甘草多糖的提取及对小鼠腹腔巨噬细胞的免疫调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几千年来,甘草因具有广泛的医用药用价值,被历代名医尊称为“众药之王”。甘草多糖(glycyrrhiza polysaccharid,GP)是甘草中重要活性成分之一,近些年来的药理学研究表明,GP具有增强免疫、噬菌、抗病毒、抗补体等作用,且没有细胞毒副作用,但目前对GP的研究相对较少,并且多以粗多糖为试验材料。本论文以提取纯化GP为原料,详细研究了GP对巨噬细胞的免疫调节机理。
     首先,对影响GP提取率的主要因素进行了研究,先采用单因素试验确定出合适的水平,然后利用响应面程序进行优化,最佳提取条件为液固比10.27∶1,浸提温度88.53℃,浸提时间140.97 min,提取次数为2次,理论上粗多糖提取率可达4.25%,其中浸提时间对提取率的影响最大。通过对多糖析出条件的研究,证明浓缩后体积为提取液总体积的1/4-1/5,浓缩液与无水乙醇的体积比在1∶3-1∶4,在4℃条件多糖提取率较高,GP经过DEAE-52和G-200层析柱的洗脱分离,冷冻干燥后为纯度约为90.7%,多糖得率约为0.87%。
     通过高效液相色谱法确定GP的相对分子量约为11 kDa。利用原子力显微镜观察,GP是具有空间结构的复杂大分子,是以葡萄糖为主链,通过α-(1,4)键连接的单一吡喃型葡聚糖结构。同时发现GP分子链呈现出单个的分子链及其多个侧枝的结构,并且还有些大大小小的环状和螺旋状结构,GP分子间存在螺旋(有序)和线圈(无序)间的可逆热转换,这两种状态具有共存现象。
     通过研究GP对巨噬细胞化学形态学影响及进行化学定量分析,初步探讨了GP对巨噬细胞激活的作用机理。研究表明巨噬细胞受到GP刺激进一步分化成熟,成为活化巨噬细胞,使细胞体积增大,活力增强,糖氧化作用和吞噬功能增加,促使细胞内溶菌酶大量增多,细胞内DNA、RNA、糖原体、ACPase、ANAE、ATPase和SDH等多种酶活性显著增强,并能明显增强SOD和O2-的活性。巨噬细胞膜上的非特异性受体通过其终端的-OH基与多糖-H基结合,启动了细胞内环化酶系统,使细胞的cGMP增加,致细胞内酶的分泌及活性增加,细胞代谢能力提高,奠定了巨噬细胞活化的基础。细胞因子是免疫细胞中重要的免疫因子,进一步从细胞因子的角度考察了GP对巨噬细胞的激活机理。结果证明当巨噬细胞培养48 h,在GP添加0-400μg/mL范围内,能剂量依赖地增加巨噬细胞中IL-1、IL-6、IL-12、TNF-α和淋巴细胞中IL-2的分泌量,其中IL-6的分泌量最大。同样培养时间(0-72 h)也能明显影响细胞因子的分泌量,在72 h时分泌量最大。
     NO作为信息分子和细胞毒分子的双重因子,通过研究GP对NO、iNOS和核蛋白的影响证明:GP添加浓度和细胞培养时间对NO、iNOS和核蛋白的生成量都有明显的影响,随着GP添加浓度的增加和细胞培养时间延长,NO、iNOS和核蛋白的生成量明显增加。GP与LPS/IFN-γ协同实验证明:GP与LPS/IFN-γ协同增加NO和iNOS分泌量,并明显高于相应的单独添加GP组。用LPS预刺激巨噬细胞,再加入GP产生的NO、iNOS和核蛋白量以及增加趋势明显高于同时添加LPS和GP产生的量。巨噬细胞抗肿瘤、抗病毒、抑制胞内病原体增殖等作用主要通过NO的释放完成的。
     mRNA是联结基因与表达产物之间的桥梁,基因活化的直接结果是mRNA转录的增加,而蛋白质的合成依赖于mRNA的翻译。采用RT-PCR方法研究GP对巨噬细胞IL-1α、IL-1β、IL-6、IL-12p35、iNOS、TNF-α的mRNA表达情况,进一步证实GP直接影响蛋白质代谢,可在转录水平和翻译水平调节蛋白质合成,验证GP通过促进细胞因子的基因表达来促进机体的免疫调节功能可能是其免疫激活的机理之一。
Glycyrrhiza uralensis Fisch has been known as“the king of herbs”due to its widely medicinal and officinal properties for thousands of years. Glycyrrhiza polysaccharide (GP), one of the main active ingredients of glycyrrhiza is attributed to many healing properties of the herb. Recently, it has been reported that GP has many functions such as immunity regulation, phagocytosis, anti-complement, anti-virus, anti-tumor, and it has low cellular toxicity. At present, there were not many studies of GP, and the experiment materials were crude polysaccharides. In the present study, the immunomodulatory effects of GP on mice macrophages were demonstrated by using the purified polysaccharides.
     The main factors on the yield of GP were evaluated, and the optimized conditions are a water/root mass ratio of 10.27:1, extraction temperature 88.53℃, time 140.97 min, frequency 2, the maximal yield of GP was 4.25% in theory, and extraction time was the most impact factor. The separated factors of GP were also studied, the optimized conditions were the volume of condense to the pre-condense of 1/4-1/5, the volume condense fluid to ethanol 1:3-1:4, temperature 4℃. Total polysaccharide obtained from the elution that was fractionated by DEAE-52 and G-200 columns. Percentage and the yield of purified polysaccharide was approximately 90.7% and 0.87% respectively.
     The molecular weight of purified GP measured by HPLC was approximately 11 kDa. GP is the complex large molecule which has space structure equally to protein and enzyme. glycosidic units were composed ofα(1→4) linked D-glucan. Molecule backbone composed of single chain and many side chains, big and small rings and helix structures. GP exists in the reversible thermal transition of helix (order) to loop (disorder), and has a concomitant phenomenon.
     The mechanism of GP on mice macrophages was primarily discussed by investigating of cytochemistry shape and quantitative analysis. The results showed that macrophages were stimulated and maturated by GP and become activated cells, and which make the cell volume augment, energy enhancement, oxidation effect and phagocytosis increase, intracellular carbohydrate, DNA, RNA, ACPase, ANAE, ATPase, SDH and lysozyme were largely enhanced, the level of SOD and O2- was increased. The non-specific acceptor of cell wall in macrophages was linked by -OH of terminal non-specific acceptor with -H radicel of polysaccharide, and inspired the system of intracellular cyclic enzyme, make cGMP enhanced, resulted in the increase of enzyme level, the improvement of metabolism level of macrophages, which is the basic of macrophages activity.
     Cytokines are the important of immune factors of immune cells. The activation mechanism of GP on the macrophages was further investigated from the point of cytokines. The results showed that the production of IL-1、IL-6、IL-12、TNF-αand IL-2 was increased in a dose-depended manner for 48 h at the concentration of 0-400μg/mL GP, and maximal at the dose of 400μg/mL. Likely, the production of IL-1、IL-6、IL-12、TNF-αand IL-2 was increased in a time-depended manner for 0-72 h and peaked at the 72 h time point.
