多汇聚节点无线传感器网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为物联网的重要组成部分,无线传感器网络因其具有良好的信息感知及数据交互能力,近年来格外受到研究者们的关注与重视。无线传感器网络由大量低功耗、低成本、多功能的无线传感器节点组成,这些传感节点既能够进行数据采集及信息处理,又可以通过无线信道进行通信互联,因此由它们组成的无线传感器网络便可通过无线通信技术及自组织方式形成一种面向任务的网络系统。但由于在传统无线传感器网络中密集部署的传感节点需要通过网络中唯一的汇聚节点(sink)才可将数据信息传送至用户终端或控制中心,而这种多对一的传输模式使无线传感器网络在能耗均衡性、可靠性等诸多方面均面临着很大的问题,同时又因无线传感器网络应用领域的不断拓展,也使得单汇聚节点结构更加不能满足无线传感器网络快速发展的要求。因此,本文通过在网络中增加汇聚节点个数的方式来解决上述问题,从而使无线传感器网络的运行变得更高效、更稳定、更健壮,并且便于管理。本文针对多汇聚节点的无线传感器网络开展研究,分别从路由协议设计、多汇聚节点的重定位技术及数据融合策略等三方面进行了深入研究并提出了相关算法。本文的研究成果主要包括以下三个方面:
     第一,本文提出了一种基于模糊综合评判理论的最优路由选择算法ORFCE。该算法通过对传感节点到汇聚节点的跳数、路径最小剩余能量与最小平均链路质量三方面因素进行模糊综合评判的方式,提供了传感节点到对应汇聚节点的多路径、层次型、主动与按需混合并考虑QoS的分布式最优路由选择,在赋予路由选择以人性化思考的同时,可保证无线传感器网络具有更长的网络生存期、更高的数据包交付率和更少的路由控制信息。仿真实验结果表明,与未使用模糊理论及未对影响因素进行全面考虑的其他多汇聚节点路由协议相比,本文所提出的ORFCE算法可平均延长约2.8倍的网络生存时间,提高约14%的数据包交付率,并减少了约37%在路由过程所产生的控制信息数量。
     第二,本文提出了一种基于质心原理的多汇聚节点重定位算法EEMSR。该算法通过将汇聚节点的一跳邻居传感节点视作质点系、其向汇聚节点传输的数据包数量作为质点质量的方式,利用质心位置的计算方法将多个汇聚节点当做各自质点系的质心用协作移动的方式逐步逼近并最终定位至各自的最优位置,且汇聚节点的当前最优位置可因网络运行状态的不断变化而进行相应的调整,从而始终保证无线传感器网络在传输数据信息时可经历更少的平均跳数及消耗更少的平均节点能量。仿真实验结果表明,与汇聚节点固定不动时相比,本文所提出的EEMSR算法可平均延长约69%的网络生存时间,提高约5%的数据包交付率;而与采用其他策略的汇聚节点重定位算法相比,该算法也能平均延长约18%的网络使用寿命,并提升约6%的数据信息传输的成功率。
     第三,本文提出了一种可权衡传感节点平均能耗及数据传输平均延迟的数据融合算法ECLT。该算法首先使用二级模糊综合评判方法对原有最优路由信息利用传感节点的一跳邻居节点当前一段时间内所转发的数据包个数进行有利于数据融合的相关调整,而使新的数据转发路径在很好的均衡网络中各节点能耗并有效提高数据传输可靠性的同时,通过增加原有路径间交叠的方式来高效的提高数据融合度;其次,该算法还可利用传感节点的自身状态来动态调整其当前的融合等待时间,使该数据融合定时机制(timing)既能有效的均衡网络中各传感节点的平均能耗,又可很好的降低网络中的平均数据延迟。仿真实验结果表明,与未考虑数据融合的算法相比,本文所提出的ECLT算法可平均延长约1倍的网络生存时间,但会降低约3%的数据包交付率;而与采用其他数据融合机制与融合等待定制策略的算法相比,该算法也能平均延长约10%的网络使用寿命,并提高约6%的数据包交付率、降低约6%的平均传输延迟及提升约16%的数据融合度。
As a significant component of Internet of Things, Wireless Sensor Network(WSN) with its advanced information perception, data interaction and othercapabilities has attracted extensive attention of the researchers in recent years. WSNconsists of a large number of low-power, low-cost, and multi-functional microsensors which provide data acquisition and information processing service, and alsobe able to communicate with each other through the wireless channels. Hence, it canform a task-oriented network system on the basis of wireless communicationtechnology and self-organization method. However, densely deployed sensor nodesneed to transmit the data information to the user terminal or the control center throughthe sole sink in the traditional wireless sensor networks. This many-to-onetransmission mode put WSNs at enormous risks in many aspects such as energybalancing and reliability. Meanwhile, with the widespread applications of WSN, thesingle sink node structure can not meet the demand for rapid development of WSNs.Therefore, this paper explains how to solve the above problems by means ofincreasing the number of sink nodes, so that WSNs becomes more efficient, morestable, more robust, and easier to manage. This paper focusing on multi-sink nodeWSNs performs in-depth study from the routing protocol design, multiple sink nodesre-positioning technology and data aggregation strategies respectively, and alsoproposes relative algorithms. Achievements are summarized as follows:
     First, this paper proposes an optimal routing selection algorithm based on fuzzycomprehensive evaluation theory. By fuzzy comprehensive evaluating three factors,hops of sensor node to the sink node, the minimum residual energy of the path, aswell as the minimum average link quality, this algorithm provides a distributedoptimal multi-path routing corresponding to the sink node which is hierarchical,active and on-demand mixing and QoS in view. In consideration of humane thinking,routing in wireless sensor networks can provide a longer network lifetime, higherpacket delivery rate and less routing control information. Hence, in comparison with other multi-path routing protocols which don’t apply the fuzzy theory and takecomprehensive considerations to the effect factors, this algorithm will extend about2.8times of the lifetime of network and increase about14percent of the packetdelivery rate on average. But at the same time, it also reduces about37percent of thecontrol information during routing process.
