下一代无线通信网络中移动性管理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信技术是当代通信领域发展最迅速、更新最活跃的研究热点之一。随着无线通信技术的飞速发展以及全IP技术的广泛应用,下一代移动通信网络必将成为基于全IP技术的异构融合系统,能够支持不同无线技术的平滑接入和移动终端的无缝漫游。为了在无线异构网络中实现移动终端的自由移动,并且保持通信的连续性,必须采用行之有效的移动性管理技术。切换算法和移动性管理机制是实现有效移动性管理的关键技术,需要指出的是,异构网络间的切换定义为垂直切换。因此如何设计基于下一代无线网络的合理、高效的垂直切换算法和移动性管理机制,成为一个有重大研究意义的应用课题,也是无线资源管理技术中最具挑战性的问题之一。
     本论文考虑不同接入技术的网络特性和移动用户的业务特征,针对无线异构网络中垂直切换算法和移动性管理机制二个关键问题展开系统深入的研究,提出一系列算法和机制,并通过建立理论分析模型和性能仿真实验证明提出的方案能够有效改进系统的切换性能。本文提出的三种垂直切换算法是依据对网络资源需求的不同角度而进行优化的方法,基于接收信号强度(RSS)的改进算法是一种从用户角度出发的快速切换方法,未考虑网络条件的动态调整机制;联合无线资源管理技术的改进算法是从运营商的角度出发的优化异构网络带宽利用、区分业务优先级的切换判决方法,需要的信息交互和系统开销大;基于模糊逻辑的改进算法是采用智能信号处理技术的切换判决方法,利用信号预测技术、结合预判决方法或动态调整权值来提高切换的准确性,在网络条件利用和处理开销方面是前两者的折中。本文的两种移动性管理机制是基于不同协议层提出的,基于网络层的改进机制是为了提高移动MIPv6协议的切换性能,以满足异构网络移动管理的要求;而基于分离层的移动性管理机制是为了弥补现有分离层协议的不足,是对分离层协议的功能扩展。
     本文的具体研究内容如下:
     (1)通过分析现有无线接入网络可以采用的异构融合方式,确定合理的网络拓扑,构建基于UMTS和WLAN的松耦合异构网络。接着,以获知每个异构小区的可得到带宽、主机的移动模型为前提,提出了一种利用接收信号强度及其累积量,同时结合带宽和位置信息作为判决准则的垂直切换算法,对该算法的切换概率和丢包率进行理论分析,并通过仿真实验表明与传统的RSS算法相比,本文提出的改进算法对平均切换次数、切换阻塞率方面具有显著改善。
     (2)提出一种区分业务类型的联合不同无线资源管理技术的垂直切换算法(RRM-VHO)。根据三种不同业务类型的优先级,使资源分配有利于对网络性能要求高、适应性较差的话音业务。采用联合准入控制、带宽借用和补偿、以及负载均衡控制的联合管理方法执行切换控制。建立基于各个控制方法的可扩展模块化仿真平台,针对呼叫阻塞率、掉话率和传输质量进行分析和比较,表明RRM-VHO算法能够提供较高的切换性能,适合无线异构网络的多业务通信。
     (3)考虑到模糊逻辑方法能够适应无线网络的动态条件和垂直切换的复杂性,本文首先提出了一种基于差分预测的模糊逻辑垂直切换算法(DP-VHO),采用差分预测方法获得的RSS预测值来触发切换,缩短切换的发现时间;利用预判决处理模块,对输入信号进行筛选以减少处理的采样点;同时简化模糊逻辑控制器,利用RSS和可用带宽的模糊隶属度进行固定权值的联合判决,实现移动用户对不同网络的最佳接入。进一步考虑到快衰落环境下的信号预测精度,以及准确反映网络参量的异构特性问题,提出一种基于灰度预测的模糊逻辑垂直切换算法(GPA-VHO),
     (4)针对进行不同接入网络之间的切换都依靠MIPv6,未能解决大范围移动过程中信令开销大、更新时间长和丢包严重的问题,本文提出了一种基于全局移动的IDMP切换管理机制(IDMP-MM)。利用IDMP的两层结构特性,将一个无线蜂窝网域中的WLAN小区聚合为一个子网,构成具有异构网络特性的分层网络结构。增强代理服务器的缓存机制和包格式转换功能,并采用快速切换机制和预先注册方法改进切换更新机制。建立性能分析模型,通过仿真证明IDMP-MM机制可以有效改进切换性能,实现同构和异构网络的全局切换管理。利用灰度预测算法来提高RSS的预测准确性;扩展模糊逻辑控制模块的输入参量为RSS、网络带宽和网络费用,并且采用实时动态调整的权值进行切换判决;仿真结果表明,GPA-VHO算法能够提高切换准确性,并且不受主机移动速度的影响。
     (5)由于异构网络环境中会出现主机的家乡代理失效、主机的多宿特性以及多宿环境中主机会改变家乡地址的问题,本文提出进行主机身份标识和位置标识分离协议的研究。首先分析和比较了现有主机身份标识和位置标识分离协议各自的优缺点,并提出一种基于终端侧分离协议的通用型快速切换管理机制,实现分离协议在移动环境中的无缝切换,能够支持单方主机移动和双方主机同时移动的场景。接着给出基于Shim6协议的快速切换应用实例,详细描述快速切换流程,以及相应信令格式的修改,并通过性能分析验证,提出的快速切换管理机制可以有效地减少数据丢包,降低了切换延时,明显改善现有分离协议的移动性管理能力。
     最后,对全文进行总结,同时给出下一步的研究方向。