     NO is the principal messenger and effector molecule produced by macrophages for cytotoxic activity and can be used as a quantitative index of macrophage activation. The level of NO, iNOS and nuclein in macrophages stimulated by GP was studied. The results showed that the production of NO, iNOS and nuclein was significantly increased in dose and time-depended manners. Macrophages were used to study the synergistic effects of GP plus LPS on production of NO, iNOS and nuclein. The results showed that production of NO, iNOS and nuclein of macrophage treated with GP and LPS/IFN-γwas increased as compared with those of GP alone after 48 h incubation. Increases of NO and iNOS production exposed to combined GP with LPS were lower than those of pretreated with LPS at the same concentrations of GP. NO is involved in anti-tumor, anti-virus, anti-microbial defenses in macrophages.
     mRNA is the bridge which linked gene with expression, the gene activation is directed to the increase of mRNA, and synthesization of protein relies on mRNA transcription. The gene expressions of IL-1α、IL-1β、IL-6、IL-12p35、iNOS、TNF-αmRNA were assayed by RT-PCR. The levels of those above cytokines in macrophages were increased when cultured with GP. It was suggested that the immunomodulating effect of GP may be associated with cytokine mRNA expression stimulation at the transcriptive level.
引文
1. Bohn JA, Bemiller JN. 1,3-beta-glucans as biological response: A review of structure-functional activity relationships [J]. Carbohyd Polym, 1995, 28(1):3–14
    2.邹建华.国外对多糖的抗肿瘤作用研究简况[J].国外医学中医中药分册, 1991, 13(6):321–324
    3.田庚元,王昆,冯宇澄,等.枸杞子糖蛋白的分离纯化、物化性质及糖肽键特征[J].生物化学与生物物理学报, 1995, 27(2):201–205
    4.方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报, 1984,19(10):46–49
    5.田庚元,冯宇澄.多糖类免疫调节剂的研究和应用[J].化学进展, 1994, 6(2):114–124
    6.张翼伸.有关糖复合物的分级纯化结构确定、生物活性的几个问题[J].生命的化学, 1994, 14(6):42–44
    7.徐惠,于志洁,苏富强,等.螺旋藻粘多糖的分离及其免疫学作用[J].中国生化药物杂志, 1997, 18(2):72–75
    8.刘训红,阚毓铭,王玉玺,等.太子参多糖的研究[J].中草药, 1993, 24(3):119–122
    9.郑淑贞.琼支多糖结构的研究[J].生物化学与生物物理学报, 1991, 23(2):113–116
    10. Sugiura M. Methods in carbohydrate extraction from Fungi [J]. Japan J Pharmacol, 1980, 30:503–513
    11.孙玲.刺参酸性粘多糖对细胞免疫的增强作用[J].生物化学与分子生物物理进展, 1999, 18(5):394–396
    12.梁华平,王正国,朱佩芳.黄芪多糖、人参茎叶皂甙对手术病人细胞免疫功能的影响[J].中药药理与临床, 1997, 13(4):13–16
    13.詹林盛,张新生,吴晓红,等.海带多糖的免疫调节作用[J].中国生化药物杂志, 2001, 22(3):116–118
    14.侯芳玉,陈飞,陆竞,等.长白山产软枣猕猴桃茎多糖抗感染和抗肿瘤作用的研究[J].白求恩医科大学学报, 1995, 21(5):472–476
    15. Parekh RB, Lennarz WJ. Glycoform analysis of glycoproteins [J]. Methods in Enzymol, 1994, 230:340–348
    16.周淑英,卢振初,王俏先,等.牛漆多糖(APS)抗肿瘤作用机制的实验研究[J].药物生物技术, 1995, 2 (2):22–26
    17.余上方,章育正.牛漆多糖抗肿瘤作用机制实验研究[J].中华肿瘤杂志, 1995, 17(4):275–278
    18.许爱华,陈华圣,夏叶玲,等.银杏外种皮多糖对荷瘤小鼠免疫功能的影响[J].中药新药与临床药理, 1996, 7(3):22–27
    19.田庚元.天然多糖的研究和应用[J].上海化工, 2000, 11:23–25
    20.王文杰,朱秀媛.雷丸多糖的抗炎及免疫刺激作用[J].药学学报, 1989, 24(2):151–153
    21.向道斌,李晓玉.多糖的免疫调节作用[J].国外医药合成药、生化药、制剂分册,1991, 12(5):261–264
    22. Aoki T. Manipulation of Host Defense Mechanisms [J]. Amsterdam Excerpta Medical, 1981, 1
    23. Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential [J]. Int Immunopharmacol, 2006, 6:317–333
    24. Han SB, Yoon YD, Ahn HJ, et al. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus [J]. Int Immunopharmacol, 2003, 3:1301–1312
    25. Ramamoorthy L, Kemp MC, Tizard IR. Acemannan,αβ-(1,4)-acetylated mannan, induces nitric oxide production in macrophage cell line RAW 264.7 [J]. Mol Pharmacol, 1996, 50:878–884
    26. Zhang L, Tizard IR. Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel [J]. Immunopharmacol, 1996, 35:119–128
    27. Moretao MP, Buchi DF, Gorin PAJ, et al. Effect of an acidic heteropolysaccharide (ARAGAL) from the gum of Anadenanthera colubrine (Angico branco) on peritoneal macrophage functions [J]. Immunol Lett, 2003, 89:175–185
    28. Jeon YJ, Han SB, Ahn KS, et al. Activation of NF-κB/Rel in angelan-stimulated macrophages [J]. Immunopharmacol, 1999, 43:1–9
    29. Puhlmann J, Zenk MH, Wagner H. Immunologically active polysaccharides of Arnica montana cell cultures [J]. Phytochemistry, 1991, 30:1141–1145
    30. Shao BM, Xu W, Dai H, et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb [J]. Biochem Biophys Res Commun, 2004, 320:1103–1111
    31. Escribano J, Guerra MJ, Riese HH, et al. In vitro activation of macrophages by a novel proteoglycan isolated from corms of Crocus sativus L. [J]. Cancer Lett, 1999, 144:107–114
    32. Matsumoto T, Yamada H. Regulation of immune complexes binding of macrophages by pectic polysaccharide from Bupleurum falcatum L.: pharmacological evidence for the requirement of intracellular calcium/calmodulin on Fc receptor up-regulation by bupleuran 2IIb [J]. J Pharm Pharmacol, 1995, 47:152–156
    33. Ando I, Tsukumo Y, Wakabayashi T, et al. Safflower polysaccharides activate the transcription factor NF-κB via Toll-like receptor 4 and induce cytokine production by macrophages [J]. Int Immunopharmacol, 2002, 2:1155–1162
    34. Hase K, Basnet P, Kadota S, et al. Immunostimulating activity of Celosian, an antihepatotoxic polysaccharide isolated from Celosia argentea [J]. Planta Med, 1997, 63: 216–219
    35. da Silva BP, Tostes JB, Parente JP. Immunologically active polysaccharides from Centrosema pubescens [J]. Fitoterapia, 2000, 71:516–521
    36. Song JY, Yang HO, Pyo SN, et al. Immunomodulatory activity of protein-bound polysaccharide extracted from Chelidonium majus [J]. Arch Pharm Res, 2002, 25:158–164
    37. Kim KI, Shin KS, Jun WJ, et al. Effects of polysaccharides from rhizomes of Curcuma zedoaria on macrophage functions [J]. Biosci Biotechnol Biochem, 2001, 65:2369–2377
    38. Choi EM, Hwang JK. Enhancement of oxidative response and cytokine production by yam mucopolysaccharide in murine peritoneal macrophage [J]. Fitoterapia, 2002, 73:629–637
    39. Zhang Y, Kiyohara H, Matsumoto T, et al. Fractionation and chemical properties of immunomodulating polysaccharides from roots of Dipsacus asperoides [J]. Planta Med, 1997, 63:393–399
    40. Steinmüller C, Roesler J, Gr?ttrup E, et al. Polysaccharides isolated from plant I.A [J]. Int Immunopharmacol, 2006, 6:317–333
    41. Goel V, Chang C, Slama J, et al. Echinacea stimulates macrophage function in the lung and spleen of normal rats [J]. J Nutr Biochem, 2002, 13:487–492
    42. Koga T, Kikuchi M. Isolation and characterization of a novel immunomodulating fraction from soybeans [J]. Biosci Biotech Biochem, 1993, 57:367–371
    43. Nose M, Terawaki K, Oguri K, et al. Activation of macrophages by crude polysaccharide fractions obtained from shoots of Glycyrrhiza glabra and hairy roots of Glycyrrhiza uralensis in vitro [J]. Biol Pharm Bull, 1998, 21:1110–1112
    44. Yang G, Yu Y. Immunopotentiating effect of traditional Chinese drugs—ginsenoside and glycyrrhiza polysaccharide [J]. Proc Chin Acad Med Sci Peking Union Med Coll, 1990, 5:188–193
    45. Schepetkin IA, Faulkner CL, Nelson-Overton LK, et al. Macrophage immuno- modulatory activity of polysaccharides isolated from Juniperus scopolorum [J]. Int Immunopharmacol, 2005, 5:1783-1799
    46. Hauer J, Anderer FA. Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larix occidentalis [J]. Cancer Immunol Immunother, 1993, 36:237–244
    47. Kost’alova D, Kardosova A, Hajnicka V. Effect of Mahonia aquifolium stem bark crude extract and one of its polysaccharide components on production of IL-8 [J]. Fitoterapia, 2001, 72:802–806
    48. Hirazumi A, Furusawa E. An immunomodulatory polysaccharide-rich substance from the fruit juice of Morinda citrifolia (Noni) with antitumour activity [J]. Phytother Res, 1999, 13:380–387
    49. Shin JY, Song JY, Yun YS, et al. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function [J]. Immunopharmacol Immunotoxicol, 2002, 24:469–482
    50. Lee YS, Chung IS, Lee IR, et al. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng [J]. Anticancer Res, 1997, 17:323–331
    51. Park KM, Kim YS, Jeong TC, et al. Nitric oxide is involved in the immunomodulating activities of acidic polysaccharide from Panax ginseng [J]. Planta Med, 2001, 67:122–126.