     Secondly, this paper presents a relocation algorithm based on the centroidprinciple of multi-sink node. The algorithm utilizes the methods that make one-hopneighbors of the sink node as the system of particles and the number of packetstransmitted to the sink node as the particle quality, and regards the multiple sink nodeas the centroid of each system of particles by means of calculating the centroidposition in order to collaboratively approach and pinpoint the their correspondingoptimal position. In addition, the optimal position of the sink node can be adjustedaccording to the changes of network state, thus it can guarantee smaller averagenumber of hops and fewer average node energy. Therefore, compared with thealgorithms in which sinks are fixed, the relocation algorithm based on the centroidprinciple can extend about69percent of the network lifetime and improve about5percent of the packet delivery rate on average. It also has advantages over other sinkrelocation algorithms in the network lifetime by about18percent and enhances about6percent of the success rate of data transmission on average.
     Third, this paper proposes a data aggregation algorithm which is able to balancethe average energy consumption of sensor nodes and average data transmission delay.It first makes use of secondary fuzzy comprehensive evaluation to make relevantadjustment about the number of packets forward in a period through the originaloptimal routing to fit for data aggregation. As a result, new data forwarding paths canmore efficiently balance energy consumption of the sensor node and improve datatransmission reliability, as well as improving data aggregation performance byincreasing the overlap of the original paths. Moreover, the algorithm also can utilizethe states of the sensor nodes to dynamically adjust its current wait time ofaggregation, thus the data aggregation timing mechanism can effectively balance theaverage energy consumption of each sensor node, and reduce average data delay in network. Therefore, compared with algorithms that not involve data aggregation, itcan extend about one times of the network lifetime, but will reduce about3percent ofthe network packet delivery rate on average. It can also achieve better lifetime thanother data aggregation algorithms by about10percent, and improve about6percentof the packet delivery rate and about16percent of the aggregation rate as well asreducing about6percent of the average transmission delay.
引文
[1]吴功宜.智慧的物联网——感知中国与世界的技术.北京:机械工业出版社,2010.95~97.
    [2] Goldsmith A J, Wicker S B. Design challenges for energy-constrained Ad Hoc wireless networks.IEEE Wireless Communication,2002,9(4):8~27.
    [3] Srikanta K, David S. SensorIT: Sensor information technology for the warfighter. InProceedings of the4th International conference on information fusion. Montreal: ACM,2001.13-19.
    [4] Changhee J, Jin-Ghoo C, Shroff N B. Delay performance of scheduling with data aggregation inwireless sensor networks. In Proceedings of the29th IEEE Conference on ComputerCommunications (IEEE INFOCOM). San Diego: IEEE,2010.1~9.
    [5] Groat M M, Wenbo H, Forrest S. KIPDA: k-Indistinguishable privacy-preserving dataaggregation in wireless sensor networks. In Proceedings of the30th IEEE Conference onComputer Communications (IEEE INFOCOM). Shanghai: IEEE,2011.2024~2032.