Mobile communication technologies have become one of the most challenging and promising issues in modern communications. With the fast development of wireless communication technologies and the wide deployment of all-IP technique, the next-generation wireless mobile network must be integrated with various radio access technologies to support seamless roaming of mobile hosts. In order to guarantee mobile hosts roaming among different subnets freely meanwhile maintaining on-going sessions, it is vital to use effective mobility management methods. How to conceive rational and optimized vertical handoff algorithms and mobility management schemes has become significant in Radio Resource Management (RRM) for the next-generation mobile communication system.
     All-IP wireless heterogeneous integrating system is composed of cellular mobile networks, wireless local area network, satellite communications and broadcast communications. In view of various types of access networks and traffics such as voice, data, and multimedia, this dissertation focuses on mobility management in all-IP wireless heterogeneous networks, covers vertical handoff algorithms and mobility management schemes. Several novel algorithms and schemes have been proposed and verified to be effective by both analyses and simulations, which can be described as follows.
     Firstly, this dissertation proposes an efficient handoff algorithm for wireless heterogeneous networks constructed by the loosing couple architecture between wireless local area network (WLAN) and universal mobile telecommunications system (UMTS). This vertical handoff algorithm takes the received signal strength and its accumulation as handoff trigger criterion to adapt with the network conditions and deduce theoretic analysis of mean handoff number and dropping probability. The results of simulations indicate that the proposed algorithm has better performance than the conventional algorithm based on the absolute received signal strength (RSS).
     Secondly, this dissertation studies vertical handoffs combined with RRM technologies to improve system performance. The proposed vertical handoff algorithm introduces access control, bandwidth borrowing and compensation, and load balance control to allocate radio resource based on different traffic types. The results of simulations indicate that the proposed algorithm is able to reduce the dropping probability under the same block probability, and guarantee the best quality of service for voice in the three traffic types.
