基于广义立体像对的三维重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高分辨率卫星遥感成像技术的发展,现代遥感技术已进入一个动态、快速、准确、及时提供多波段、多时相、海量对地观测数据的阶段,在国防建设、经济建设和社会发展等关系国计民生等领域有着越来越广泛的应用。
     随着遥感卫星数量的增多,以及卫星立体成像能力的不断提高,越来越多的卫星影像资源为全球范围内目标的三维重建提供了可能。但由于各种特殊因素的制约(如政治因素、经济因素、技术因素、安全因素等),导致了可用的遥感影像资源十分有限,采用传统方法实现急需的各种三维重建还面临极大的挑战。基于上述原因,有时针对某些特定区域,往往难以得到同一颗卫星传感器或者同一相机所拍摄的立体影像(要么根本没有,要么价格昂贵),却可得到不同卫星传感器或者不同相机所拍摄的该区域影像。因此,从数据的可得性和成本考虑,利用不同传感器或相机所拍摄的非立体影像,按照摄影测量与遥感原理和相应的数学理论,同样能够构建起广义上的立体影像对(即左右影像的成像几何模型可以完全不同),达到提取三维立体信息的目的,从而实现对该地区地形和目标地物的三维重建。因此,如何利用多源遥感数据以及相关信息实现准确可靠的地形与地面目标三维重建,这一问题越来越凸显出其迫切性和重要性。
     论文以基于多源遥感数据的三维重建为研究目标,对基于RFM(有理函数模型)的新型空间前方交会数学模型、广义立体像对的构建及计算方法等模型和算法进行了系统的研究,并进行了初步实验,主要研究内容如下:
     (1)对目前国内外利用遥感影像进行三维重建的研究现状进行了综合评述,并着重介绍了RFM模型在遥感影像三维重建方面的应用现状,分析了三维重建的发展趋势。
     (2)提出广义立体像对的概念,并对此概念从内涵、适用对象、现实意义和数学意义等方面进行了详细的阐述。并对广义立体像对的构建方法进行了说明。
     (3)提出了多源遥感影像数据规范化处理的技术框架,并对规范化处理所包含的内容和方法进行了探讨和说明。
     (4)扩展了基于RFM的空间前方交会数学模型。针对多源影像的复杂性,提出了RFM+CEM(共线方程模型)、RFM+AM(仿射变换模型)和RFM+DLT(直接线性变换模型)三种基于RFM的空间前方交会数学模型。
     (5)在模型算法研究的基础上,论文利用现有多源遥感数据对广义立体像对的构建和地面目标三维重建的精度进行了实验分析,着重分析和讨论了观测值权阵的引入及其对模型计算精度的影响。依据模型系数矩阵的状态,对RFM+RFM模型,提出了对观测值权阵的等步长探测法和多项式回归法,以求出观测值权阵的最优解,提高计算精度;对RFM+AM模型和RFM+DLT模型,提出矩阵QR分解或者岭估计的方法,保证模型解算的稳定性。最后证明了构建广义立体像对的可行性。
Along with the development of high resolution satellite imaging technology, the modern remote sensing (RS) technology, providing multi-band, multi-time and abundant earth observation data in time, enters a dynamic, fast, and precise era. And there are more and more applications in fields of national defence, economy construction and social development and so on.
     The increase of quantity and the stereo imaging ability improvement of satellites, affords the possibility to reconstruct global targets. But due to the restriction of various factors (such as polity factor, economy factor, technique factor and security factor), the practicable RS imagery resources are quite finite. It faces huge challenge for us to obtain various imperative 3D reconstructions with traditional methods. Based on above reasons, sometimes in certain specifical regions, it is difficult to get stereopairs acquired by the same satellites or cameras (maybe imagery do not exist at all, maybe price is expensive), but easy to get imagery acquired by different satellites or cameras. Considering the availability and the cost of RS data, we can utilize these different non-stereo imagery, obey the principles of photogrammetry and RS and homologous mathematics theories, construct generalized stereopairs samely, reach the purpose to obtain 3D information, and then realize the 3D reconstruction for the terrain and target objects in these regions. So it is a problem that how to utilize these multi-source RS data and correlative information to realize the exact and reliable 3D reconstruction of terrain and objects. And this problem reveals its instancy and importance more and more, and needs to resolve the key theories and techniques relating to this problem.
     This dissertation focuses on the 3D reconstruction based on multi-source RS data, and makes systemic investigation in space intersection mathematics models based on Rational Function Model (RFM), construction of generalized stereopairs and relative arithmetics, and analysis of some primary experiments.