    52. Smolina TP, Soloveva TF, Besednova NN. Immunotropic activity of panaxans– bioglycans isolated from ginseng [J]. Antibiot Khimioter, 2001, 46:19–22
    53. Song JY, Han SK, Son EH, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan [J]. Int Immunopharmacol, 2002, 2:857–865
    54. Gao H, Wang F, Lien EJ, Trousdale MD. Immunostimulating polysaccharides from Panax notoginseng [J]. Pharm Res, 1996, 13:1196–1200
    55. Assinewe VA, Amason JT, Aubry A, et al. Extractable polysaccharides of Panax quinquefolius L. (North American ginseng) root stimulate TNF-αproduction by alveolar macrophages [J]. Phytomedicine, 2002, 9:398–404
    56. Kwon KH, Kim KI, Jun WJ, et al. In vitro and in vivo effects of macrophage-stimulatory polysaccharide from leaves of Perilla frutescens var. crispa [J]. Biol Pharm Bull, 2002, 25:367–371
    57. Sakagami H, Ikeda M, Unten S, et al. Antitumor activity of polysaccharide fractions from pine cone extract of Pinus parviflora Sieb [J]. Anticancer Res, 1987, 7:1153–1159
    58. Westerhof W, Das PK, Middelkoop E, et al. Mucopolysaccharides from psyllium involved in wound healing [J]. Drugs Exp Clin Res, 2001, 27:165–175
    59. Han SB, Park SH, Lee KH, et al. Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells [J].Immunopharmacol, 2001, 11:1969–1978
    60. Yoon YD, Han SB, Kang JS, et al. Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platicodon drandiflorum [J]. Int Immunopharmacol, 2003, 3:1873–1882
    61. Fang X, Chang RC, Yuen WH, et al. Immune modulatory effects of Prunella vulgaris L [J]. Int J Mol Med, 2005, 15:491–496.
    62. Popov SV, Popova GY, Ovodova RG, et al. Effects of polysaccharides from Silene vulgaris on phagocytes [J]. Int J Immunopharmacol, 1999, 21:617–624
    63. Ramesh HP, Yamaki K, Tsushida T. Effect of fenugreek (Trigonella foenum-graceum L.) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IGM secretion in HB4C5 cells [J]. Carbohydr Res, 2002, 50:79–83
    64. Luk JM, Lai W, Tam P, Koo MW. Suppression of cytokine production and cell adhesion molecule expression in human monocytic cell line THP-1 by tripterygium wilfordii polysaccharide moiety [J]. Life Sci, 2000, 67:155–163
    65. Wang HX, Ng TB, Liu WK, et al. Polysaccharide–peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages [J]. Int J Biochem Cell Biol, 1998, 28:601–607
    66. Liu WK, Ng TB, Sze SF, et al. Activation of peritoneal macrophages by polysaccharopeptide from the mushroom, coriolus versicolor [J]. Immunopharmacol, 1993, 26:139–146
    67. Pang ZJ, Zhou M, Chen Y, et al. A protein-bound polysaccharide synergistic with lipopolysaccharide induces nitric oxide release and antioxidant enzyme activities in mouse peritoneal macrophages [J]. Anim J Chin Med, 1998, 26(2):133–141
    68. Hsu HY, Hua KF, Lin CC, et al. Extract of reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways [J]. J Immunol, 2004, 173:5989–5999
    69. Sanzen I, Imanishi N, Takamatsu N, et al. Nitric oxide-mediated antitumor activity induced by the extract from Grifola frondosa (Maitake mushroom) in a macrophage cell line RAW 264.7 [J]. J Exp Clin Cancer Res, 2001, 20:591–597
    70. Kodama N, Komuta K, Nanba H. Can maitake MD-fraction aid cancer patients [J]? Altern Med Rev, 2002, 7:236–239
    71. Okazaki M, Adachi Y, Ohno N, et al. Structure–activity relationship of (1→3)-β- d-glucans in the induction of cytokine production from macrophages in vitro [J]. Biol Pharm Bull, 1995, 18:1320–1327
    72. Adachi Y, Ohno N, Yadomae T. Activation of murine Kupffer cells by administration with gel-forming (1→3)-β-D-glucan from Grifola frondosa [J]. Biol Pharm Bull, 1998, 21:278–283
    73. Adachi Y, Okazaki M, Ohno N, et al. Enhancement of cytokine production by macrophages stimulated with (1→3)-β-d-glucan, grifolan (GRN), isolated from Grifola frondosa [J]. Biol Pharm Bull, 1994, 17:1554–1560
    74. Ladanyi A, Timar J, Lapis K. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells [J]. Cancer Immunol Immunother, 1993, 36:123–126
    75. Mizuno M, Shiomi Y, Minato K, et al. Fucogalactan isolated from Sarcodon aspratus elicits release of tumor necrosis factor-αand nitric oxide from murine macrophages [J]. Immunopharmacol, 2000, 46:113–121
    76. Chen YJ, Shiao MS, Lee SS, et al. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells [J]. Life Sci, 1997, 60: 2349–2359
    77. Jin M, Jung HJ, Choi JJ, et al. Activation of selective transcription factors and cytokines by water-soluble extract from Lentinus lepideus [J]. Exp Biol Med, 2003, 228:749–758
    78. Duncan CJ, Pugh N, Pasco DS, et al. Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta [J]. J Agric Food Chem, 2002, 50:5683–5685
    79. Kim GY, Oh YH, Park YM. Acidic polysaccharide isolated from Phellinus linteus induces nitric oxide-mediated tumoricidal activity of macrophages through protein tyrosine kinase and protein kinase C [J]. Biochem Biophys Res Commun, 2003, 309:399–407
    80. Rhee SD, Cho SM, Park JS, et al. Chemical composition and biological activities of immunostimulants purified from alkali extract of Poria cocos sclerotium [J]. Korean J Mycol, 1999, 27:293–298
    81. Lee KY, You HJ, Jeong HG, et al. Polysaccharide isolated from Poria cocos sclerotium induces NF-κB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages [J]. Int Immunopharmacol, 2004, 4:1029–1038