    [6] Miao Z, Yuanyuan Y. A framework for mobile data gathering with load balanced clustering andMIMO uploading. In Proceedings of the30th IEEE Conference on Computer Communications(IEEE INFOCOM). Shanghai: IEEE,2011.2759~2767.
    [7] Hwee-Xian T, Mun-Choon C, Wendong X, et al. Information quality aware routing in event-driven sensor networks. In Proceedings of the29th IEEE Conference on ComputerCommunications (IEEE INFOCOM). San Diego: IEEE,2010.1~9.
    [8] Shi B, Weiyi Z, Guoliang X, et al. DEAR: Delay-bounded energy-constrained adaptive routingin wireless sensor networks. In Proceedings of the31th IEEE Conference on ComputerCommunications (IEEE INFOCOM). Orlando: IEEE,2012.1593~1601.
    [9]郑军,张宝贤.无线传感器网络技术.北京:机械工业出版社,2012.10~12.
    [10]中华人民共和国工业和信息化部.融合互动,创新发展,大力推进信息技术对传统产业的改造提升——信息技术改造提升传统产业“十一五”专项规划解读.北京,2008.
    [11]中华人民共和国工业和信息化部.物联网“十二五”发展规划.北京,2011.
    [12] Shuguang X, Jianzhong L, Mo L, et al. Multiple task scheduling for low-duty-cycled wirelesssensor networks. In Proceedings of the30th IEEE Conference on Computer Communications(IEEE INFOCOM). Shanghai: IEEE,2011.1323~1331.
    [13] Songtao G, Yuanyuan Y. A distributed optimal framework for mobile data gathering withconcurrent data uploading in wireless sensor networks. In Proceedings of the31th IEEEConference on Computer Communications (IEEE INFOCOM). Orlando: IEEE,2012.1305~1313.
    [14] Xiaokang Y, Xiaomeng B, Wei Z, et al. Spherical representation and polyhedron routing for loadbalancing in wireless sensor networks. In Proceedings of the30th IEEE Conference onComputer Communications (IEEE INFOCOM). Shanghai: IEEE,2011.621~625.
    [15] Shuguang X, Lei Y, Haiying S, et al. Efficient algorithms for sensor deployment and routing insensor networks for network-structured environment monitoring. In Proceedings of the31thIEEE Conference on Computer Communications (IEEE INFOCOM). Orlando: IEEE,2012.1008~1016.
    [16] Dijun L, Xiaojun Z, Xiaobing W, et al. Maximizing lifetime for the shortest path aggregationtree in wireless sensor networks. In Proceedings of the30th IEEE Conference on ComputerCommunications (IEEE INFOCOM). Shanghai: IEEE,2011.1566~1574.
    [17] Cheng W, Shaojie T, Xiangyang L, et al. SelectCast: Scalable data aggregation scheme inwireless sensor networks. In Proceedings of the30th IEEE Conference on ComputerCommunications (IEEE INFOCOM). Shanghai: IEEE,2011.296~300.
    [18] Jiliang W, Yunhao L, Mo L, et al. QoF: Towards comprehensive path quality measurement inwireless sensor networks. In Proceedings of the30th IEEE Conference on ComputerCommunications (IEEE INFOCOM). Shanghai: IEEE,2011.775~783.
    [19] Weifa L, Jun L, Xu X. Prolonging network lifetime via a controlled mobile sink in wirelesssensor networks. IEEE Global Telecommunications Conference (IEEE GLOBECOM). Miami:IEEE,2010.1~6.
    [20] Cheng W, Changjun J, Xiangyang L, et al. General capacity scaling of wireless networks. InProceedings of the30th IEEE Conference on Computer Communications (IEEE INFOCOM).Shanghai: IEEE,2011.712~720.
    [21] Xiangning F, Da C, Yangyang F. A switch controlled resistor based CMOS PGA with DC offsetcancellation for WSN RF chip. International Symposium on Signals Systems and Electronics(ISSSE). Nanjing: IEEE,2010.1~4.
    [22] Densmore A, Xu D, Sabourin N A, et al. A fully integrated silicon photonic wire sensor arraychip and reader instrument. In Proceedings of the8th IEEE International Conference on GroupIV Photonics (GFP). London: IEEE,2011.350~352.
    [23] Kebin L, Qiang M, Xibin Z, et al. Self-diagnosis for large scale wireless sensor networks. InProceedings of the30th IEEE Conference on Computer Communications (IEEE INFOCOM).Shanghai: IEEE,2011.1539~1547.
