成,难以实现自动化测量。如果被测件材料具有特殊性(如放射性等),则工作人员更难实现测量。因而研究基于机器视觉的检测技术,以非接触方式实现球面微/小孔系位置测量具有重要意义。
     本文以四川大学激光应用技术研究所承担的军工配套项目的相关技术为背景,结合省应用基础研究项目“机器视觉测量与图像处理技术研究”的研究内容,对球面孔位快速精密测量系统进行了深入的研究。从理论和实践上解决了用机器视觉技术实现球面孔系位置测量的技术难题。
     该课题的研究弥补了现有测量手段在球面或类球面小孔及孔系位置测量方面的不足,测试结果达到了项目的技术要求,即测量时间≤40秒/孔位;测量不确定度≤30角秒。项目通过了四川省科技厅的鉴定,其技术属国内领先水平。
     本文的主要研究工作及创新点可以归纳为:
     1.全面介绍了国内外机器视觉技术研究和应用的现状,在充分比较现有测量方法的基础上,建立了球面孔系坐标的数学模型;进而提出了通过球体转位控制,将三维孔系坐标测量转化为二维图像识别,再经几何计算求得球面孔位坐标的测量方法。该方法较好地解决了球面或类球面小孔及孔系位置测量的技术难题。
     2.由于被测件孔型不同(通孔和盲孔),孔径不等,因而图像差别大,后续处理算法不一样,为此本文创新性地根据灰度直方图实现了孔型的自动识别,提高了系统的智能化程度和对测量任务的广泛适应性。
     3.通过分析球面孔系坐标测量系统的结构特点及测量任务要求,创新性地提出了用准直激光束引导机器视觉系统的精确定位方法,解决了曲面工件因为技术原因不易直接定位的技术难题。通过实验证明该方法校准速度快、精度高。
     4.根据定位系统的要求,提出了自聚焦光纤准直的方法;所设计的激光准直系统,其准直后激光束发散角<0.5°,满足本课题机器视觉系统定位的要求。
     5.在分析传统Hough变换检测法的基础上,创新性地提出了基于目标区自适应搜索的快速检测法。该算法的特点是通过目标区自适应搜索,确定目标近似中心点(x_o,y_o),从而将圆心累加范围限制在近似中心点(x_o,y_o)附近,大大地减少了无效累积,使检测误差和执行时间分别小于1个像素和50ms,实现Hough变换快速检测。
     6.在系统总体控制模式方面,采用了PC机与DSP+FPGA数字电路组成的主从式操作模式:以计算机作上位主机,完成对DSP的控制,实现数据处理结果显示及人机对话(包括小孔模拟图像的显示、中心坐标的显示等),而大量的数据处理运算交给DSP去完成。这种方式弥补了DSP在事件处理方面所表现的I/O口较少及人机界面不友好等不足,充分发挥了DSP强大的数据处理能力;尤其是DSP+FPGA的数字电路设计方案将CCD图像采集与处理和球体转位装置的运动控制融为一体,从而保证了测量的高精度和高效率。
     7.对基于模糊控制理论的步进电机控制算法进行了研究。控制系统采用DSP作为处理器,同时还选用了FB920P高精度触角编码器作为电机位置反馈元件,并配之以FPGA(现场可编程门阵列)控制电路,构成了一个实时、灵活的步进电机控制系统,实现了转位装置的高精度、高速度控制。
     本课题是一个典型的光、机、电、算一体化课题。基于本文所述的把球面孔系坐标的三维测量通过球体转位控制,转换为球面上圆孔的二维测量,即使用面阵CCD采集圆孔图像,通过图像处理识别圆孔中心坐标,再经计算确定圆孔的空间位置的测量模式,只需改变工件转位或移动方式,就可实现其它型面的非接触测量。本课题的研究为机器视觉系统的完全数字化、智能化和小型化进行了有益的探索,其成果具有较广泛的适用范围和较重要的参考价值。
In space the development of computer technology, communication technology and large-scale integrated circuit technology, various new technologies and products of measuring instrumentations in the worldwide develop towards digitized and information.