    82. Lee KY, Jeon YJ. Polysaccharide isolated from Poria cocos sclerotium induces NF-κB/Rel activation and iNOS expression in murine macrophages [J]. Int Immunopharmacol, 2003, 3:1353–1362
    83. Xiang DB, Li XY. Antitumor activity and Immuno-potentiating actions of Achyanthes biderrtata polysaccharides [J]. Acta Pharmacal Sin, 1993, 14(6):556–561
    84.佟丽,黄添友,李吉来,等.植物多糖对S180、K562细胞增殖和唾液酸、磷脂、胆固醇含量的影响[J].中国中西医结合杂志, 1994, 14(8):482–484
    85.房红梅,田丽,徐月清.多糖药理作用的研究进展[J].河北职工医学院学报, 2001, 8(2):63–65
    86.白润江,刘振英,王凤连,等.香菇多糖对机体免疫功能的影响及抑瘤作用[J].兰州医学院学报, 1990, 19(1):10–13
    87.宋义平,刘彩玉,周刚,等.牛漆多糖对小鼠细胞免疫功能的影响[J].中药新药与临床药理, 1998, 9(3):158–160
    88.陈永林,陈沪宁,李允尧,等.生药中活性多糖的研究概况[J].基层中药杂志, 1994, 8(2):33–34
    89.沈萍萍.真菌多糖研究进展[J].南京大学学报, 1991, 27(3):528–531
    90.江萍.食品多糖与机体免疫[J].食品工业科技, 1997, 1:82–90
    91. Kiho T, hui J, Yamane A, et al. Polysaccharides in fungi XXX Hypiglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of cordyceps sinensis [J]. Biol Pharm Bull, 1993, 16(12):1291–1293
    92. Kiho T, Yamane A, Hui J, et al. Polysaccharides in fungi XXX Hypoglycemic activity of Polysaccharides(CS-F30)form the cultural mycelium of cordyceps smemsis and its effect on glucose metabolism in mouse liver [J]. Biol Pharm Bull, 1996, 9(2):294–296
    93. Kiho T, Watanabe T, Nagai K. et al. Hypolycemic activity of polysaccharide fraction from thizome of Rehmannia gluticosa Libosch chingensis Hsiao and the effect on carbohydrate metobolism in normal mouse liver [J]. Yakugaku Zasshi, 1992, 112(6):393–400
    94.周青见,蒙义文.应用及环境生物学报, 1997, 1:82–90
    95.涂桂生,涂颖青.多糖类药物研究的进展(一)[J].化学医药工业信息, 1996, 12(8):1–5
    96. Yeung H, Chiu LC, Ooi VE. Effect of polysaccharide peptide(PSP)on glutathione and protection against paracetamol-induced hepato-toxicity in the rats [J]. Method Find Exp Clin Pharmacol, 1994, 16(10):723–726
    97.曾南,沈映君,贾敏如,等.通草及小通草多糖抗氧化作用的实验研究[J].中国中药杂志, 1999, 14(1):46–48
    98. Hashimoto T, Olmo S, Adacai Y, et al. Enhanced production of inducible nitric oxide synthase by beta-glucans in mice [J]. FEMS Immunol Med Microbio, 1997, 19(2):131–135
    99. Mueller A, Raptis J. The influence of glucan polymer structure and solution conformation on binding to (1→3)-beta-D-glucan receptors in a human monocyte-like cell line [J]. Glycobiology, 2000, 10(4):339–346
    100. Yan J, Vetvicka V. Beta-glucan, a“specific”biologic response modifier that uses antibodies to target tumors for cytotoxic: recognition by leukocyte complement receptor type 3(CDllb/CD18) [J]. J Immunol, 1999, 163(6):3045–3052
    101.江苏新医学院编.中药大辞典[M].上海科学技术出版社, 1986:567
    102.李学禹.甘草属分类系统与新分类群的研究[J].植物研究, 1995, 12(1):13–43
    103.傅克治.我国野生甘草资源的抚育更新[J].中药通报, 1985, 10(2):11–14
    104. Revers FE. Question of therapeutic action of licorice juice on gastric ulcer [J]. Ned Tijdschr Geneesk, 1946, 90:135–137
    105.胡金峰,沈凤嘉.甘草在医药等方面的深度开发及综合利用[J].中草药, 1995, 26(1):39–44
    106.胡志厚.甘草酸类药物的研究及应用[J].药学学报, 1988, 23(7):553–560
    107.张宝恒.甘草药理作用研究进展[J].药学学报, 1993, 10(11):688–698
    108.胡志厚.甘草抗溃疡病的研究[J].中草药通讯, 1979, 6:281–283
    109.史勇.甘草多糖对小鼠淋巴细胞的激活增殖效应[J].中国免疫学杂志, 1986, 2(5):295–300
    110.赵秀英.甘草种子中多糖的分离和鉴定[J].西北药学杂志, 1989, (2):18
    111.张宝恒.甘草药理作用研究的进展[J].药学学报, 1963, 10(11):688
    112. Akamatsu H, Asada Y, Asada Y. Mechanisms of anti-inflammatory action of glycyrrhizin: Effect of neutrophil functions including reactive oxygen species generation [J]. Planta Medica, 1991, 57(2):119–121
    113. Hatano T, Yasuhara T, Fukuda T, et al. Phenolic constitutes of licorice. II. Structures of licopyranocoumarin, licoarylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase [J]. Chem Pharm Bull (Tokyo), 1989, 37(11):3005–3009
    114. Pompeii RP, Pani A, Flore O, et al. Antiviral Activity of Glycyrrhiza Acid [J]. Experimenta, 1980, 36:304–305
    115. Tochikura TS, Nakashima H, Yamamoto N, et al. Antiviral agents with activity against human retroviruses [J]. J Acquir Immun Deficien Syndr, 1989, 2:441–447
    116.杨锦南,朱明.甘草次酸及其衍生物药理作用研究进展[J].中国药理学通报, 1997,13(2):110–114
    117.叶时泉.唐秀英.甘草在医学方面的研究现状[J].时珍国药研究, 1997, 8(1):75–76
    118. Yoshikawa M. Effects of Glycyrrhizin on immune mediated cytotoxicity [J]. J Gastroenterol Hepatol, 1997, 12(3):243–248
    119. Thabrew MI, Hughes RD. Phytogenic Agents in the Therapy of Liver Disease [J]. Phytotherapy Res, 1996, 10(6):461–467
    120.任仁安,等.中药鉴定学(第一版)[M].上海科学技术出版社, 1986:109
    121. Odaka K, Tamura Y, Yamamoto M, et al. Indentification of antimicrobial and antioxidant constitutens from licorice of Russian and Xinjiang origin [J]. Chem Pharm Bull, 1987, 37(9):2528–2531
    122. Hatano T, Yasuhara T, Miyamoto K, et a1. Anti-human immunodeficiency virus phenolics from 1icorice [J]. Pharmaceutic Bull, 1988, 36(6):2286–2288
    123. Mori K. Effects of Glycyrrhizin (SNMC/IV: Stronger Neo Minophagen C) in hemophilia patients with HIV infection [J]. Tohoku J Experiment Med, 1989, 158:25–35
    124. Mashiba H, Matsunaga K. Augments antiproliferative effect of tumor necrosis factor (TNF) lymphotoxin and glycyrrhizin in combined with diethyldicarbamate on MethA tumor cells in vitro [J]. Japan J Experiment medicin, 1990, 60(2):67–71
    125. Numazki K, Nagata N, Sato T, et al. Effect of glycyrrhizin, cyclosporin and tumor necrosis factor alpha on infection of U-937 and MRC-5 cells by human cytomegalovirus [J]. J Leukocyte Biolog, 1994, 55:24–28
    126.贾国惠,贾世山.甘草中的药理作用研究进展[J].中国药学杂志, 1998, 33(9):513–516
    127.高丽娟,田晓燕.甘草残渣中多糖含量的分光光度法测定[J].宁夏大学学报:自然科学版, 2002, 23(2):182–183
    128.孙萍,李艳,顾承志,等.甘草多糖的微波提取及含量测定[J].基层中药杂志, 2001,15(6):22–23