     To minimum unnecessary handoff number, this dissertation proposes an improved vertical handoff algorithm considers some network parameters including velocity, current RSS, predicted RSS and available bandwidth unity of candidate networks. The forward differential prediction algorithm is used to get the predictive RSS, which can trigger a handoff in advance. And the pre-decision method is applied before the handoff decision module, which can filter the unnecessary data and provide accurate handoff trigger. Fuzzy logic principle based evaluation and decision algorithm is applied to the overlay network of UMTS and WLAN, which can save the mobile host memory to store the rule bases and saves the time to defuzzy within the rule bases. Furthermore, the intelligent vertical handoff algorithm with the aid of grey theory and dynamic weights adaptation is proposed. The Grey Prediction Algorithm (GPA) predicts the predictive received signal strength accurately. The decision rule based on fuzzy logic theory takes received signal strength, available bandwidth, and monetary cost of candidate networks as input metrics. And the weight of each metrics is adjusted along with the networks changing to trace the network condition. Simulation results demonstrate that the proposed algorithm provides high performance in heterogeneous as well as homogeneous network environment.
     Fourthly, this dissertation presents an improved IDMP-based macro-mobility management (IDMP-MM) mechanism for heterogeneous wireless networks. The proposed mechanism adopts Layer-2 fast handoff trigger, the edge-cells controller for improving intra-domain mobility, and the pre-registration method with the aid of address-table mapping between mobility agents to enhance inter-domain mobility. It describes the procedures of intradomain and interdomain handoff in IDMP-MM solution, and gives the performance analyses of IDMP-MM. The simulation results show that the IDMP-MM mechanism can provide efficient mobility management to reduce the binding update signaling cost, the number of buffering in-flight packets, and execute fast handoff for ongoing calls.
     In the end, this dissertation focuses on mobility management schemes for the protocols of identifier and locator separation. The generic mobility management scheme for protocols of terminal-based identifier and locator separation is proposed. By combining with Fast Mobile IPv6, the proposed scheme provides fast and simultaneous-moving handoff management without packets loss. And it gives the fast handoff procedure of the proposed scheme and several modified signal formats. This scheme is applicable to support Shim6 mobility, which is demonstrated the benefits on handoff latency and handoff signaling cost.
     Finally, the conclusion is presented as well as future research trends.
引文
[1] Qi Bi, G. L. Zysman and H. Menkes. Wireless Mobile Communications at the start of the 21st century. IEEE Communication Magazine, Jane 2001, 39: 110-116.
    [2] S. T. Andrew著,熊桂喜,王小虎译.计算机网络.清华大学出版社, 2000.
    [3]孙儒石,丁怀元等编著. GSM数字移动通信工程.人民邮电出版社, 2002.
    [4] R. Kalden, I. Meirick and M. Meyer. Wireless Internet access based on GPRS. IEEE Personal Communications, Apr. 2000, 7(2): 8-18.
    [5] ETSI, Digital cellular telecommunications system (Phase 2+); AT command set for GSM Mobile Equipment. ETSI TS 100 916.
    [6] O. Tero and P. Ramjee. Wide Band CDMA for Third Generation Mobile Communications. Artech House.
    [7]张智江,刘申建等. CDMA2000 1x EV-DO网络技术.机械工业出版社, 2005.
    [8]彭木根,王文博. TD-SCDMA移动通信系统.机械工业出版社, 2005.
    [9] IEEE Standard for Local and Metropolitan Area Networks Part16: Air Interface for Fixed Broadband Wireless Access Systems, 2004: 1-857.
    [10] K. W. Richardson. UMTS overview. Electronic and Communication Engineering Journal, 2000, 12(3): 93-100.
    [11] Nguyen T H, Sadiku M.N.O. Next generation network, IEEE Potentials [J] ,Apr-May 2002.
    [12] Moving toward all-IP Network, Ericsson, Press Information February 2001.
    [13] Patel G. S Dennett. The 3GPP and 3GPP2 movements toward an al1-IP mobile network. IEEE Personal Communications, 2000, 7 (4): 62-64.
    [14] D. J. Perkins and J. Arkko. Mobility Support in IPv6. IETF RFC3775, 2004.