     The main study contents are as the following:
     (1) This dissertation reviews the up-to-date 3D reconstruction technologies utilizing RS imagery, and recommends the applications of RFM. Then prospects the developing trendency of 3D reconstruction.
     (2) Proposes a concept of "generalized stereopair", and expatiates this concept detailedly in connotation, fitting objects, siganificance of realism and mathematics. Then illuminates the construction methods of generalized stereopairs.
     (3) Aimming at multi-source RS imagery, establishes a standardizational processing framework, then studies and explains the contents and methods included in standardizational processing.
     (4) Expands the space intersection mathematics model based on RFM, and considering the complexity of multi-source RS imagery, brings out three new models: the RFM+CEM (Collinearity Equation Model), RFM+AM (Affine Model), and RFM+DLT (Direct Linear Transformation) .
     (5) Based on the study of models and arithmetics, this dissertation utilizes multi-source RS data in existance to construct generalized stereopairs and analyses the precision of 3D reconstruction in experiments. Then stressly analyses and discusses the intruduction of observation-value weight matrix, and its effection on computing precision of these models. According to the state of coefficient matrix of medels, for RFM+RFM model, brings out the equal-step detection and polynomial regression for observation-value weight matrix in order to compute the optimum values, and improve the computing precision; for RFM+AM and RFM+DLT models, utilizes matrix QR decomposition and ridge regression methods to guarantees the computing stability of these models. Finally proves the feasibility of construction of generalized stereopairs.
引文
[1]《1:25000、1:50000、1:100000地形图航空摄影测量数字化测图规范》(CB/T 17157—1997)[S].北京:中国标准出版社,1998.
    [2]孙家炳,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997.
    [3]李庆扬,关治,白峰杉.数值计算原理[M].北京:清华大学出版社,2000.
    [4]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,1997.
    [5]孔祥元,郭际明,刘宗泉.大地测量学基础[M],武汉:武汉大学出版社,2001.
    [6]任留成.空间投影理论及其在遥感技术中的应用[M].北京:科学出版社,2003.
    [7]宋伟东.稀少控制点的遥感影像纠正[D].辽宁工程技术大学博士学位论文,2005.
    [8]张永生,巩丹超.高分辨率遥感卫星应用—成像模型、处理算法及应用技术[M].北京:科学出版社,2004.
    [9]金为铣,杨先宏,邵鸿潮,崔仁愉.摄影测量学[M],武汉:武汉大学出版社,1996.
    [10]宋伟东,王伟玺,胡行华.利用METADATA数据文件精确获得SPOT5外方位元素[J].测绘通报,2003(12):29-31.
    [11]王伟玺,宋伟东.空间后方交会的条件平差模型[J].辽宁工程技术大学学报(自然科学版),2005,24(2):169-171.
    [12]陈鹰,遥感影像的数字摄影测量[M].上海:同济大学出版社,2003.
    [13]Rafel C.Gonzalez数字图像处理(Matlab版)[M].北京:电子工业出版社,2004.
    [14]党安荣,王晓栋,陈晓峰,张健宝.Erdas Imagine遥感图像处理方法[M].北京:清华大学出版社,2003.
    [15]孙兆林,Matlab 6.X图像处理[M].北京:清华大学出版社,2002.
    [16]苏金明,王永利.Matlab图形图像[M].北京:电子工业出版社,2005.
    [17]苏金明,阮沈勇.Matlab工程数学[M].北京:电子工业出版社,2005.
    [18]测绘学名词[M].北京:科学出版社,2002.
    [19]张过,缺少控制点的高分辨率卫星遥感影像几何纠正[D].武汉人学博士学位论文,2005.
    [20]陈楚江,基于地球空间信息技术的新型公路勘察设计中的关键问题研究[D].武汉大学博士学位论文,2004.
    [21]万志龙,沈智毅.有理函数模型实现影像点定位和纠正的方法[J].测绘学院学报,2002,19(3):189-190.
    [22]王秀鸽,李五星,徐青.带约束条件的DLT解法[J]解放军测绘学院学报,1998,15(2):109-112.
    [23]詹总谦,张祖勋,郑顺义,季铮.基于多基线立体匹配技术的三维重建[J].地理空间信息,2004,2(6):17-19.
    [24]袁修孝.张过.缺少控制点的卫星遥感对地目标定位[J].武汉大学学报·信息科学版,2003,28(5):505-509.