    129.王航宇,刘金荣,江发寿,等.新疆甘草多糖的超声提取及含量测定[J].基层中药杂志,2002, 16(1):7–8
    130.赵春建,李春英,付玉杰,等.甘草多糖超声提取工艺及数学模拟[J].应用化学, 2004, 21(11):1181–1183
    132.李彩君,张洁冬,赵健安,容穗华.正交设计优选酶法提取甘草多糖的工艺研究[J].广州中医药大学学报, 2007, 24(4):323–324
    133.李春英.甘草多糖提取纯化工艺研究[D]: [硕士学位论文].哈尔滨:东北林业大学, 2002
    134.周蓉,于翠娟.甘草多糖的分离纯化及高效毛细管电泳分析[J].分析化学, 1999, 27(2):245
    135.王岳五,张海波,陈水平,等.甘草残渣中多糖的分离纯化及性质分析[J].南开大学学报:自然科学版, 1999, 32(4):36–38
    136. Takada K, Tomoda M, Shimizu N. Core structure of glycyrrhiza GA, the main polysaccharide from the stolon of Glycyrrhiza glabra var. glandulifera; anti-complementary and alkaline phosphatase-inducing activities of the polysaccharide and its degradation products [J]. Chem Pharm Bull (Tokyo), 1992, 40(9):2487–2490
    137. Shimizu N, Tomoda M, Takada K, et al. The core structure and immunological activities of glycyrrhiza UA, the main polysaccharide from the root of Glycyrrhiza uralensis [J]. Chem Pharm Bull (Tokyo), 1992, 40(8):2125–2128
    138. Kiyuhara H. Isolation of Monoamine Oxidase Inhibitors from Glycyrrhiza uralensis Roots and the Structure-Activity Relationship [J]. Planta Med, 1996, 62(1):14–19
    139.聂小华,尹光耀,史宝军.甘草有效成分体外抗肿瘤活性和免疫活性的研究[J].中药材, 2003, 26(7):507–509
    140.郑尧,何景华,高建华,等.甘草多糖对小鼠巨噬细胞吞噬功能的影响[J].中医药学刊, 2003, 21(2):254–255
    141.王忱,谢广茹,史玉荣,等.甘草多糖的体内抑瘤作用及其机制的研究[J].临床肿瘤学杂志, 2003, 8(2):85–87
    142.王岳五,史玉荣,张海波,等.甘草残渣中多糖GPS抗肿瘤作用的研究[J].南开大学学报, 2000, 33(4):46–48
    143.常雅萍,毕无邪,杨贵贞.甘草多糖抗病毒作用研究[J].中草药, 1989, 14(4):44–46
    1. Dubois M. Colorimetric method for determination of sugars and related substances. Analyti Chem, 1956, 28(3):350–356
    2.张惟杰.复合多糖生化研究技术[M].上海:上海科学技术出版社, 1987
    3. Gruppen H, Hamer RJ, Voragen AG. Water-unextractable cell wall material from wheat flourl. Extraction of polymers with Alkali [J]. J Cereal Sci, 1992, 16:41–51
    4. Girhammar U, Nair BM. Isolation, separation and characterization of water soluble non-starchy polysaccharides from wheat and rye [J]. Food Hydrocolloids, 1992, 6:329–343
    5. Shiiba K,Yamda H, Hara H, et al. Purification and characterization of two arabinoxylans from wheat bran [J]. Cereal Chem, 1993, 70:209–214
    6.李学禹.甘草属分类系统与新分类群的研究[J].植物研究, 1995, 12(1):13–43
    7.傅克治.我国野生甘草资源的抚育更新[J].中药通报, 1985, 10(2):11–14
    8.江苏新医学院编,中药大辞典[M].上海科学技术出版社, 1986:567
    9. Saha SK, Brewer EF. Determination of the concentrations of oligosaccharides, complex type carbohydrates and glyco-proteins using the phenol-sulfuric acid method [J]. Carbohyd Res, 1994, 254:157
    10. Bergmmar MF, Gruppen GH. Optimisation of the selective extraction of glucrono-arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures [J]. J Cereal Sci, 1996, 23:235–245
    11. Peter H, Alexander SS, Barbara J, et al. Analysis of the enzymatic cleavage (βElimination) of the capsular K5 polysaccharide of escherichia coli by the K5-specific coliphage: a reexamination [J]. J Bacteriol, 1996, 8:4747–4750
    12.王忠民.葡萄多糖的分离纯化结构与功能特性的研究[D]: [博士学位论文].武汉:华中农业大学2002
    13.郭尧君.蛋白质电泳实验技术[M].北京:科学出版社, 1992
    14.林娟,邱宏端,林霄,等.甘薯多糖的提取纯化及成分分析[J].中国粮油学报, 2003, 18(2):64–66
    15.吴梧桐,余品华,夏尔华,等.银耳孢子多糖IF-A, TF-B, IF-C的分离,纯化及组成单糖的鉴定[J].生物化学与生物物理学报, 1984, 16(4):393
    16. Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars [J]. Nature, 1951, 168:167
    17. Box G. Some new three lever designs for the study of quantitative variables [J]. Technometrics, 1956, 2:455–476
    18. Giovinni M. Response surface methodology and produce optimization [J]. Food Technol, 1982, 37:441–451
    19.刘晔玮,宋海,马振远.甘草多糖提取工艺的研究[J].中成药, 2005, 28(5):729–731
    1. Blackenney AB, Harris PJ, Henry RJ, et al. A simple and rapid preparation of alditol acetates for monosaccharide analysis [J]. Carbohydr Res, 1983, 113:291–299
    2. Alsop RM, Vlachogiannis GJ. Determination of the molecular weight of clinical dextran by gel chromatography on TSK PW TYPE columns [J]. J Chromatogr, 1982, 246:227–240
    3.王岳五,张海波,陈水平,等.甘草残渣中多糖的分离纯化及性质分析[J].南开大学学报(自然科学版), 1999, 32(4):36–38
    4.高小荣,刘培勋.多糖结构分析研究进展[J].天津药学, 2003,15(6):67–70
    5. Takada K, Tomoda M, Shimizu N. Core structure of glycyrrhiza GA, the main polysaccharide from the stolon of Glycyrrhiza glabra var glandulifera, anti-complementary and alkaline phosphatase-inducing activities of the polysaccharide and its degradation products [J]. Chem Pharm Bull (Tokyo), 1992, 40(9):2487–2490
    6. Shimizu N, Tomoda M, Takada K, et al. The core structure and immunological activities of glycyrrhiza UA, the main polysaccharide from the root of Glycyrrhiza uralensis [J]. Chem Pharm Bull (Tokyo), 1992, 40(8):2125–2128
    7.刘丙灿,方积年.甘草多糖的分离纯化与化学结构[J].药学学报, 1991, 26(9):672–675
    8. Quate CF, Binning G, Gerber C. Atomic Force Microscope [J]. Phys Rev Lett, 1986, 56:930–933
    9.孙润广,张静.甘草多糖螺旋结构的原子力显微镜研究[J].化学学报, 2006, 64(24):2467–2472
    10. Hanley SJ, Giason J, Revol JF, et al. Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy [J]. Polymer, 1992, 33:4639–4642
    11. Round AN, MacDougall AJ, Ring SG, et al. Unexpected Branching in Pecting Observed by Atomic Force Microscopy [J]. Carbohyd Res, 1997, 303:251–253
    12. Kirby AR, Gunning AP, Morris VJ, et al. Observation of the Helical Structure of the Bacterial Polysaccharide Acetan by Atomic Force Microscopy [J]. Biophysical J, 1995, 68:360–363
    13. Kirby AR, Gunning AP, Morris VJ. Imaging Xanthan gum by Atomic Force Microscopy [J]. Carbohyd Res, 1995, 267:161–166
    14. Mcintire TM, Penner RM, Brant DA. Observation of a circular, triple-helical polysaccharide using non-contact atomic force microscopy [J]. Macromolecules, l995, 28:6375–6377