    [15] C Perkins. IP mobility support. RFC 2002, 1996.
    [16] S. Periyalwar, et al. Future mobile broadband wireless networks: a radio resource management perspective. Wireless Communications and Mobile Computing, 2003, 3(7): 803-816.
    [17]徐鹏,廖建新,吴乃星.下一代网络中的移动性管理.计算机应用研究, 2006(12): 65-68.
    [18] ETSI, Requirements and Architectures for Interworking between HIPERLAN/3 and 3rd Generation Cellular Systems. Tech. Report ETSI TR 101 957, Aug. 2001.
    [19] T. Camp, T. F. Boleng and V. Davies. A survey of mobility models for Ad Hoc network research. Wireless Comms. & Mobile Computing, May 2002, 2(5): 483-502.
    [20] G. T. Karetsos, S. A. Kyriazakos, E. Groustiotis, F. D. Giandomenico, and I. Mura. A Hierarchical Radio Resource Management Framework for Integrating WLANs in Cellular Networking Environments. IEEE Wireless Comm., Dec. 2005, 12(6): 11-17.
    [21] W. Song, H. Jiang and W. H. Zhuang. Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 2007, 6(5): 1932-1943.
    [22] K. Ahmavaara, H. Haverinen, and R. Pichna. Interworking architecture between 3GPP and WLAN systems. IEEE Communication Magazine, Nov. 2003, 41(11): 74-81.
    [23]彭木根,王文博编著. 3G无线资源管理与网络规划优化.人民邮电出版社, 2006.
    [24] R Chakravorty et al. Performance issues with vertical handovers experiences from GPRS cellular and WLAN hot-spots integration. Proc. 2nd IEEE Conference on Pervasive Computer and Communication, Orlando USA,
    [25] A. Hatami, P. Krishnamurthy, et al. Analytical framework for handoff in non-homogeneous mobile data networks. Proc. of PIMRC’99, Japan, 1999: 760-764. 2004: 155-164.
    [26] M Ylianttila, M Pande, J Makela and P Mahonen. Optimization scheme for mobile users performing vertical handoffs between IEEE 802.11 and GPRS/EDGE networks. IEEE Global Telecommunications Conference (GLOBECOM'01), San Antonio USA
    [27] M Ylianttila, J Makela and P Mahonen. Supporting resource allocation with vertical handoffs in multiple radio network environments. Proc. of IEEE PIMRC’02, Portugal, September 2002: 64-68. 2001: 3439–3443.
    [28] H Y Bing, C He and L G Jiang. Performance Analysis of Vertical Handover in an UMTS-WLAN Integrated Network. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003: 187-191.
    [29] F. Zhu and J McNair. Optimizations for vertical handoff decision algorithms. Proc. of IEEE Wireless Communications and Networking Conference’04, March 2004: 867-872.
    [30] M. Abolfazl and C. Jalil. An intelligent vertical handoff algorithm for next generation wireless networks. Proc. of Wireless and Optical Communications Network, Dubai, March 2005: 244-249.
    [31] M. Abolfazl and C. Jalil. User location estimation in wireless networks with application to vertical handoff using pattern recognition. Proc. of 10th IEEE Symposium on Computers and Communications, Spain, June 2005: 315-320.
    [32] Qiang Guo, Jie Zhu and Xianghua Xu. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. Proc. IEEE ICC05, Seoul Korea, 2005: 2769-2773.
    [33] A. Majiest and B. H. Khalaj. An adaptive fuzzy logic based handoff algorithm for interworking between WLANs and mobile networks. Proc. of IEEE PIMRC’02, Portugal, September 2002: 2446-2451.
    [34] C. J. Lin, I-Ta Tsai and C. Y. Lee. An adaptive fuzzy predictor based handoff algorithm for heterogeneous network. Annual Conference of the North American Fuzzy Information Processing Society, Canada, June 2004: 944-947.