    [25]巩丹超,邓雪清,张云彬.新型遥感卫星传感器儿何模型—有理函数模型[J].海洋测绘,2003,23(1):31-33.
    [26]刘军,张永生,范永弘.基于通用成像模型—有理函数模型的摄影测量定位方法[J].测绘通报,2003(4):10-13.
    [27]巩丹超,张永生.有理函数模型的解算与应用[J].测绘学院学报,2003,20(1):39-46.
    [28]刘军,张永生,范永弘.有理函数模型在航空航天传感器摄影测量重建中的应用及分析[J].信息.工程大学学报,2002,3(4):66-69.
    [29]张剑清,张祖勋.高分辨率遥感影像基于仿射变换的严格几何模型[J].武汉大学学报·信息科学版,2002,27(6):555-559.
    [30]刘军,王冬红,毛国苗.基于RPC模型的IKONOS卫星影像高精度立体定位[J].测绘通报,2004(9):1-4.
    [31]万志龙,沈智毅.有理函数模型实现影像点定位和纠正的方法[J].测绘学院学报,2002,19(3):189-194.
    [32]刘春,刘大杰,王家林.高分辨率卫星影像几何纠正精度的空间可视化[J].同济大学学报,2004,32(3):372-377.
    [33]张永生,刘军.高分辨率遥感卫星立体影像RPC模型定位的算法及其优化[J].测绘工程,2004,13(1):1-4.
    [34]王耀革,王玉海,朱长青,陈星.基于灰度形态学的高分辨率遥感影像预处理[J].测绘学院学报,2004,21(2):108-110.
    [35]程新文,赖祖龙,陈性义,宋海军,吴越霞.基于DEM的单张数字影像测量精 度研究[J].测绘学院学报,2000(4):1-4.
    
    [36]王继周,林宗坚,李成名.GIS信息辅助的单影像立体量测[J].测绘科学,2005,30(2):60-63.
    [37]张祖勋,张剑清.广义点摄影测量及其应用[J].武汉大学学报·信息科学版,2005,30(1):1-5.
    [38]王继周,林宗坚,李成名,洪志刚.基于UAV遥感影像的建筑物三维重建[J].遥感信息,2004(4):11-15.
    [39]李利伟,刘吉平,尹作为.基于数学形态学的高分辨率遥感影像道路提取[J].遥感信息,2005(5):9-11.
    [40]李雯,肖凯,刘文.应用单张像片解析法实现测绘图像实时定位[J].航空学报,2002,23(1):82-84.
    [41]林宗坚,宣文玲,王艳.高分辨率影像定位的一种新方法[J].武汉大学学报·信息科学版,2004,29(4):363-366.
    [42]陈功,舒宁,王欢,胡勇.控制点影像库在遥感影像几何纠正中的应用[J].地理空间信息,2006,4(1):58-61.
    [43]邵巨良,王树根,李德仁.线阵列卫星传感器定向方法的研究[J].武汉测绘科技大学学报,2000,25(4):329-333.
    [44]赖震刚,王继.利用ERDAS IMAGINE进行影像的几何精校正[J].现代测绘,2003,26(2):38-40.
    [45]聂丹,杜子云,蒋海东,李鹏.VirtuoZo中IKONOS立体像对的精度分析[J].地理空间信息,2003,01(2):24-25.
    [46]杨晓明,刘辉,王泰鸿.IKONOS立体影像数据成图工作流程[J].北京林业大学学报,2003,25(Spec):75-76.
    [47]张强,吴云东,王慧,张钧.大数据量遥感影像立体观察和量测的设计与实现[J].海洋测绘,2004,24(4):40-44.
    [48]黄玉琪,牟晓辉,钱曾波.航空摄影立体像对的全自动影像匹配[J].测绘学院学报,2000,17(4):277-280.
    [49]陈爱军,徐光佑,史元春.基于城市航空立体像对的全自动3维建筑物建模[J].测绘学报,2002,31(1):54-59.
    [50]邵振峰,李德仁,程起敏.基于航空立体影像对的复杂房屋三维拓扑重建[J].武汉大学学报·信息科学版,2004,29(11):999-1003.
    [51]林慧龙,刘学录,董旺远.理想状态立体象对象基线的一个恒等式及意义[J].甘肃科学学报,2000,12(2):20-23.
    [52]单杰.立体视觉的摄影测量理论[J].武汉测绘科技大学学报,1998,23(4):377-382.
    [53]段汕,秦前清.一种保特征的形态采样方法[J].测绘信息与工程,2004,29(1):4-7.