    15. Gunning AP, Kirby AR, Ridout MJ, et al. Investigation of Gellan Networks and Gels by Atomic Force Microscopy [J]. Macromolecules, 1996, 29:6791–6796
    16. Kirby AR, Gunning AP, Waldron KW, et al. Visualization of Plant Cell Walls by Atomic Force Microscopy [J]. J Biophysical, 1996, 70:1138–1143
    17.蔡林涛,李萍,陆祖宏.原子力显微镜观察虫草多糖分子的结构形貌[J].电子显微学报, 1999, 18(1):103–105
    18.马秀俐,白玉白,孙允秀,等.西洋参多糖(PPQ-d)的原子力显微镜观察[J].吉林大学自然科学学报, 2000, 1:105–107
    19. Stokke BT, Elgsaeter A, Brant DA, et a1. Supercoiling in circular triple-helical polysaccharides [J]. Macromolecules, 199l, 24:6349–6353
    20. Stokke BT, Elgsaeter A, Brant DA, et a1. Macrocyclization of polysaccharides visualized by electron microscopy [J]. Biopolymers, 1993, 33:193–198
    21.石磊,王勇,石勇,等.虎眼万年青多糖的原子力显微镜观察[J].吉林大学学报(医学版), 2003, 29:32–34
    22.友田正司.生药中生物活性多糖(3)[J].国外医学中医中药分册, 1990, 12(5):20–22
    1.吴敏毓,刘恭植.医学免疫学[M].北京:中国科学技术大学出版社, 1993,151
    2. Weir DM. Cellular recognition by phagocytes role of lectin-like receptor in mononuclar phagocyte by Rvan Furth [J]. North Holland, 1980:865–869
    3.谢锦玉.细胞化学方法,鄂征.组织培养[M],第二版.北京人民卫生出版社, 1988, 202–240
    4.赵德来.猪苓多糖和氢化考的松对小鼠腹腔巨噬细胞的作用-细胞化学研究[J].解剖学报, 1986, 17(2):186–187
    5.陈诗芸.党参花粉多糖对小鼠腹腔巨噬细胞的非特异性激活[J].中国免疫学杂志, 1991, 7(3):187–189
    6.胡庆和,谢锦玉,张莅峡,等.红毛五加多糖对腹腔巨噬细胞作用的定量细胞化学研究[J].中国组织化学与细胞化学杂志, 1993, 2(3):192–194
    7.张明军,胡庆和,贾本立.枸杞多糖对小鼠腹腔巨噬细胞作用的定量细胞化学研究[J].宁夏医学院学报, 1994, 16(4):307–309
    8.成令忠.组织学[M].第一版,北京:人民卫生出版社, 1993, 230
    9.谢锦玉,屠国瑞,李凤文,等.党参多糖对巨噬细胞作用的细胞化学研究[J].中西医结合杂志, 1985, 8:487–488
    10.周娅,佟书娟,王宁萍,等.枸杞多糖对小鼠巨噬细胞内酶活性及NO诱生的影响[J].山东中医杂志, 2000, 19(6):361–362
    11.庞战军,陈瑗,周玫.云芝多糖对小鼠腹腔巨噬细胞锰超氧化物歧化酶基因表达的调控[J].中国动脉硬化杂志, 1999, 7(2)106–109
    12. Yang G, Yu Y. Immunopotentiating effect of traditional Chinese drugs—ginsenoside and glycyrrhiza polysaccharide [J]. Proc Chin Acad Med Sci Peking Union Med Coll, 1990, 5:188–193
    13. Nose M, Terawaki K, Oguri K, et al. Activation of macrophages by crude polysaccharidefractions obtained from shoots of Glycyrrhiza glabra and hairy roots of Glycyrrhiza uralensis in vitro [J]. Biol Pharm Bull, 1998, 21:1110–1111
    14. Wang YW, Zhang HB, Lv J, et al. Inhibition of glycyrrhiza polysaccharides (GPS) on virus [J]. Acta Sci Nat Univ Nankaiensis, 2000, 33:46–48
    15. Takada K, Tomoda M, Shimizu N. Core structure of glycyrrhiza GA, the main polysaccharide from the stolon of Glycyrrhiza glabra var. glandulifera; anti-complementary and alkaline phosphatase-inducing activities of the polysaccharide and its degradation products [J]. Chem Pharm Bull (Tokyo), 1992, 40(9):2487–2490
    16.赵玉萍,张灏,杨严俊.溶菌酶测定方法的改进[J].食品科学, 2002, 23(3):116–119
    17. Mariana Piemonte Moret?o, Buchi DF, Philip AJ, et al. Effect of an acidic heteropolysaccharide (ARAGAL) from the gum of Anadenanthera colubrina (Angico branco) on peritoneal macrophage functions [J]. Immunol Lett, 2003, 89:175–185
    18. Johnston Jr RB, Godzik CA, Cohn ZA. Increased superoxide anion production by immunologically activated and chemically elicited macrophages [J]. J Exp Med, 1978, 148:115–127
    19.王淑静,杨建军,张焱.两种中药多糖对巨噬细胞超微结构影响的分析[J].宁夏医学院学报, 2000, 22(5):315–317
    20.郭仁强.巨噬细胞细胞的发生分化功能.临床免疫学基础[M].江苏科学出版社, 1982:72–86
    21.陈华.生物化学[M].第二版.人民卫生出版社, 1988:182
    22.孙虎山,李光友.栉孔扇贝血淋巴中超氧化物歧化酶和过氧化物氢化酶活性及性质研究[J].海洋与湖沼, 2000, 31(3):259–265
    23.常雅宁.两种连苯三酚自氧化法测定超氧化物歧化酶的比较[J].药物分析杂志, 2001, 5:328–331
    24. Hultmark D. Insect immunity: Purification and properties of three inducible bactericidal proteins from hemolympph of immunized pupae of Hyalophora Cecropic [J]. Insect Immune, 1974, 10:136–145
    25. Wang GH, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible pretective mechanism [J]. Science, 1988, 242:941–944
    26.龚珊.超过氧化物歧化酶(SOD)对免疫功能的抑制[J].中国血液流变学杂志, 2001, 11(4):262–264
    27. Zhou M, Chen Y, Liu SX, et al. Elevation of Macrophage Se-GSHPx gene expression and prevention of foam cell Formation. In: Lester Pacher. Proceedings of the international Symposium on Natural antioxidants [J]: Mol Mechan and Health Effects. AOCS Press, Champaign, Illinois, USA, 1996, 339–351
    28.张庆,雷林生,张莉莎,等.大枣中性多糖的抗小鼠腹腔巨噬细胞内活性氧作用[J].中药药理与临床, 2000, 16(6):14–16
    29.李明春,雷林生,梁东升,等.灵芝多糖对小鼠腹腔巨噬细胞活性氧自由基的影响[J].中国药理学与毒理学杂志, 2000, 14(1):65–66
    1.孙伟民,王惠琴.细胞因子研究方法学[M].人民卫生出版社. 1999
    2.徐叔云,卞如镰,陈修.药理实验方法学[M].第二版,北京:人民卫生出版社,1991,1233
    3.章静波.细胞生物学实用方法与技术[M].北京医科大学中国协和医科大学联合出版社,北京,1995
    4.王晓京,丁桂凤,范少光.几种阿片肽及ACTH对小鼠腹腔巨噬细胞吞噬功能的作用[J].中国免疫学杂志, 1987, 37(4): 211–213
    5. Mosmann T. Rapid colorimetric assay for cellular growth and survial: application to proliferation and cytotoxicity assay [J]. J Immunol Meth, 1983, 65 (12):55–63
    6. Flick DA, Gifford GE. Comparison of in vitro cell cytotoxicity assays for tumor necrosis factor [J]. J Immunol, 1984, 68:167–175
    7. Kim HM, Oh GT, Hong DT, et al. Facilitation of apoptosis by autologous serum and related immunosuppression in the splenocyte culture. Immunopharmacol, 1996, 34:39–50
    8. Nathan CF, Hibbs Jnr. Role of nitric oxide synthesis in macrophage antimicrobial activity [J]. Cur Opini Immunol, 1991, 3:65–70
    9. Shon YH, Nam KS. Cancer chemoprevention: inhibitory effect of soybeans fermented with basidiomycetes on 7,12-dimethylbenz an-thracene 12-O-tetradecanoylphorbol- 13-acetate-induced mouse skin carcinogenesis [J]. Biotechnol Lett, 2002, 24(12):1005-1010