    [24] Zhao Z, Yang G, Liu Q, et al. Implementation and application of a multi-radio wireless sensornetworks testbed. Wireless Sensor Systems (IET),2011,1(4):191~199.
    [25] Zheng J, Jamalipour A. Wireless sensor networks: a networking perspective. Hoboken: IEEEPress,2009.11~16.
    [26] Pu W, Rui D, Akyildiz I F. Collaborative data compression using clustered source coding forwireless multimedia sensor networks. In Proceedings of the29th IEEE Conference on ComputerCommunications (IEEE INFOCOM). San Diego: IEEE,2010.1~9.
    [27] Pu W, Rui D, Akyildiz I F. Visual correlation-based image gathering for wireless multimediasensor networks. In Proceedings of the30th IEEE Conference on Computer Communications(IEEE INFOCOM). Shanghai: IEEE,2011.2489~2497.
    [28] Chen X, Lei C, Guoan Z, et al. Overview of multiple sink routing protocols in wireless sensornetworks. Application Research of Computers,2010,27(3):816~823.
    [29] Cirstea C. Energy efficient routing protocols for wireless sensor networks: a survey. InProceedings of the17th IEEE International Symposium for Design and Technology inElectronic Packaging (SIITME). Timisoara: IEEE,2011.277~282.
    [30] Chen C, Tian B, Li Y, et al. Data aggregation technologies of wireless multimedia sensornetworks: a survey. In Proceedings of the IEEE International Conference on VehicularElectronics and Safety (ICVES). QingDao: IEEE,2010.83~88.
    [31]王殊,阎毓杰,等.无线传感器网络的理论及应用.北京:北京航空航天大学出版社,2007.73~75.
    [32] Haas Z J, Halpern J Y, Li L. Gossip-based Ad Hoc routing. IEEE/ACM Transactions onNetworking,2006,14(3):479~491.
    [33] Kulik J, Heinzelman W, Balakrishnan H. Negotiation based protocols for disseminatinginformation in wireless sensor networks. Wireless Networks,2002,8(2):169~185.
    [34] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol forwireless microsensor networks. In proceedings of the33rd annual Hawaii InternationalConference on System Sciences. Maui: IEEE,2000.3005~3014.
    [35] Lindsey S, Raghavendra C. PEGASIS: Power-efficient gathering in sensor information system.In Proceedings of the IEEE Aerospace Conference. Montana: IEEE,2002.1125~1130.
    [36] Manjeshwar A, Agrawal D. TEEN: A routing protocol for enhanced efficiency in wirelesssensor networks. In Proceedings of the15th International workshop on Parallel and DistributedProcessing Symposium. San Francisco: IEEE,2001.2009~2015.
    [37] Ganesan D, Govindan R, Shenker S, et al. Highly-resilient, energy-efficient multipath routing inwireless sensor networks. In Proceedings of the International Symposium on Mobile Ad HocNetworking and Computing (ACM MobiHoc). Long Beach: ACM,2001.251~254.
    [38] Srinivas A, Modiano E. Minimum energy disjoint path routing in wireless Ad-Hoc networks. InProceedings of the International Conference on Mobile Computing and Networking (ACMMOBICOM). San Diego: ACM,2003.122~133.
    [39] Maier M, Mecke S, Wagne D. Algorithm in aspects of minimum energy edge-disjoint paths inwireless networks. Lecture Notes in Computer Science,2007,4362(7):410~421.
    [40] Linfeng Y, Zongkai Y, Liang O, et al. An energy-aware position-based rounting strategy.Lecture Notes in Computer Science,2006,3947(6):279~288.
    [41] Younis M, Youssef M, Arisha K. Energy-aware routing in cluster-based senor network. InProceedings of the10th IEEE International Symposium on Modeling, Analysis and Simulationof Computer and Telecommunications Systems (MASCOTS). Baltimore: IEEE,2002.129~136.
    [42] Domingo M C, Remondo D, Leon O. A simple routing scheme for improving Ad Hoc networksurvivability. IEEE Global Telecommunications Conference (IEEE GLOBECOM). SanFrancisco: IEEE,2003.718~723.
    [43] Yu Y, Govindan R, Estrin D. Geographical and energy aware routing: a recursive datadissemination protocol for wireless sensor network. UCLA Computer Science DepartmentTechnical Report,2001.