    [54]盛业华,唐宏,杜培军,郭达志.一种保形的快速图象形态细化算法[J].中国图象图形学报,2000,5A(2):89-93.
    [55]余杨,黄惟一.改进形态学相关算法以识别高相似度灰度图像[J].光学学报,2002,22(11):1362-1367.
    [56]强赞霞,彭嘉雄.基于融合及数学形态学的遥感图像目标检测[J].计算机工程,2005,31(10):34-36.
    [57]林怡,陈鹰.用立体影像匹配和数学形态变换自动生成DEM[J].中国图象图学报,2003,8A(4):447-452.
    [58]王宇,王乘,刘占平.一种基于数学形态学的遥感图像边缘检测算法[J].重庆邮电学院学报,2003,15(2):57-60.
    [59]赵国际,贾小志,赵宗涛.一种高分辨率遥感图像分割算法[J].计算机工程与应用,2002(14):36-37.
    [60]林卉,舒宁,杜培军.数学形态学在遥感图像边缘检测中的应用[J].测绘通报,2003(12):25-28.
    [61]刘岩,刘光斌,郑志伟.数学形态学在机场目标识别中的应用[J].弹箭与制导学报,2005,25(1):66-68.
    [62]陶洪久,柳健,田金文.基于小波变换和数学形态学的遥感图像边缘检测[J].红外与激光工程,2002,31(2):154-157.
    [63]段汕,秦前清.基于形态插值的图像重建方法[J].计算机工程与应用,2004(18):26-28.
    [64]安如,冯学智,王慧麟.基于数学形态学的道路遥感影像特征提取及网络分析[J].中国图象图形学报,2003,8A(7):798-804.
    [65]范立南,韩晓微,徐心和.基于HSI空间彩色图像多结构元形态边缘检测[J].工 程图学学报,2005(2):110-113.
    
    [66]郭金运,朱明法,徐泮林.地图数据几何纠正时仿射变换与相似变换的对比分析[J].测绘通报,2001(4):23-25.
    [67]熊轶群.IKONOS-2卫星影像纠正及精度分析[J].北京测绘,2004(1):5-7.
    [68]杨晓明,游晓斌.IKONOS图像纠正的实验研究[J].北京林业大学学报,2003,25(Spec).36-40.
    [69]刘先林,赵利平.IKONOS影像正射纠正[J].三晋测绘,2002,9(3-4):8-10.
    [70]孙柳,宫辉力,赵文吉.从数字摄影测量到城市三维景观模型的建立[J].首都师范大学学报(自然科学版)2005,26(2):112-117.
    [71]周克勤,赵煦,杨苗.基于数字摄影测量技术的三维数字景观生成与应用[J].北京建筑工程学院学报,2005,21(1):31-34.
    [72]程效军,朱鲤,刘俊领.基于数字摄影测量技术的三维建模[J].同济大学学报(自然科学版),2005,33(1):37-41.
    [73]李新召.基于摄影测量与遥感的三维数据获取[J].北京测绘,2003(4):14-16.
    [74]江万寿,郑顺义,张祖勋,张剑清.航空影像特征匹配研究[J].武汉大学学报·信息科学版,2003,28(5):510-513.
    [75]程承旗,马廷,郭仕德,李滨,季民.基于高分辨率卫星影像的城市景观元素特征研究[J].地理与地理信息科学,2003,19(4):71-73.
    [76]赵俊娟,尹京苑,单新建.基于形状特征的高分辨率遥感影像目标分割[J].测绘通报,2005(1):10-13.
    [77]王家耀,成毅.空间数据的多尺度特征与自动综合[J].海洋测绘,2004,24(4):1-3.
    [78]江万寿,张祖勋,张剑清.三线阵CCD卫星影像的模拟研究[J].武汉大学学报·信息科学版,2002,27(4):414-419.
    [79]江万寿,郑顺义,张祖勋,张剑清.航空影像特征匹配研究[J].武汉大学学报·信息科学版,2003,28(5):510-513.
    [80]李德仁,张过,江万寿,袁修孝.缺少控制点的SPOT25 HRS影像RPC模型区域网平差[J].武汉大学学报·信息科学版,2006,3l(5):377-381.
    [81]张剑清,张勇,程莹.基于新模型的高分辨率遥感影像光束法区域网平差[J].武汉大学学报·信息科学版,2005,30(8):659-663.
    [82]秦绪文,田淑芳,洪友堂,张过.无需初值的RPC模型参数求解算法研究[J].国土资源遥感,2005(4):7-15.