     The digital measurement is the key technology for the modern manufacturing technology. The digital measuring technology of the high speed, high efficiency, high precision, high dependability, and multi-purpose promotes the development of the digital manufacturing technology .The reliance on the relationship between them decides the essentiality and urgency of the development of precise measurement technology. Therefore, to research the basic theories of precise measurement and to adopt the digital technology are important to the development of manufacturing level.
     The precise measurement in the worksite is difficult. With the development of the aviation, space and defense industries, such measurements are growing. The accuracy and efficiency of them are increasing. The 3D coordinate measuring machine can achieve the precise measurements of the sphere or other complex surfaces, but the efficiency is very low and difficult to meet the requirements of automatic measurement. Advanced 3D coordinate measuring machine can simultaneously meet the requirements about speed and accuracy, but it is at the price of million dollars that is difficult to accept for the normal users. Although the almighty tools microscopes can realize similar measuring, it requires manual operation to complete and it is difficult to achieve the automatic measuring. If the measured material has a particularity (such as radioactivity, etc.), the measuring is more difficult to be achieved by the operating force. Thus the research of the testing technology based on the machine vision and achieving the sphere micro/small hole location measuring using the non-contact way have significant sense.
     This paper is based on a defense industry suitable project, undertaken by the Applied of Lasers Research Institute, Sichuan University. It is also associated with the subject of "Research on machine vision system and image processing" of the applied basic research projects in Sichuan Province. The technical projblem and the relative theory of the measurement have been solved.
     The research of this subject has made good for the scarcity on the measurement of the hole-positions on sphere or similar sphere surfaces using the existing measurement methods. And the test results are achieved on the technical requirements of the project. The testing time should less than 40s/ per holes position and the measurement inaccuracy is not larger than 30". The project has been identified by the Science Department of Sichuan Province, and the technical level is in lead in China.
     The main research work and innovation points in this paper include:
     1. The research and application of the machine vision system were comprehensively introduced. The advantages and disadvantages of various methods and applications were analyzed. The mathematical model of the hole-coordinates on sphere surface was set up. Moreover, an system of image signal acquisition and processing based on DSP+FPGA architecture and CCD camera with high pixels was proposed. The system provided higher speed and precision.
     2. A innovation idea which identifies hole type automatically ( through hole and blind hole) according to gray-level histogram was given .The method improved the intelligence level of the system and the wide adaptability of measurement.
     3. By analyzing the structure characteristics of system and measurement requirements, a pinpoint method using a reflection type of collimating laser beam -guided positioning system based on machine vision was proposed. And the calibration experiment proved that the method provided higher speed and precision.
     4. According to the requirement of the pinpoint method, a fiber semiconductor laser collimating system was designed, which divergence angle of the laser beam is less than 0. 5°. It can meet the demands of the position system based on machine vision.
     5. Based on the traditional Hough transform method, a adaptive searching method in target area was proposed. In this way, the accumulation range of the circle center can be restricted near the center point(x_0,y_0), and non-effective accumulation can be greatly reduced. The testing error and the time are respectively less than 1 pixel and 50 ms.
     6. The master-slave operation mode constituted by the PC and DSP+FPGA digital circuits was adopted. The PC completed the controlling of DSP and display of the data processing results and man-machine interaction. And a great deal of data processing calculation completed by the DSP. Especially the advanced digital circuit design of the DSP +FPGA was integrated the CCD image acquirement and processing and the movement controlling of the sphere-shifting device as a whole, and in this way, high precision and high efficiency of the measuring can reality.
     7. The research on the control algorithm of the stepping motor based on the fuzzy control theory was proposed. A advanced feedback controlling system was developed . Its practical and applications proved that it can meet demands.
     Based on image processing, recognition algorithm and controlling mode converts 3D measurement into 2D image recognition only changes the locomotion or movement mode, the non-contacted measurement for other surface type is realized. The research on this paper can be applied widely, provides a resolution for the completely digital, intelligent and miniaturization of the machine vision system. It is important consulting value and theory sense to the development of non-contacted precision measuring technology.