    [44] Newsome J, Song D. GEM: Graph embeddeding for routing and data-centric storage in sensornetworks without geographic information. In Proceedings of1st ACM Conference onEmbedded Networked Sensor systems (SenSys). Redwood: ACM,2003.76~88.
    [45] Karp B, Kung H. GPSR: Greedy perimeter stateless routing for wireless network. InProceedings of the6th Annual International Conference on Mobile Computing and Networking(ACM MOBICOM). Boston: ACM,2000.243~254.
    [46] Intanagonwiwat C, Govindan R, Estrin D, et al. Directed diffusion for wireless sensornetworking. IEEE/ACM Transactions on Networking,2003,11(1):2~16.
    [47] Braginsky D, Estrin D. Rumor routing algorithm for sensor networks. In Proceedings of the1stWorkshop on Sensor Networks and Applications. Atlanta: ACM,2002.22~31.
    [48] Nassr M S, Jangeun J, Eidenbenz S J, et al. Scalable and reliable sensor network routing:performance study from field deployment. In Proceedings of the26th IEEE Conference onComputer Communications (IEEE INFOCOM). Anchorage: IEEE,2007.670~678.
    [49] Cao Q, Abdelzaher T, He T, et al. Cluster-based forwarding for reliable end-to-end delivery inwireless sensor networks. In Proceedings of the26th IEEE Conference on ComputerCommunications (IEEE INFOCOM). Anchorage: IEEE,2007.1928~1936.
    [50] Cipollone E, Cuomo F, Luna S D, et al. Topology characterization and performance analysis ofIEEE802.15.4multi-sink wireless sensor networks. The6th Annual Mediterranean Ad HocNetworking WorkShop. Corfu: IEEE,2007.196~203.
    [51] Yuanpo C, Hsungpin C. TARS: An energy-efficient routing scheme for wireless sensornetworks with mobile sinks and targets. In Proceedings of the26th IEEE InternationalConference on Advanced Information Networking and Applications (AINA). Fukuoka: IEEE,2012.128~135.
    [52] Suganthi K, Sundaram B V, Kumar K S V, et al. Improving energy efficiency and reliabilityusing multiple mobile sinks and hierarchical clustering in wireless sensor networks. InProceedings of the International Conference on Recent Trends in Information Technology(ICRTIT). Chennai: IEEE,2011.257~262.
    [53] Euisin L, Soochang P, Fucai Y, et al. Data gathering mechanism with local sink in geographicrouting for wireless sensor networks. IEEE Transactions on Consumer Electronics. Daejeon:IEEE,2010.1433~1441.
    [54] Fengyuan R, Tao H, Das S K, et al. Traffic-aware dynamic routing to alleviate congestion inwireless sensor networks. IEEE Transactions on Parallel and Distributed Systems. Beijing:IEEE,2011.1585~1599.
    [55] Sridevi S, Usha M, Lithurin G P A. Priority based congestion control for heterogeneous trafficin multipath wireless sensor networks. In Proceedings of the International Conference onComputer Communication and Informatics (ICCCI). Coimbatore: IEEE,2012.1~5.
    [56] Xuegong Q, Yan C, Fuchang M. The research of wireless sensor network routing algorithm forunderground. In Proceedings of the Second Pacific-Asia Conference on Circuits,Communications and System (PACCS). Beijing: IEEE,2010.55~58.
    [57] Panlong Y, Chao D, Hai W, et al. Characterizing the scaling capacity of multiple gatewayaccess in wireless sensor networks. In Proceedings of the International Conference on ScalableComputing and Communications and the8th International Conference on Embedded Computing(SCALCOM-EMBEDDEDCOM). Dalian: IEEE,2009.415~419.
    [58] Chengjie W, Ruixi Y, Hongchao Z. A novel load balanced and lifetime maximization routingprotocol in wireless sensor networks. IEEE Vehicular Technology Conference (VTC).Singapore: IEEE,2008.113~117.
    [59] Yinying Y, Mirela I F, Mihaela C. Improving network lifetime with mobile wireless sensornetworks. Computer Communications,2010,33(4):409~419.
    [60] Chatzigiannakis I, Kinalis A, Nikoletseas S. Sink mobility protocols for data collection inwireless sensor networks. In Proceedings of the4th ACM/IEEE International Workshop onMobility Management and Wireless Access Protocols (MobiWac). Malaga: ACM,2006.1~8.
    [61] Marta M, Cardei M. Improved sensor network lifetime with multiple mobile sinks. ElsevierJournal of Pervasive and Mobile Computing,2009,5(5):542~555.