    [83]刘凤德,邱懿.基于左右正射影像的三维量测方法的研究[J].测绘科学,2004.12.,29(7):47-49.
    [84]韩艳丽,陈映鹰.单幅航空影像建筑物三维建模研究[J].山东建筑工程学院学报,2005.08.,20(3):17-22.
    [85]Song Weidong,Wang Weixi.Fitting on Elements of Exterior Orientation Utilizing SPOT-5 Raw Data File[C].Proceedings of 12nd ISM,2004:704-706.
    [86]Song Weidong,Wang weixi,Hu Xinghua,Mathematics Model of Space Backside Resection Based on Condition Adjustment[C].the 24th Asian conference on remote sensing & 2003 international symposium on remote sensing,2003.V1:345-347
    [87]Pooya Sarabandi,BeverleyAdams,Anne S.Kiremidjian,Ronald T.Eguchi.Infrastructure Inventory Compilation Using Single High Resolution Satellite Images[EB/OL].3rd International Workshop on Remote Sensing Technologies and Disaster Response,Chiba,Japan,September 12-13,2005
    [88]Yong Hu,Vincent Tao,Zhizhong Xu.Accuracy Assessment of Mapping Results Produced from Single Imagery[EB/OL].ASPRS 2005 Annual Conference Baltimore,Maryland March 7-11,2005.
    [89]George Vozikis,Clive Fraser,Josef Jansa.Alternative Sensor Orientation Models For High Resolution Satellite Imagery[J].IEEE,2002,2(2):179-186.
    [90]Ian Dowman,Vincent Tao.An Update on the Use of Rational Functions for Photogrammetric Restitution[J].ISPRS,2002,7(3):22-29.
    [91]C.S.Fraser,T.Yamakawa.Applicability of the Affine Model for Ikonos Image Orientation over Mountainous Terrain[J].IEEE 2002,2(2):1-6.
    [92]Gene Dial,Jacek Grodecki.Block Adjustment with Rational Polynomial Camera Models[EB/OL].ACSM-ASPRS 2002 ANNUAL CONFERENCE PROCEEDINGS.
    [93]Jae-Bin Lee,Yong Huh,Byoung-jun Seo,Yong-II Kim.Improvement the Posotional Accuracy of the 3D Terrain Data Extracted from IKONOS-2 Satellite Imagery[EB/OL].Commission Ⅲ,WG Ⅲ/2.
    [94] C. Vincent Tao, Yong Hu. Investigation on the Rational Function Model[EB/OL].
    [95] C. Vincent Tao, Y. Hu, W. Jiang. Photogrammetric Exploitation of IKONOS Imagery for Mapping Applications[J]. Remote Sensing, 2004, 25(14):2833~2853.
    [96] Clive S. Fraser. Prospects for Mapping from High-resolution Satellite lmagery[EB/OL].
    
    [97] Kaichang Di, Ruijin Ma, Ron Li. Rational Functions and Potential for Rigorous Sensor Model Recovery[J]. Photogrammetric Engineering & Remote Sensing,2002.04.
    
    [98] Arie Croitoru, Yong Hu, Vincent Tao, Zhizhong Xu, Feng Wang, Peter Lenson.Single and Stereo Based 3D Metrology from High-resolution Imagery: Methodologies and Accuracies.[EB/OL]. Proc. of the XXth International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, Istanbul, Turkey (2004).
    
    [99] J. Willneff, J. Poon, C. Fraser. Single-image High-resolution Satellite Data for 3D Information Extraction[EB/OL].
    
    [100] T. Yamakawa, C.S. Fraser. the Affine Projection Model for Sensor Orientation:Experiences with High-resolution Satellite Imagery[EB/OL]. Commission I, WG V5.
    
    [101] Arie Croitoru, Vincent Tao, Yong Hu, Jeff Xu. the Rational Function Model: A Unified 2D and 3D Spatial Data Generation Scheme[EB/OL]. ASPRS Annual Conference Proceedings, May 2004 Denver, Colorado.
    
    [102] Yong Hu, Vincent Tao, Arie Croitoru. Understanding the Rational Function Model: Methods and Applocations[EB/OL]. Proc. of the XXth International Society for Photogrammetry and Remote Sensing (ISPRS) Congress, Istanbul, Turkey (2004).
    [103] David L. Hall,James Llinas. An Introduction to Multisensor Data Fusion[J]. IEEE,1997, 85(1):6-13.
    
    [104] Qiang Ji, Mauro S. Costa, Robert M. Haralick, Linda G. Shapiro. A robust linear least squares estimation of camera exterior orientation using multiple geometric features[J]. Photogrammetry & Remote Sensing, 2002, 55(2):75-93.