引文
[1] 谢华锟,梁军等,第九届中国国际机床展览会量仪展品述评[J],工具技术,2005,39(7):10-18
    [2] 张国雄,抓住契机,充分运用现代科学成就,发展先进制造技术[J],制造技术与机床,2004,7:5-9
    [3] 谢华锟,第八届中国国际机床展览会量仪展品述评—数字化测量技术,先进制造技术基础[J],工具技术,2003,37(7):12-18
    [4] 谭久彬,超精密测量技术与仪器工程研究中的几个热点问题[J],中国机械工程,2000,11(3):257—261
    [5] 路甬祥,团结创新,建设制造强国[J],电加工与模具,2003(6):1-8
    [6] 刘安心、余跃庆,三维机器视觉测量系统的坐标计算模型研究[J],电气技术与自动化,2005,34(3):71-73
    [7] 丁兴号,基于小波变换的亚像素边缘检测[J],仪器仪表学报,2005,26(8):801-804
    [8] 肖献强、李欣欣、程光明等,基于机器视觉技术的压电精密驱动与控制系统[J],机械工程师,2005,7:23-25
    [9] 陈向伟、王龙山、刘庆民,图像技术在微小零件几何尺寸测量中的应用[J],工具技术,2005,39(8):86-89
    [10] 畅琮,集成DSP的视频处理卡在机器视觉中的应用[J],现代电子技术,2004,11(178):29-34
    [11] 朱明、鲁剑锋,基于DSP+FPGA结构图像处理系统设计与实现[J],计算机测量与控制,2004,12(9):866-869
    [12] 鲁欣、赵亦工、徐秀红,数字电路设计方案的比较与选择[J],电子技术应用,2002,1:38-40
    [13] 娄小平、吕乃光、邓文怡等,基于机器视觉复杂形状工件的非接触测量方法[J],工具技术,2005,39(7):82-85
    [14] 吴上生,机器视觉技术在检测轴类零件弯曲变形中的应用研究[J],机械制造,2005,43(490):69-70
    [15] 黄继雄、莫易敏,基于面阵CCD的二维几何尺寸非接触测量及其在CNC轮对车床 中的应用[J],机械制造,2005,43(486):30-32
    [16] 雷永强、段发阶、胡亮等,基于Stratix系列FPGA的快速并行FIR滤波器在钢板表面缺陷图像预处理中的应用[J],电子技术应用,2004,10:136-139
    [17] 康武平,面向电机控制的TMS320F240 DSP芯片[J],太原科技,2005,4:80-81
    [18] 张常宾、胡继胜、朱忠军,基于DSP的电机控制实验平台的设计[J],EIC,2005,12(6):39-40
    [19] 刘治、李建、田伟,DSP在图像处理中的应用[J],电子技术与应用,2004,1:57-59
    [20] 张金萍、刘杰、李允公,数学形态学在工件识别预处理中的应用[J],机械与电子,2006,1:31-33
    [21] 杨丽凤,面阵CCD高精度测量技术的应用[J],太原理工大学学报,2001,32(5)455-458
    [22] 董斌、杨韧、刘兴占等,一种使用线阵型CCD实现高精度二维位置测量的方法[J].光学技术,1998,5:42-45
    [23] Dickenson sven J, Christensen Hrnrik I, Tsotsos John, et al, Active object recognition attention and viewpoint control [A], Proceedings of the Fourth Conference on Computer Vision, Volume 801 of Lectuer Notes in Computer Science[C], Stockholm, 1994: 3-14
    [24] Tom Hendrick Interfacing the ADS8364 to the TMS320F2812 DSP, TI, SLAA 163, Texas Instruments Inc, 2002, 12
    [25] TMS320C24X DSP Controllers (CPU, System and Instruction Set) Texas Instruments Publish.