    [62] Saad E M, Awadalla M H, Darwish R R. A data gathering algorithm for a mobile sink in large-scale sensor networks. In Proceedings of the4th International Conference on Wireless andMobile Communications (ICWMC). Athens: IEEE,2008.207~213.
    [63] Wang G, Wang T, Jia W, et al. Adaptive location updates for mobile sinks in wireless sensornetworks. The Journal of Supercomputing,2009,47(2):127~145.
    [64] Yanzhong B, Limin S, Jian M, et al. HUMS: an autonomous moving strategy for mobile sinks indata-gathering sensor networks. EURASIP Journal on Wireless Communications andNetworking,2007,2007(3):1~15.
    [65] Fasolo E, Rossi M, Widmer J, et al. In-network aggregation techniques for wireless sensornetworks: a survey. IEEE Wireless Communications,2007,14(2):70~87.
    [66] Pietro C, Luca M, Gian P. Efficient routing from multiple sources to multiple sinks in wirelesssensor networks. WIRELESS SENSOR NETWORKS,2007,2007(4):34~50.
    [67] Jiao Z, Fengyuan R, Tao H, et al. Attribute-aware data aggregation using dynamic routing inwireless sensor networks. In Proceedings of the International Symposium on a Worldof Wireless Mobile and Multimedia Networks (WoWMoM). Montreal: IEEE,2010.1~9.
    [68] Solis I, Obraczka K. The impact of timing in data aggregation for sensor networks. InProceedings of the International Conference on Communications (ICC). Santa Cruz: IEEE,2004.3640~3645.
    [69] Yuequan C, Edward C, Song H. Energy efficient multipath routing in large scale sensornetworks with multiple sink nodes. Advanced Parallel Processing Technologies (APPT). Berlin:Springer,2005.390~399.
    [70] Min M, Xiaoling W, Byeong-Soo J, et al. Energy efficient routing in multiple sink sensornetworks. In Proceedings of the International Conference on Computational Science and itsApplications (ICCSA). Kuala Lampur: IEEE,2007.561~566.
    [71] Shah-Mansouri V, Hamed Mohsenian Rad A, Wong V W S. Multicommodity lifetime routingfor wireless sensor networks with multiple sinks. In Proceedings of the International Conferenceon Communications (ICC). Beijing: IEEE,2008.3225~3229.
    [72] Yu G, Yusheng J, Jie L, et al. Scheduling sinks in wireless sensor networks: theoretic analysisand an optimal algorithm. In Proceedings of the International Conference on Communications(ICC). Kyoto: IEEE,2011.1~6.
    [73] Chamam A, Pierre S. On the planning of wireless sensor networks: energy-efficient clusteringunder the joint routing and coverage constraint. IEEE Transactions on Mobile Computing,2009,8(8):1077~1086.
    [74] Yahya B, Ben-Othman J. REER: Robust and energy efficient multipath routing protocol forwireless sensor networks. IEEE Global Telecommunications Conference (IEEE GLOBECOM).Honolulu: IEEE,2009.1~7.
    [75] Lei S, Baoxian Z, Zheng Y, et al. An efficient multi-stage data routing protocol for wirelesssensor networks with mobile sinks. IEEE Global Telecommunications Conference (IEEEGLOBECOM). Houston: IEEE,2011.1~5.
    [76] Jianhui Z, Jiming C, Youxian S. Transmission power adjustment of wireless sensor networksusing fuzzy control algorithm. Wireless Communications and Mobile Computing,2009,9(6):805~818.
    [77] Minhas M R, Gopalakrishnan S, Leung V. Fuzzy algorithms for maximum lifetime routing inwireless sensor networks. IEEE Global Telecommunications Conference (IEEE GLOBECOM).New Orleans: IEEE,2008.1~6.
    [78] Arabi Z. HERF: A hybrid energy efficient routing using a fuzzy method in Wireless SensorNetworks. In Proceedings of the International Conference on Intelligent and Advanced Systems(ICIAS). Kuala Lumpur: IEEE,2010.1~6.
    [79] Yu H, Xiaorui S, Zhenhua K. Energy-efficient cluster head selection in clustering routing forwireless sensor networks. In Proceedings of the5th International Conference onWireless Communications, Networking and Mobile Computing (WiCom). Beijing: IEEE,2009.1~4.
    [80] Neamatollahi P, Taheri H, Toreini E, et al. A novel fuzzy metric to evaluate clusters forprolonging lifetime in wireless sensor networks. In Proceedings of the International Symposiumon Artificial Intelligence and Signal Processing (AISP). Tehran: IEEE,2011.118~123.