    
    [105] Manfred Lehner, Rupert Muller. Automated Image Matching between Geocoded Landsat-TM Scenes and MOMS-2P Stereo Imagery for DEM and Orthoimage Production[J]. IEEE, 2003(2):794-796.
    [106] Christian Drewniok, Karl Rohr. Exterior orientation —an automatic approach based on fitting analytic landmark models[J]. Photogrammetry & Remote Sensing, 1997,52(1):132-145.
    [107] Daniela Poli. Georeferencing of multi-line CCD array optical sensors with a general photogrammetric model[J]. IEEE, 2003(2):3908-3910.
    [108] Yonghuai Liu, Horst Holstein. Pseudo-linearizing collinearity constraint for accurate pose estimation from a single image[J]. Pattern Recognition Letters, 2004, 25 (4):955-965.
    [109] David Mulawa. On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite[EB/OL], Istanbul: XXth ISPRS Congress, Commission 1, 2004.
    [110] H.B. Hanley, C.S. Fraser, Sensor orientation for high-resolution satellite imagery:further insights into bias-compensated RPCs[EB/OL],Istanbul:XXth ISPRS Congress,Commission 1, 2004.
    [111] Daniela Poli. Orientation of satellite and airborne imagery from multi-line pushbroom sensors with a rigorous sensor model[EB/OL], Istanbul: XXth ISPRS Congress,Commission 1, 2004.
    [112] T. Yamakawa , C.S. Fraser. The affine projection model for sensor orientation:experiences with high-resolution satellite imagery[EB/OL], Istanbul: XXth ISPRS Congress, Commission 1, 2004.
    [113] Daniela Poli, Zhang Li, Armin Gruen. SPOT-5/HRS stereo images orientation and automated DSM generation[EB/OL], Istanbul: XXth ISPRS Congress, Commission 1,2004.
    [114] Armin Gruen, Zhang Li, Henri Eisenbeiss. 3D Precision Processing of High-resolution Satellite Imagery[J]. ASPRS 2005 Annual Conference Baltimore, Maryland March 7-11,2005.
    [115] Lucien Wald. Some Terms of Reference in Data Fusion[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (3):1190-1193.
    
    [116] Marco Gianinetto, Marco Scaioni, Enrico Borgogno Mondino, Fabio Giulio Tonolo. Satellite images geometric correction based on nonparametric algorithms and self-extracted GCPs[J]. IEEE, 2004:3755-3758.
    [117] Brian C. Robertson. Rigorous Geometric Modeling and Correction of QuickBird Imagery[J]. IEEE, 2003:797-802.
    [118] Eamon B. Barrett, Paul M. Payton. Geometric Invariants for Rational Polynomial Camera[J]. IEEE, 2000:223-234.
    [119] David Claus, Andrew W. Fitzgibbon. A Rational Function Lens Distortion Model for General Cameras[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005:1190-1193.
    [120] Y. Lin, H. H. Chen, Z. H. Jiang, H. F. Hsai. Image Resizing with Raised Cosine Pulses[J]. IEEE, 2004: 581-585.
    [121] Chulhee Lee, Murray Eden, Michael Unser. High-Quality Image Resizing Using Oblique Projection Operators[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7(5):679-692.
    [122] Stephen E. Reichenbach, Jing Li. Restoration and Reconstruction from Overlapping Images for Multi-Image Fusion[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39(4):769-780.
    [123] Joshua Gluckman, Shree K. Nayar. Rectifying Transformations That Minimize Resampling Effects[J]. IEEE, 2001:111-117.
    [124] Aili Li, Klaus Mueller, Thomas Ernst. Methods for Efficient, High Quality Volume Resampling in the Frequency Domain[J]. IEEE, 2004:3-10.
    [125] Robert P. Loce, Edward R. Dougherty, Ronald E. Jodoin, Michael S. Cianciosi.Logically Efficient Spatial Resolution Conversion Using Paired Increasing Operators[J]. Real-time Imaging, 1997(3):7-16.
    [126] Dimitri Van De Villea, Wilfried Philips, Ignace Lemahieu. Least-squares spline resampling to a hexagonal lattice[J]. Signal Processing: Image Communication,2002(17):393-408.
    [127] Dean S. Messing, M. Ibrahim Sezan. Improved Multi-image Resolution Enhancement for Colour Images Captured by Single-CCD Cameras[J]. IEEE, 2000:484-487.