    [26] 梁华为,直接从双峰直方图确定二值化阀值[J],模式识别与人工智能,2002,15(2):253-256
    [27] 罗兵、严圣华、黄红梅,基于DSP的小波变换并行算法[J],长江大学学报,2005,2(7):248-250
    [28] 柳伟生、孙秋柏、吴庆洪等,DSP在图像高速采集中的应用[J],自动化技术与应用,2005,24(12):22-24
    [29] 谢捷如,计算机视觉中的边缘提取技术研究[J],机械制造与自动化,2005,34(2):120-122
    [30] 闫维新、吴乾坤、郭星,DSP关于图像边缘寻找的实现[J],黑龙江水专学报,2002,29(3):92-94
    [31] 田岩涛、常丹华、潘普丰,用基于DSP的线阵CCD实现二维图像信号采集的系统设计[J],应用光学,2005,26(6):8-11
    [32] 刘党辉、沈兰荪,DSP芯片及其在图像技术中的应用[J],测控技术,2001,20(5):16-23
    [33] 张艳,基于DSP的机器视觉系统设计[J],现代电子技术,2005,202(11):101-105
    [34] 柯丽、黄廉卿,DSP芯片在实时图像处理系统中的应用[J],光机电信息,2005,1:17-23
    [35] TMS320C6X User's Guide[Z]. USA: Texas Instruments, 2003
    [36] Wang Y H, Zhang T X, Yan L X, Modularized multi-DSP real-time image processing system[J]. SPIE, 4552: 12-15
    [37] DSP Selection Guide 2002 (Rev. K) [Z].Texas Instruments Inc., 2002
    [38] Haskell B G. Image and video coding-emerging standards and beyond [J]. IEEE Trans on Circuits and Systems for Video Technol., 1998, 8(7): 814-837
    [39] SILVER B. New developments in PC-based vision for locating and inspecting parts [EB/OL].http://www.cognex.com/nes/press-releases/2001/daishowa.asp,2002-10-26.
    [40] 廖强、周忆、米林等,机器视觉在精密测量中的应用[J],重庆大学学报,2002,25(6):1-4.
    [41] 廖强、蔡飞等.基于机器视觉技术的精确定位方法研究及应用[J],现代制造工程,2005,4:101-103
    [42] Junesic J R, Elliot S T, Coilin A Set al, Scientific Charge-Coupled Devices[J], Optical Engineering, 1987, 26(8): 692-714
    [43] Wang L, Pavlidis T, Direct gray-scale extraction of features for character reconition[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1053-1067
    [44] An Overview Machine Vision. http://www.age.uiuc.edu.
    [45] Zuech Nello, Bartos Frank J, Making Machine Vision Work For You [J], Control Engineering, 1997, 44(11): 44—48
    [46] Mackrory John、Daniels Mark, Impact of New technology in Machin Vision[J], Sensor Review, 1995, 15(1): 8—11
    [47] 董斌、杨韧、刘兴占等,一种使用线阵型CCD实现高精度二维位置测量的方法[J].光学技术,1998,5:42-45
    [48] 艾海舟,机器视觉及其应用[J],科学中国人1997,(9):23-25
    [49] 刘曙光、刘明远、何钺,机器视觉及其应用[J],机械制造.2000,38(7):20-22
    [50] 蔡文贵,CCD技术及应用[M],电子工业出版社,1999、11
    [51] 张琦,机器视觉系统的原理及现状[J],电子工业专用设备,1999,28(4):20-22
    [52] 段峰、王耀南、雷晓峰等,机器视觉技术及其应用综述[J],自动化博览2002,3:59-61
    [53] 王巧华、文友先、刘俭英,我国机器视觉技术的发展前沿[J],农机化研究2002,4.16-18
    [54] 罗振璧、唐晓红、汪劲松等,机器视觉在尺寸在线检测中的应用[J],机械工程学报,1994,030(006):47-52
    [55] 唐朝伟、梁锡昌、邹昌平,三维曲面激光精密测量技术[J],计量学报1994,15(2):99-103
    [56] 图像和机器视觉产品手册[M],凌云光视数字图像技术公司,2006:2-150
    [57] 贾云得,机器视觉[M],科学出版社出版,2000
    [58] FRANCI L, ROK Bet al, Machine vision system for inspcting electric plates[J], Computers in Industry, 2002(47): 113-122.
    [59] Carrino J A, Unkel P J, and Miller I D. Large-scale PACS implementation[J]. Joumal of Digital Imaging, 1998, 11 (3): 3-7.
    [60] Gbaud B, Garfagni H ,Aubry F, et al. Standardization in the field of medical image management the contribution of the mimosa model[J]. IEEE Transaction in Medical Imaging, 1998, 17(1): 62-73
    [61] Zurada J M. Introduction to Artificial Neural Systems[Z], West Pub. Company, 1992 New York.