    [35] Junhong Liu and Jouni Lampinen. A fuzzy adaptive differential evolution algorithm. Proc. of IEEE TENCON’02, Beijing China, Oct. 2002: 606-611.
    [36] A. Serrador and L. M. Correia. Policies for a cost function for heterogeneous networks performance evaluation. Proc. of 18th IEEE Personal, Indoor and Mobile Radio Communications (PIMRC’07), Athens Greece, Sept. 2007: 96-103.
    [37] S. N. Enrique and W. S. Vincent Wong. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. Proc. of IEEE VTC’06, Australia, May 2006: 947-951.
    [38] Farooq Bari and Victor Leung. Multi-attribute network selection by iterative TOPSIS for heterogeneous wireless access. Proc.
    [39] Qing-yang Song and Abbas Jamalipour. Network selection in an integrated Wireless LAN and UMTS environment using mathematical modeling and computing techniques. IEEE Wireless Communications, June 2005: 42-48. 4th Annual IEEE Consumer Communications and Networking Conference, USA, Jan. 2007: 808-812.
    [40] ITU-T draft recommendation Y. NGN-MOB: mobility management requirement and architecture for NGN. ITU-T Joint Rapporteur Group on Next Generation networks (JRG-NGN) Meeting, 2004.
    [41] R. Koodli. Fast Handovers for Mobile IPv6. IETF RFC 4068, July 2005.
    [42] H. Soliman, C. Castelluccia, K. E. Malki and L. Bellier. Hierarchical MIPv6 mobility management (HMIPv6). IETF, RFC 4140, August 2005.
    [43] A. Misra, S. Das and et al. IDMP: an intra-domain mobility management protocol for next-generation wireless networks. IEEE Wireless Communications, 2002, 9 (3): 38-45.
    [44] Stream control transport protocol [S], IETF, RFC2960, October 2000
    [45] M.J. chang, M. J. Lee, and et al. An enhancement of transport layer approach tomobility support. International Conference on Information Networking (ICOIN’05), Korea, Feb. 2005: 864-873.
    [46] S. J. Koh, M. J. Chang and M. LEE. MSCTP for soft handover in transport layer. IEEE Communications Letters, 2004, 8(3): 189-191.
    [47] J. Rosenberg et al. SIP: Session Initiation Protocol. IETF RFC3261, June 2002.
    [48] Emil Ivov and Thomas Noel. Optimizing SIP application layer mobility over IPv6 using Layer 2 triggers. Proc. of IEEE Vehicular Technology Conferences, USA, Sept. 2004, 60(5): 3135-3139.
    [49] J. Y-H. So, J. D. and J. D. Wang. SHIP mobility management hybrid SIP-HIP scheme. Proc. of SNPD/SAWN’05, Towson USA, May 2005: 226-230.
    [50] Q. Bruno, I. Luigi and et al. Evaluating the benefits of the locator/identifier separation. Proc. of 2nd ACM International workshop on Mobility in the Evolving Internet Architecture (MobiArch’07), Japan, Aug. 2007: 20-25.
    [51] R. Moskowitz, P. Nikander, P. Jokela and T. Henderson, Host Identity Protocol, IETF RFC 5201, April 2008.
    [52] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for IPv6. draft-ietf-shim6-proto-10.txt, IETF Internet draft, February 14, 2008.
    [53] D. Farinacci, V. Fuller, D. Oran, D. Meyer and S. Brim. IETF Internet-Draft: Locator/ID Separation Protocol (LISP). draft-farinacci-lisp-10.txt. November 26, 2008.
    [54] Ion Stoica et al. Internet Indirection Infrastructure. IEEE/ACM Trans. on Networking, 2004, 12(2): 205-218.
    [55] P. Matusz, P. Machan, and J. Wozniak. Analysis of profitability of inter-system handovers between IEEE 802.11b and UMTS. Proc of the 28th Annual International Conference on Local Computer Networks, Germany, 2003: 203-209.