    [128] Bostjan Marusic, Izzet Kale, Jurij Tasic. Image Compression Based on fast Adaptive Resampling on a Hilbert-Peano Curve[J]. IEEE, 1999:156-159.
    [129] Ramanjaneyulu M, K. M.M. Rao. A Novel Technique to Resample High Resolution Remote Sensing Satellite Data[J]. IEEE, 2002:3423-3425.
    [130] Jia-Lin Chen, Jyh-Yeong Chang, Kun-Li Shieh. 2-D discrete signal interpolation and its image resampling application using fuzzy rule-based inference[J]. Fuzzy Sets and Systems, 2000(114):225-238.
    [131] Antonio Maria Garcia, Tommaselli. Accuracy assessment of a photogrammetric close-range reconstruction system[J]. Anais do X SIBGRAPI, 1997: 101-104.
    [132] Yonghuai Liu, Horst Holstein. A Pseudo Linearization Method for Accurate Pose Estimation from A Single Image[J]. IEEE, 2002:557-560.
    [133] II-Kyun Jung and Simon Lacroix. High resolution terrain mapping using low altitude aerial stereo imagery[J]. IEEE, 2003:2347-2360.
    [134] D.B. Reid, E. Lithopoulos. High Precision Pointing System for Airborne Sensors[J].IEEE, 1998:303-308.
    [135] Daniela Poli. Georeferencing of multi-line CCD array optical sensors with a general photogrammetric modeI[J]. IEEE, 2003:3908-3910.
    [136] Mohamed Mostafa, Joseph Hutton. Airborne Remote Sensing Without Ground Control[J]. IEEE, 2001:2961-2963.
    [137] Eng. Michaele Mengucci. Image Analysis Methodologies Applied to Recognition of Cartographic Features[J]. IEEE, 2001:202-206.
    [138] Frederic Cerdat, Xavier Descombes, Josiane Zerubia. Urban scene rendering using object description[J]. IEEE, 2003: 63-64.
    [139] G. Maillet, N. paparoditis, F. Taillandier. TIN Surface Reconstruction from multiple Calibrated Aerial Images in Urban Areas[J]. IEEE, 2002:521-524.
    [140] Tomoko Tateyama, Zensho Nakao, Xian Yan Zeng. Segmentation of high resolution satellite images by direction and morphological filters[J]. IEEE, 2004.
    [141] Dongmei Yan, Zhongming Zhao. Road Detection from Quickbird Fused Image Using IHS Transform and Morphology[J]. IEEE, 2003:3967-3969.
    [142] Yong-Hyun Baek, Oh-Sung Byun, Sung-Rung Moon. Image Edge Detection Using Adaptive Morphology Meyer Wavelet-CNN[J]. IEEE, 2003:1219-1222.
    [143] Pierre Soille, Martino Pesaresi. Advances in Mathematical Morphology Applied to Geoscience and Remote Sensing[J]. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(9):2042-2055.
    [144] Hong-Gyoo Sohn, Choung-Hwan Park, Hwan-Hee Yoo. Surface Reconstruction Using Terrain-Dependent Rational Function Model[J]. IEEE, 2002:3498-3500.
    [145] Yanfeng Wei, Zhongming Zhao, Jianghong Song. Urban Building Extraction from High-resolution Satellite Panchromatic Image Using Clustering and Edge Detection[J]. IEEE, 2004: 2008-2010.
    [146] D. Frere, J. Vandekerckhove, T. Moons, L. Van Gool. Automatic Modelling and 3D Reconstruction of Urban Buildings from Aerial Imagery[J]. IEEE, 1998:2593-2596.
    [147] Adriano B. Huguet, Rodrigo L. Carceroni, Arnaldo de A. Araujo. Towards Automatic 3D Reconstruction of Urban Secnes from Low-altitude Aerial Images [J].IEEE, Proceedings of the 12th International Conference on Image Analysis and Processing, 2003:127-135.
    [148] Didier Boldo, Herve Le Men. Remote Sensing Model Adaptation to Very High Resolution Digital Images of Urban Areas[J]. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 20-24.
    [149] Kensaku Fuji, Tomohiko Arikawa. Reconstruction of 3D Urban Model Using Range Image and Aerial Image[J]. IEEE, 2001:1928-1932.
    [150] Guennadi A. Guienko. Geometric Accuracy of Ikonos: Zoom In[J]. IEEE Transaction on Geoscience and Remote Sensing, 2004, 42(1):209-214.