    [62] Weinberger M J, Seroussi G, Sapiro G. A Low Complexity, Context-Based, Lossless Image Compression Algorithm[Z]. Hewlett-Packard Laboratories, Palo Alto, CA 94304
    [63] 周锋华,电机控制用DSP的比较[J],国外电子元器件,2005,11:67-71
    [64] 周有为、刘和平,DSP在电机控制中的应用[J],微电机,2005,38(4):63-64
    [65] 许贤泽、喻佳、张立英,步进电机多轴联动DSP控制系统研究[J],测试与控制,2005,18(5):110-112
    [66] 熊远生,钱苏翔,高金凤,基于DSP的步进电机控制系统与上位机的串行通信设计[J],机电工程,2004,2l(9):17-21
    [67] 李为民,刑晓正、胡红专等,基于DSP的步进电机控制系统设计[J],微特电机,2001,3:27-35
    [68] 柏长冰、齐春、宋福民,Hough变换快速检测圆形PCB Mark[J],光电工程,2005,32(9):75-78
    [69] 束志林、戚飞虎,一种新的随机Hough快速圆检测算法[J],计算机工程,2003,029(006):87-88,110
    [70] Pekka KULTANEN, Lei Xu, Erkki OJA. Randomized Hough Transform (RHT) [A]. Proceedings of the 10th Intemational Conference on Pattern Recognition[C]. New Jersey: IEEE, 1990. 631-635
    [71] Martin JOHNSON, G. Sen GUPTA. A Robotic Laser Pipeline Profiler[A]. Instrumentation and Measurement Technology Conference[C]. Colorado: IEEE 2003. 1488-1491.
    [72] PFEIFER T, WIEGERS L. Reliable tool wear monitoring by optimized image and illumination control in machine vision[J]. Measurement, 2000(28): 209-218.
    [73] COKAL E, ERDEN A. Development of an image processing system for a special purpose mobile robot navigation[A]. Proceedings of Fourth Annual Conference on Meehatronies and Machine Vision in Practice[C]. 1997. 246-252
    [74] Zhang Aiwu、Li Mingzhe, Hu Shaoxing, 3D Measurement Technology Based on Computer Vision[J], Transaction of the CSAE, 2001 17(1): 32-37
    [75] 余良忠,球面孔系坐标非接触测量系统的研究,四川大学硕士论文,2003
    [76] 杨淋,球体多孔位光电自动测量系统,四川大学硕士论文,2003
    [77] 黄颉,曲面孔位机器视觉测量系统研究,四川大学博士论文,2004
    [78] 李彬华,基于科学CCD的数据预处理系统昆明理工大学博士论文,2004
    [79] 杨丽风、武利生、刘建红等,机器视觉尺寸检测系统中安装误差分析[J],太原理工大学学报,2004,35(3):332-335
    [80] 张业鹏、何涛、文昌均等,机器视觉在工业测量中的应用与研究[J],光学精密工程2001.9(4):324-329
    [81] 金国潘,李景镇,激光测量学[M],科学出版社,1998
    [82] Yuan-xin ZHU, Bridget CARRAGHER, Fabrice MOUCHE, et al. Automatic Particle Detection Through Efficient Hough Transforms[J]. IEEE Transactions on Medical lmaging, 2003, 22(9): 1053-1062
    [83] Chutatap O、Cuo LF, A modified Hough transform for line detection and its performance [J], Pattern Recognition, 1999, 32: 181—192
    [84] ZHANG Yu-jin. Image Segmentation. Beijing: Science Press, 2001.