    [56] J. Muhammad. An architecture for integrating UMTS and 802.11 WLAN networks. Proc. on 8th IEEE International Symposium on Computers and Communication (ISCC03), 2003: 716-723.
    [57]陈雁,叶凌伟. WLAN和3G网络的融合.电信网技术,2003年8月, (8): 57-59.
    [58] A. K. Salkintzis. Internetworking techniques and architecture for WLAN/3G integration towar 4G mobile data networks. IEEE Wireless Communications Magazine, 2004, 11(3): 50-61.
    [59] J. Song, S. Lee and D. Cho. Hybrid coupling scheme for UMTS and wireless LAN interworking. Proc. of IEEE 58th Vehicular Technology Conference, Orlando USA, Oct. 2003, 58(4): 2247-2251.
    [60] M. Buddhikot, G. Chandramenon, S. Han, et al. Integration of 802.11 and Third-Generation Wireless Data Networks. The 22nd Annual Joint Conference on the IEEE Computer and Communications Societies
    [61] K. Ahmavaara, H. Haverinen and R. Pichna. Interworking architecture between 3GPP and WLAN systems. IEEE Communications Magazine, 2003, 41(11): 74-81. , USA, March 2003: 503-512.
    [62] B. Robber, et al. Next generation wireless communications concepts and technologies. IEEE Communication Magazine, March 2002, 40(3): 108-116.
    [63] H. Z. Ahmed, Ben Liang and S. Aladdin. Signal threshold adaptation for vertical handoff in heterogeneous wireless networks. Mobile Network Applications, 2006(11): 625-640.
    [64] W. Zhao, R. Tafazolli and B. G. Evans. Internetwork handover performance analysis in a GSM-Satellite integrated mobile communication system. IEEE Journal on selected areas in communications, 1997, 8(15): 1657-1671.
    [65] N. Zhang and J. M. Holtzman. Analysis of handoff algorithms using both absolute and relative threshold. IEEE Transactions on Vehicular Technology, 1996, 45(1): 174-179.
    [66] T. S. Randhawa and R. H. S. Hardy. Performance analysis of multi-service cellular networks with mobile users. Proc. of the IEEE Wireless Communications and Networking Conference (WCNC), Chicago USA, September 2000: 1390-1397.
    [67] Clemens Kloeck, David Grandblaise, Jijun Luo and George Dimitrakopoulos. Multi-level spectrum auction through radio access. IEEE MELECON 2006, Spain, May 2006: 591-594.
    [68]沈洁,申志坚,李楠著.第三代移动通信中的无线资源管理.电子工业出版社, 2005.
    [69] Lei Huang, Sunil kumar and C. K. Jay. Adaptive resource allocation for multimedia QoS management in wireless networks. IEEE Trans. on Vehicular Technology, 2004, 53(2): 547-558.
    [70] D.E. Re and R. Fantacci. Handover queueing strategies with dynamic and fixed channel allocation techniques in low earth orbit mobile satellite systems. IEEE Transaction on Communications, 1999, 47(1): 89-102.
    [71] R. Fantacci. Performance evaluation of prioritized handoff schemes in mobile cellular networks. IEEE Transaction on Vehicle Technology, 2000, 49(2): 48-59.
    [72] L. Yan, et al. Performance analysis of a dual-threshold reservation (DTR) scheme for voice/data integrated mobile wireless networks. Proc. of IEEE WCNC2000, Chicago USA, September 2000: 258-262.
    [73] E. K. Mona, O. Stephan and A. W. Hussein. A rate-based borrowing scheme for QoS provisioning in multimedia wireless networks. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(2): 156-166.
    [74] Huei-Wen Ferng and Yi-Chou Tsai. Using priority, buffering, threshold control, and reservation techniques to improve channel-allocation schemes for the GPRS system. IEEE Trans. on Vehicular Technology, Jan 2005, 54(1): 286-306.