    [81] Sheng L, Bing Q, Liangrui T. An unequal clustering algorithm based on fuzzy theory forwireless sensor networks. In Proceedings of the5th International Conference on IntelligentComputation Technology and Automation (ICICTA). Zhangjiajie: IEEE,2012.84~88.
    [82] Mohajerzadeh A H, Yaghmaee M H, Zahmatkesh A, et al. Fair, optimized routing protocolbased on fuzzy variables in wireless sensor networks. In Proceedings of the19th IranianConference on Electrical Engineering (ICEE). Tehran: IEEE,2011.1.
    [83] Barroso Leal L, Holanda Filho R, de S Lemos M V, et al. An application of genetic fuzzysystems for wireless sensor networks. In Proceedings of the International Conference onFuzzy Systems (FUZZ). Taipei: IEEE,2011.2473~2480.
    [84]刘普寅,吴孟达.模糊理论及其应用.长沙:国防科技大学出版社,1998.9~23.
    [85] Peigang S, Hai Z, Dingding L, et al. Study on measurement of link communication quality inwireless sensor networks. Journal on Communications,2007,28(10):14~22.
    [86] OMNeT++Network Simulation Framework. http://www.omnetpp.org/
    [87] LAN/MAN Standards Committee. IEEE802.15.4manual. New York: IEEE,2006.
    [88] Jianliang Z, Myung J L. A comprehensive performance study of IEEE802.15.4. SensorNetwork Operations,2006,218-236.
    [89] Younis M, Bangad M, Akkaya K. Base-station repositioning for optimized performance ofsensor networks. In Proceedings of the58th IEEE Vehicular Technology Conference (VTC).Florida: IEEE,2003.2956~2960.
    [90] Zhou S, Jia-Liang L, Xu L, et al. An anti-detection moving strategy for mobile sink. IEEEGlobal Telecommunications Conference (IEEE GLOBECOM). Miami: IEEE,2010.1~5.
    [91] Haeyong K, Yongho S, Nakjung C, et al. Optimal multi-sink positioning and energy-efficientrouting in wireless sensor networks. In Proceedings of the International Conference onInformation Networking Convergence in Broadband and Mobile Networking. Berlin: Springer,2005.264~274.
    [92] Gandham S R, Dawande M, Prakash R, et al. Energy efficient schemes for wireless sensornetworks with multiple mobile base stations. IEEE Global Telecommunications Conference(IEEE GLOBECOM). Texas: IEEE,2003.377~381.
    [93] Wei T, Wei G. Energy efficient optimal sink position selection algorithm for multi-sink wirelesssensor networks. Journal on Communications,2010,31(11):65~72.
    [94] Evren G, Necati A, Kuban A, et al. Efficient integer programming formulations for optimumsink location and routing in heterogeneous wireless sensor networks. Computer Networks,2010,54(11):1805~1822.
    [95] Stefano B, Alessio C, Chiara P, et al. Coordinated and controlled mobility of multiple sinks formaximizing the lifetime of wireless sensor networks. Wireless Networks,2011,17(3):759~778.
    [96] Oyman E I, Ersoy C. Multiple sink network design problem in large scale wireless sensornetworks. IEEE International Conference on Communications (ICC). Paris: IEEE,2004.3663~3667.
    [97] Vincze Z, Vida R, Vidacs A. Deploying multiple sinks in multi-hop wireless sensor networks. InProceedings of the International Conference on Pervasive Services. Istanbul: IEEE,2007.55~63.
    [98] Friedmann L, Boukhatem L. Efficient multi-sink relocation in wireless sensor network. InProceedings of the3rd International Conference on Networking and Services (ICNS). Athens:IEEE,2007.90~95.
    [99] Ines S, Badii J, Djamal Z. Multiple mobile sinks deployment for energy efficiency in large scalewireless sensor networks. E-business and Telecommunications,2009,48(5):412~427.
    [100] Hyungjoo L, Jeongcheol L, Sang-Ha K, et al. Region based data dissemination scheme formobile sink groups in wireless sensor networks. IEEE Global Telecommunications Conference(IEEE GLOBECOM). Miami: IEEE,2010.1~5.
    [101] Yiming F, Bentao Q. Genetic algorithm for multiple sink node optimal deployment in largescale wireless sensor networks. Transducer and Microsystem Technologies,2010,29(6):32~35.