    [85] 苏大图,光学测试技术[M],北京理工大学出版社,1996
    [86] 浦绍邦,光电测试技术[M],机械工业出版社,2005.1
    [87] 萧泽新,工程光学设计[M]电子工业出版社,2003
    [88] 宋丰华,现代光电器件技术及应用[M],国防工业出版社,2004
    [89] 何勇、王生泽,光电传感器及其应用[M],化学工业出版社2004
    [90] 何斌、马天予等,Visual C++数字图像处理(第二版)[M],人民邮电出版社
    [91] 廖正君,模糊控制在智能调节阀定位器控制系统中的应用[J],四川大学学报,2003,35(2):96-99
    [92] 易继锴、候嫒彬,智能控制技术[M],北京工业大学出版社,1999
    [93] 王玲,工具显微镜的测量技术[J],工业计量,2003,13(1):47-47
    [94] 祝世平、周锐,圆孔(弧)型工件的三种图像检测算法[J],仪器仪表学报,1999.4
    [95] 夏玮、李朝晖,中值滤波的快速算法[J],计算机工程与设计,2002,023(001):8-59
    [96] 夏俊舁、胡俊峰、何永义等,图像识别在盲孔检测中的应用[J],机电一体化,2001,2:54-56
    [97] 方仲彦、殷纯永,高精度激光准直技术的研究[J],航空计测技术,1997,17(1):3-6
    [98] 陈青山、李东,激光准直技术在大孔同轴度测量中的应用[J],北京机械工业学院学报,2000,15(3):60-62
    [99] 匡萃方、冯其波、陈士谦等,基于激光准直直线度测量方法的研究[J],光学技术,2003,29(6):699-701
    [100] Parsytech computer GmbH, Software controlled on-line surface inspection[J], Steel Time Intenational, 1998(3): 30-35
    [101] HAO Qun, LIANG Rong, CAO Mang, et al. Application of laser diode alignment in measuring large-scale perpendicularity and parallelism[J].SPIE, 1996, (2899): 1-5
    [102] S. Mallat, S. Zhong. Characterization of signals from multiscale Edges, IEEE Trans. On PAMI, 1992, 14(7): 710-732
    [103] Edward P. Dyvers. Sub-pixel measurement using a moment-based edge operator. IEEE Trans. on PAMI 1989, 11(12): 1293-1309
    [104] 叶声华,激光在精密计量中的应用[M],机械工业出版社,1980
    [105] Kai W, Dieter R, Schafer. An approach to computer-aided quality control based on 3D coordinate metrology[J], Journal of Material Processing Technology, 2000, 107: 96-110
    [106] Su X Y, A new 3-D profilometry based on modulation measurement[J], SPIE, 1998, 3558: 1-7
    [107] Xu L, Oja E、Kultanen P, Randomized Hough Transform(RnT): Basic Mechanisms, Algorithms, and Computational Complexities[J], Computer Vision Graphics Image Process, Image Understanding, 1993, 57(2): 131
    [108] Burrus C S, Gopinath R A, Guo H T, Introduction to Wavelets and wavelet Transform [M], Prentic Hall, Upper Saddle River, 2002
    [109] CANTONIV, CINQUE L, GUERRA C, et al. 2-D Object Recognition By Multiscale Tree Matching[J], Pattern Recognition, 1998, 31 (10): 1443-1454
    [110] MICHAEL T G, JOSEPH S B, Mark W O. Approximate Geometric Pattern Matching Under Rigid Motions[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 371-379
    [111] Donoho D L. De-nosing by soft-thresholding[J], IEEE Trans. IT, 1995, 4(3): 613-627
    [112] Mallat S G. Multifrequency channel decompositions of images and wavelet models[J], IEEE Trans. ASSP, 1989, 37(12): 2091-2110.
    [113] Nunez J, Otazu X, Fors O. Multiresol - ution - based image fusion with additive wavelet decomposition[J], IEEE Trans. On Geoscience and Remote Sensing, 1999, 37(3): 1204-1211.
    [114] Gadelmawla E S. A novel system for automatic measurement and inspection of parallel screw threads[D]. Egypt: Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, 2004
    [115] 汪宏异、熊飞、史铁林,高速高精度的机器视觉定位的算法[J],光电工程,2005,32(9):71-74
    [116] 张振字、李鸿琦、冯文彩,基于小波变换的SFM图像处理的研究[J],控制与检测,2005,4:47-49
    [117] 李峻、李学全、胡德金,步进电机的运动控制系统及其应用[J],微特电机,2000,2:37-39
    [118] 杨永跃、邓善熙、何革群,风力机叶片检测中的机器视觉技术[J],太阳能学报,2003.024(002):232-236
    [119] 王世华,基于便携式粗糙度测量仪的研究,四川大学博士论文
    [120] 曹为、张广玉、王蔡健,光电式锥螺纹检测系统的研究与开发[J],机械与电子,2005,6:53-55
    [121] 贾永红,数字图像处理[M],武汉大学出版社,2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700