    [75] Y. Fang. Movement-based mobility management and trade off analysis for wireless mobile networks. IEEE Trans. Computers, June 2003, 52(6): 791-803.
    [76] Wei Li, Hang Chen and D. P. Agrawal. Performance analysis of handoff schemes with preemptive and nonpreemptive channel borrowing in integrated wireless cellular networks.
    [77] Fang-ming Zhao, Ling-ge Jiang and Chen He. A pre-emptive horizontal channel borrowing and vertical traffic overflowing channel allocation scheme for overlay networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, June 2008, E91-A (6): 1516-1528. IEEE Wireless Communications, May 2005, 4(3): 1222-1233..
    [78] N. D. Tripathi. Generic adaptive handoff algorithms using fuzzy logic and neural networks [D]. PhD Dissertation, Virginia Polytechnic Institute and State University, August 21, 1997.
    [79] T. Fatma and S. Muhammed. On the vertical handoff decision for wireless overlay networks. Proc. of the seventh IEEE International Symposium on Computer Networks (ISCN’06), turkey, June 2006: 111-115.
    [80] Bing Hong-yan, He Chen and Jiang Ling-ge. Intelligent signal processing of mobility management for heterogeneous networks. IEEE International Conference on Neural Networks & Signal Processing, 2003: 1578-1581.
    [81] N. G. Yaw and I. A. Johnson. Vertical Handoff between WWAN and WLAN. Proc. of IEEE ICNICONSMCL’06, Mauritius, N. T. Huong and M. Mitsuji. Ontology-based context management agent for vertical handoff use Fuzzy logic decision in heterogeneous network. Proc. of IEEE CISIS’07, Australia, April 2007: 215-220. April 2006.
    [82] S. Milena and M. Petri. Algorithmic approaches for vertical handoff in heterogeneous wireless environment. Proc. of IEEE WCNC2007, Kowloon China, March 2007:3783-3788.
    [83] Bart K著,黄崇福译.《模糊工程》, 1999,西安交通大学出版社.
    [84] J. McNair and Fang Zhu. Vertical handoffs in fourth-generation multinetwork environments.
    [85] H.J. Xiong and H.Z. Xu. Grey Control. National Defense Industry Press, China, Sept. 2005: 1-22. IEEE Wireless Communications, June 2004, 11(3): 8-15.
    [86] Liu Xia, Jiang Ling-ge and He Chen. A novel fuzzy logic vertical handoff algorithm with aid of differential prediction and pre-decision method. Proc. of IEEE ICC’06, Scoland, 2006: 5665-5670.
    [87] Mika Ratola. Which layer for mobility-comparing Mobile IPv6,HIP and SCTP. HUT T-110.551 Seminar on Internetworking, April 2004.
    [88] B. Moon and A. H. Aghvami. Quality-of-Service mechanisms in all-IP wireless access networks. IEEE Journal on Selected Areas in Communications, June 2004, 22(5): 873-888.
    [89] F. A. Ian, X. Jiang and M. Shantidev. A survey of mobility management in next-generation all-IP-based wireless system. IEEE Wireless Communication, 2004: 16-28.
    [90]周武旸.下一代无线网络中的移动性管理.电子学报, 2004, 32(12A): 123-126.
    [91] S. C. Lo, G. L. Lee, W. T. Chen and J. C. Liu. Architecture for mobility and QoS support in all-IP wireless networks, IEEE Journal on Selected Areas in Communications, May 2004, 22(4): 10-15.
    [92] N. Banerjee, W. Wu and S. K. Das. Mobility Support in Wireless Internet. IEEE Wireless Communications, 2003, 10(5): 54-61.
    [93] A. T. Campbell, J. Gomez, S. Kim. Comparison of IP micromobility protocols. IEEE Wireless Communications, 2002, 9(1): 72-82.