    [151] Zhenfeng Shao, Deren Li, Qimin Cheng. A Topological 3D Reconstruction of Complicated Buildings and Crossroads[J]. IEEE, 2003: 56-58.
    [152] Frank A. van den Heuvel. Reconstruction from A Single Architectural Image from the Meydenbauer Archives[[EB/OL]].
    [153] Chungan Lin, Ramakant Nevatia. Building Detection and Description from A Single Intensity Image[[EB/OL]].
    [154] Wang Jizhou, Lin Zongjian, Li Chengming. Reconstruction of Buildings from A Single UAV Image[[EB/OL]].
    [155] Thomas Vetter, Tomaso Poggio. Linear Object Classes and Image Synthesis from A Single Example Image[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19(7):733-742.
    [156] Etienne Grossmann, Jose Santos-Victor. Least-squares 3D Reconstruction from One or More Views and Geometric Clues[J]. Computer Vision and Image Understanding,2005,99:151-174.
    [157] Liu Jiaomin, Zhao Xiaoying, Wang Jing. Distance Measure System Based on New Method of Determining the 3D Position and Orientation of Object from a Single Image[J]. IEEE International Conference on Robotics, Intelligent System and Signal Processing, 2003:1120-1124.
    [158] Hongxing Liu. Derivation of Surface Topography and Terrain Parameters from Single Satellite Image Using Shape-from-shading Technique[J]. Computer & Geosciences, 2003, 29:1229-1239.
    [159] John Canny, Bruce Donald, Eugene K. Ressler. A Rational Rotation Method for Robust Geometric Algorithms[J]. ACM, 1992:251-260.
    [160] Zhao Yongping, Liu Zhao, Guo Jingjun. Geospatial Information System Establishment Based on Digital Photogrammetry and High Resolution Remote Sensing Image[J]. IEEE 2000:2893-2895.
    [161] Le Wang, Wayne P. Sous, Peng Gong, Gregory S. Biging. Comparison of IKONOS and QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of Panama[J]. Remote Sensing of Environment, 2004, 91:432-440.
    [162] Gene Dial, Howard Bowen, Frank Gerlach, Jacek Grodecki, Rick Oleszczuk. IKONOS Satellite, Imagery, and Products [J]. Remote Sensing of Environment, 2003,88:23-36.
    [163] Robert Ryana, Braxton Baldridgeb, Robert A. Schowengerdtc, Taeyoung Choid,Dennis L. Helderd, Slawomir Blonski. IKONOS spatial resolution and image interpretability characterization[J]. Remote Sensing of Environment, 2003, 88:37-52.
    [164] Dennis Heldera, Michael Coanb, Kevin Patrickb, Peter Gaska. IKONOS geometric characterization[J]. Remote Sensing of Environment, 2003, 88:69-79.
    [165] Xutong Niu, Jue Wang, Kaichang Di, Ron Li. Geometric Modeling and Processing of QuickBird Stereo Imagery[EB/OL].
    [166] James Lutes. Accuracy Analysis of Rational Polynomial Coefficients for IKONOS Imagery [EB/OL]. ASPRS Annual Conference Proceedings, May 2004 Denver,Colorado.
    [167] Liang-Chien Chen, Tee-Ann Teo, Chien-Liang Liu. The Geometrical Comparisons of RSM and RFM for FORMOSAT-2 Satellite Images[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5):573-579.
    [168] Q. S. Bob Truong, Vincent Tao, Martin Choi, Peter Lenson, Feng Wang, Frederic Claude, Stephen Robb. SilverEye: Software for Site Mapping and Visualization using Commercial Satellite Imagery[EB/OL].
    [169] J. Grodecki, G. Dial. IKONOS Geometric Accuracy Validation [EB/OL]. Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings.
    [170] Gene Dial, Jacek Grodecki. IKONOS Stereo Accuracy Without Ground Control [EB/OL]. ASPRS 2003 Annual Conference Proceedings, May 2003 Anchorage,Alaska.
    [171] Arliss Whiteside. Some Image Geometry Models[EB/OL]. Open Geospatial Consortium Inc., 2004.09.30.
    [172] Gene Dial, Jacek Grodecki. Satellite Image Block Adjustment Simulations with Physical and RPC Camera Models [EB/OL]. ASPRS Annual Conference Proceedings,May 2004 Denver, Colorado.
    [173] Xinghe Yang. Accuracy of Rational Function Approximation in Photogrammetry[EB/OL].
    [174] C. Vincent Tao, Yong Hu. The Rational Function Model: A Tool for Processing High Resolution Imagery[EB/OL].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700