    10. Oh JY, Cho KJ, Chung SH. Activation of macrophages by GLB, a protein-polysaccharide of the growing tips of Ganoderma lucidum [J]. Yakhak Hoeji (Korean), 1998, 42: 302–306
    11.刘卓位,王崇刚,高斌,等.人癌细胞体外药敏试验的临床研究[J].山西医科大学学报, 1998, 29(2):130–131
    12. Carmichael J, Draff WG, Gazdar AF, et al. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing [J]. Cancer Res, 1987, 47:936
    13. Lambert E, Rees JKH, Twentyman PR. Resistance circumvention strategies tested in clinical leukemia specimens using the MTT colorimetric assay [J]. Lejkemia, 1992, 6 (10):1063
    14. Kaspers GJL, Pieters R, Zantwijk CHV, et al. Invitrodrug sensitivity of normal peripheral blood lymphocyte and childhood leukemic cells from bone narrow and peripheral blood [J]. Br J Cancer, 1991, 64:469
    15.郑尧,何景华,高建华,等.甘草多糖对小鼠巨噬细胞吞噬功能的影响[J].中医药学刊, 2003, 2 (21):254–255
    16. Oppenheim JJ, Kovacs EJ, Matsushima K, et al. There is more than one interleukin-1 [J]. Immunol Today, 1986, 7(2):45
    17. Dinaralla DA, Collinge J, Bosque P, et al. Interleukin-1 and its biologically related cytokine [J]. Adv Immunol, 1989, 74:153–157
    18. Ohta K, Pang XP, Berg L, et a1. Antitumor action of cytokines on new human papillary thyroid carcinoma cell lines [J]. J Clin Endocrinol Meth, 1996, 81:2607–2612
    19. Redman BG, Abubakr Y, Esper P, et al. Phase II trial of recombinant interleukin-1 beta in patients with metastatic renca cell carcinoma [J]. J Immunother Emphasis Tumor Immunol, 1994, 16:211–215
    20. Janik JE, Miller LL, Longo DL, et al. Phase II trial of interleukin 1 alpha and indomethacin in treatment of metastatic melanoma [J]. J Nat Cancer Inst, 1996, 88:44–49
    21. Usui N, Matsushima K, Pilaro AM, et al. Antitumor effects of human recombinant interleukin-1 alpha and etoposide against human tumor cells: mechanisms for synergism in vitro and activity in vivo [J]. Biotheraphy, 1996, 199–208
    22.冯作化,罗毅.白细胞介素-1在免疫应答反馈调节中的作用[J].上海免疫学杂志, 1989, 9(4):232–235
    23. Sayinalp N, Haznedaroglu IC, Ozcebe OI, et al. Impaired haemostatic kinetics and endothelial function in Beh?et's disease [J]. J Intern Med, 1995, 55(5):339–340
    24. Ishibashi T, Kimura H, Shikama Y, et al. Interleukin-6 is a potent thrombopoietic factor in vivo in mice [J]. Blood, 1989, 71:1241–1244
    25 Romani L, Mencacci A, Tonnetti L, et al. Interleukin-12 but not interferon-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis [J]. Eur J Immunol, 1994, 24(4):909–915
    26. Wu CY, Demeure C, Kiniwa M, et al. IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells [J]. Immunol, 1993, 151(4):1938–1949
    27.王忱,谢广茹,史玉荣,等.甘草多糖的体内抑瘤作用及其机制的研究[J].临床肿瘤学杂志, 2003, 8(2):85–87
    28.常雅萍,毕无邪,杨贵贞.甘草多糖抗病毒作用研究[J].中草药, 1989, 14(4) :44–46
    29. Logan TF, Gooding WE, Whiteside TL, et al. Biological response modulation by tumor necrosis factor alpha (TNF-α) in a phaseⅡtrial in cancer patients [J]. J Immunol, 1997, 20(5):387–398
    30. Nooijen PTGA, Mnusama ER, Eggermont AMM, et al. Synergistic effects of TNF-αand melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological immunohistochemical and electron microscopical study [J]. Br J Cancer, 1996, 74(12):1908–1915
    31. Leung DT, Morefield S, Willerford DM. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo [J]. J Immunol, 2000, 164(7):3527–3534
    32. Malek TR, Yu A, Vincek V, et al. CD4+ Regulatory T Cells Prevent Lethal Autoimmunity in IL-2R, Deficient Mice: Implications for the Non-redundant Function of IL-2 [J]. Immunity, 2002, 17(2):167–178
    33 Almeida AR, Legrand N, Papiernik M, et al. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers [J]. J Immunol, 2002, 169(9):4850–4860
    34. Wolf M, Schimpl A, Hünig T. Control of T-cell hyperactivation in IL-2-deficient mice by CD4+CD25- and CD4+CD25+ T cells: Evidence for two distinct regulatory mechanisms [J]. Eur J Immunol, 2001, 31(6):1637–1645
    35. Song JY, Han SK, Son EH, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan [J]. Inter Immunopharmacol, 2002, 2:857–865
    1. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function [J]. Ann Rev Immunol, 1997, 15:323–350
    2. Muriel P. Regulation of nitric oxide synthesis in the liver [J]. J App Toxicol, 2000, 20:189–195
    3. Mayer B, Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells [J]. Trend Biochem Sci, 1997, 22:477–483
    4. Sosroseno W, Barid I, Herminajeng E, et al. Nitric oxide production by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus action mycetemcomitans [J]. Oral Microbiol Immunol, 2002, 17:72–78
    5. Kim YH, Woo KJ, Lim JH, et al.γ-hydroxyquinoline inhibits iNOS expression and nitric oxide production by down-regulating LPS-induced activity of NF-κB and C/EB in Raw 264.7 cells [J]. Biochem Biophysic Res Commun, 2005, 329:591–597
    6. Song YS, Park EH, Hur GM, et al. Ethanol extract of propolis inhibits nitric oxide synthase gene expression and enzyme activity [J]. J Ethnopharmacol, 2002, 80:155–171
    7. Liew FY, Lox FE. Non-specific defense mechanism the role of nitric oxide [J]. J Immunol Today, 1991, 12(3):17-21
    8.周娅,王宁萍,赵建宁,等.枸杞多糖对小鼠巨噬细胞内酶活性及NO诱生的影响[J].山东中医杂志, 2000, 19(5):361-363
    9. Soini Y, Kalhos K, Puhakka, et al. Expression of inducible nitric oxide synthase in healthy pleura and in malignant mesothelioma [J]. Br J Cancer, 2000, 83(7):880–886
    10.周浜,姜志尧,张杜梅,等.体内IFN-γ基因转染小鼠腹腔巨噬细胞抗肿瘤作用的研究[J].中国免疫学杂志, 1998, 14(1):22-25
    11. Lorsbach RB, Murphy WJ, Lowenstein CJ, et al. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide [J]. J Biolog Chem, 1993, 268:908–913