    [94] S. Das, A. Misra, P. Agrawal and S. K. Das. TeleMIP: Telecommunication Enhanced Mobile IP architecture for fast intra-domain mobility. IEEE Personal Communication, 2000: 50-58.
    [95] K. E. MalkiE. Low latency handoffs in mobile IPv4. IETF, RFC 4881, June 2007.
    [96] G. Carneiro, J. Ruela and M. Ricardo. Cross-layer design in 4G wireless terminals. IEEE Wireless Communications, 2004: 7-13.
    [97] Ye Tian, Kai Xu and Nirwan Ansari. TCP in wireless environment: problems and solutions. IEEE Radio Communications, March 2005: 527-532.
    [98] A. Nasir and M. Rukh. Internet mobility using SIP and MIP. Proc. of IEEE the third International Conference on Information Technology: New Generations, USA, April 2006: 334-339.
    [99] N. Nakajima, A. Dutta, S. Das and H. Schulzrinne. Handoff delay analysis and measurement for SIP based mobility in IPv6. Proc. IEEE ICC2003, Anchorage USA, May 2003: 1085-1089.
    [100] P. Nikander, T. Henderson, C. Vogt and J. Arkko. End-host mobility and multihoming with the host identity protocol. IETF, RFC 5206, April 2008.
    [101] J. Laganier and L. Eggert. Host identity protocol (HIP) rendezvous extension. IETF, RFC 5204, April 2008.
    [102] P. Nikander and J. Laganier. Host identity protocol (HIP) domain name system (DNS) extension. IETF, RFC 5205, April 2008.
    [103] A. Dhraief and N. Montavont. Toward mobility and multihoming unification the SHIM6 protocol: a case study. Proc. of IEEE WCNC 2008, USA, March-April 2008: 2840– 2845.
    [104] Ye Wang, Xuan Li, Dongtao Liu. Optimizing cost and performance for concurrent multipath transferring using extended shim6. Proc. of IEEE ICCT '06, Guilin China, Nov. 2006: 1- 4.
    [105] M. Bagnulo, A. Garcia-Martinez and A. Azcorra. BGP-like TE capabilities for SHIM6. Proc. of IEEE 2006 Software Engineering and Advanced Applications, Croatia, Aug.-Sept. 2006: 406-413.
    [106] J. Arkko, I. van Beijnum. IETF Internet-Draft: Failure Detection and Locator Pair Exploration Protocol for IPv6 Multihoming draft-ietf-shim6-failure-detection -13. June 24, 2008.
    [107] M. Bagnulo. IETF Internet-Draft: Default Locator-pair selection algorithm for the SHIM6 protocol draft-ietf-shim6-locator-pair-selection-04. October 23, 2008.
    [108] Tian Chen and Liu Wenyu. A novel IPv6 communication framework: mobile SHIM6 (M-SHIM6). Proc. of 2006
    [109] R. Langar, N. Bouabdallah and S. Tohme. Handoff support for mobility in future wireless MPLS networks: a proposal and analysis. Proc. of Wireless Communications and Networking Conference, Las Vegas USA, 2006: 556-561. Wireless Communications, Networking and Mobile Computing (WiCOM 2006), Wuhan China, Sept. 2006: 41-43.
    [110] K. K. Adnan, K. Shoaib and W. B. Yang. A novel mechanism to support session survivability in heterogeneous MIPv6 environment. Proc. of the 2nd International Conference on Emerging Technologies (ICET 2006), Pakistan, Nov. 2006: 38-43.
    [111] Mijeong Yang, Kwangryul Jung, Aesoon Park, Sang-ha Kim. Definitive Link Layer Triggers for Predictive Handover Optimization. Proc. of IEEE 67th Vehicular Technology Conference, Singapore, May 2008: 2326-2330.
    [112] C. Makaya and S. Pierre. An analytical framework for performance evaluation of IPv6-based mobility management protocols. IEEE Trans. on Wireless Communications, 2008, 7(3): 972-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700