    12. Jun CD, Choi BM, Kim HM, et al. Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages [J]. J Immunol, 1995, 154:6541–6547
    13.游育红,林志彬.灵芝多糖肽对小鼠腹腔巨噬细胞一氧化氮产生的影响[J].中国药理学通报, 2004, 20(12):1398–1401
    14.孙震,奚海燕,陈正行,等.玉米蛋白粉中叶黄素和玉米黄素对小鼠巨噬细胞免疫调节活性的研究[J].食品科学, 2006, 27(11):505-509
    15. Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids [J]. Analyti Biochem, 1982, 126:131–138
    16. Maribel PS, Yvan B, Paul A, et al. Inhibitory effect of CDP, a polysaccharide extracted from the mushroom Collybia dryophila, on nitric oxide synthase expression and nitric oxide production in macrophages [J]. Europ J Pharmacol, 2007, 1:61–66
    17. Komutarin T, Azadi S, Butterworth L, et al. Extract of the seed coat of Tamarindus indicat inhibits nitric oxide production by murine macrophages in vitro and in vivo [J]. Food and Chemical Toxicol, 2004, 42:649–658
    18. Martin E, Nathan C, Xie QW. Role of interferon regulatory factor 1 in induction of nitirc oxide synthase [J]. J Exp Med, 1994, 180:977–984
    19. Kamijo R, Harada H, Maysuyama T, et al. Requirement for transcription factor I RF-1 in NO synthase induction in macrophage [J]. Science, 1994, 26(3):1612–1615
    20. Cho HJ, Xie QW, Calaycay J, et al. Calmodulin is a subunit of nitric oxide synthase from macorphage [J]. J Exp Med, 1992,176:599–604
    21. Galea E, Feistein DL. Regulation of the experssion of the inflammatory nitric oxide synthase (NOS2) by cycilc AMP [J]. FASEB J, 1999, 13:2125–2137
    22. Alonso A, Carvalho J, Alonsoorre SR, et al. Nitric oxide synthesis in rat peritoneal macorphages is induced by IgE/DNP complexes and cyclic AMP analogues evidence infavor of a common signaling mechanism [J]. J Immunol, 1995, 154:6475–6483
    23. Park YC, Park SJ, Jun CD, et al. Cyclic AMP analogue as a triggering signal for the induction of nitric oxide synthesis in murine peritoneal macorphages [J]. Cell Immunol, 1997, 179:41–47
    24. Lowenstein CJ, Alley EW, Raval P, et al. Macrophage nitric oxide synthase gene-two upsteram regions mediate induction by interferon-γand lipopolysaccharide [J]. Proc Nat Acd Sci USA, 1992, 90:9730–9734
    25. Hunter T. Signaling-2000 and Beyond [J]. Cell, 2000, 100:113–127
    26. Peng HB, Libby P, Liao JK. Induction and stabilization of 1κBa by nitric oxide mediate inhibition of NF-κB [J]. J Biol Chem, 1995, 70:14214–14219
    27. Bogdan C, Rollinghoff M, Diefenbach A. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity [J]. Curr Opinn Immunolo, 2000, 12:64–76.
    28. Bogdan C, Rollinghhof M, Diefenbach A. The role of nitric oxide in innate immunity [J]. Immunolog Rev, 2000, 173:17–26
    29. Feng GJ, Goodridge HS, Hamet MM, et al. Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differently regulate the lipopolysacchride-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosophoglycans subvert macrophage IL-12 production by targeting ERKMAP kinase [J]. J Immunol, 1999, 163:6403–6412
    30. Caivano M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW264.7macrophages [J]. FEBS Leters, 1998, 429:249
    31. Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in macrophages stimulated with lipopolysacharide and interferon-gamma [J]. J Infect Dis, 1999, 179(4):939–944.
    32. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-κB/Rel in the induction of nitric oxide synthase [J]. J Biol Chem, 1994, 269:4705–4708
    33. Marrero MB, Venema VJ, He H, et al. Inhibition by the JAK/STAT pathway of IFN gamma-and LPS-stimulated nitric oxide synthase induction in vascular smooth muscle cells [J]. Biochem Biophys Res Commun, 1998, 252(2):508–512
    34. Xie QW, Stuehr DJ, Giercksky KE, et al. Nitric oxide and macrophage function [J]. Annu Rev Immunol, 1997, 15:323–350
    35. Shibata H, Kimura-Takagi I, Nagaoka M, et al. Properties of fucoidan from Cladosiphonokamuranus tokida in gastric mucosal protection [J]. Biofactors, 2000, 11:235–245
    36. Kodama N, Komuta K, Nanba H. Can mistake MD-fraction aid cancer patients [J]? Altern Med Rev, 2002, 7:236–239
    37. Hwan MK, Sang BH, Goo TO, Young HK, et al. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom phellinus linteus [J]. Int J Immunopharmacol, 1996, 18(5):295–303
    38. Hsu HY, Hua KF, Lin CC, et al. Extract of reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways [J]. J Immunol, 2004, 173:5989–5999
    39. Fang X, Chang RC, Yuen WH, Zee SY. Immunomodulatory effects of Prunella vulgaris L [J]. Int J Mol Med, 2005, 15:491–496
    40. Saura M, Zaragoza C, Bao C, et al. Interaction of interferon regulatory factor-1 and nuclear factorκB during activation of inducible nitric oxide synthase transcription [J]. J Mol Biol, 1999, 289:459–471
    1.孙润广,张静.甘草多糖螺旋结构的原子力显微镜研究[J].化学学报, 2006,64(24):2467–2472
    2. Adachi Y, Okazaki M, Ohno N, et al. Enhancement of cytokine production by macrophages stimulated with beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa [J]. Bio Pharm Bull, 1994, 17(12):1554–1560
    3.王庆彪,雷林生,孙莉莎.灵芝多糖体外对小鼠脾细胞IL-2、IL-3 mRNA表达的影响[J].中国药理学通报, 1998, 14(4):342–344
    4.崔金莺,林志彬.银耳多糖对小鼠IL-2, IL-6, TNF-α活性及其mRNA表达的影响[J].北京医科大学学报, 1996, 8(4):244–247
    5. Young SH, Ye T, Frazer DG, et al. Molecular mechanism of tumor necrosis factor-alpha production in beta-glucan (zymosan)-activated macrophages [J]. J Biol Chem, 2001, 276(23):20781–20787
    6.王忱,谢广茹,史玉荣,等.甘草多糖的体内抑瘤作用及其机制的研究[J].临床肿瘤学杂志, 2003, 8(2):85–87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700