    [102] Dingding L, Hai Z, Zhenyu Y, et al. Research and realization of multiple sink nodes'deployment based on PMP in WSNs. Journal of Chinese Computer Systems,2007,28(6):979~982.
    [103] Jing W, Ghosh R K, Sajal K D. A survey on sensor localization. Journal of Control Theory andApplications,2010,8(1):2~11.
    [104] Ding M, Cheng X, Xue G. Aggregation tree construction in sensor networks. In Proceedings ofthe58th IEEE Vehicular Technology Conference (VTC). Florida: IEEE,2003.2168~2172.
    [105] Hüseyin T, Ibrahim K. Power efficient data gathering and aggregation in wireless sensornetworks. ACM SIGMOD Record,2003,32(4):66~71.
    [106] Albert H, Kravets R, Gupta I. Building trees based on aggregation efficiency in sensor networks.Ad Hoc Networks,2007,5(8):1317~1328.
    [107] Himanshu G, Vishnu N, Samir D, et al. Efficient gathering of correlated data in sensor network.ACM Transactions on Sensor Networks,2008,4(1):44~51.
    [108] Hongju C, Qin L, Xiaohua J. Heuristic algorithms for real-time data aggregation in wirelesssensor networks. In Proceedings of the ACM International Conference on WirelessCommunications and Mobile Computing (IWCMC). Vancouver: ACM,2006.1123~1128.
    [109] Yi H, Nuo Y, Xiaohua J. Energy efficient real-time data aggregation in wireless sensor networks.In Proceedings of the ACM International Conference on Wireless Communications and MobileComputing (IWCMC). Vancouver: ACM,2006.803~808.
    [110] JaeYoung C, JongWook L, Kamrok L, et al. Aggregation time control algorithm for timeconstrained data delivery in wireless sensor networks. In Proceedings of the63rd IEEEVehicular Technology Conference (VTC). Melbourne: IEEE,2006.563~567.
    [111] Yanfei Z, Kefei C, Weidong Q. Building representative-based data aggregation tree in wirelesssensor networks. Mathematical Problems in Engineering,2010,2010(7):1~11.
    [112] Yanwei W, Xiangyang L, Yunhao L, et al. Energy-efficient wake-up scheduling for datacollection and aggregation. IEEE Transactions on Parallel and Distributed Systems. Mankato:IEEE,2010.275~287.
    [113] Byoungyong L, Kyungseo P, Elmasri R. Energy balanced in-network aggregation using multipletrees in wireless sensor networks. In Proceedings of the4th IEEE Consumer Communicationsand Networking Conference (CCNC). Las Vegas: IEEE,2007.530~534.
    [114] Kwangil H, JeongSik I, Doo-seop E. Distributed dynamic shared tree for minimum energy dataaggregation of multiple mobile sinks in wireless sensor networks. WIRELESS SENSORNETWORKS,2006,2006(3):132~147.
    [115] Yongxian J, Fengzhen C, Gaofeng C, et al. Energy-efficient data collection protocol for wirelesssensor network based on tree. In Proceedings of the Asia-Pacific Conference on WearableComputing Systems (APWCS). Shenzhen: IEEE,2010.82~85.
    [116] Younis O, Fahmy S. Distributed clustering in Ad-Hoc sensor networks: a hybrid, energy-efficient approach. In Proceedings of the23rd IEEE Conference on Computer Communications(IEEE INFOCOM). Hong Kong: IEEE,2004.1~5.
    [117] Bin Z, Lekheng N, Busung L, et al. A hierarchical scheme for data aggregation in sensornetwork. In Proceedings of the12th IEEE International Conference on Networks (ICON).Singapore: IEEE,2004.525~529.
    [118] Mahimkar A, Rappaport T S. SecureDAV: a secure data aggregation and verification protocolfor sensor networks. IEEE Global Telecommunications Conference (IEEE GLOBECOM).Dallas: IEEE,2004.2175~2179.
    [119] Mario O D, Kin K L. Efficient data aggregation and transport in wireless sensor networks.Wireless Communications and Mobile Computing,2011,11(8):1030~1041.
    [120] Wei W, Bingwen W, Zhuo L, et al. A cluster-based and tree-based power efficient datacollection and aggregation protocol for wireless sensor networks. Information TechnologyJournal,2011,10(3):557~564.
    [121] Ming L, Haigang G, Yingchi M, et al. A Distributed Energy-Efficient Data Gathering andAggregation Protocol for Wireless Sensor Networks. Journal of Software,2005,16(12):2016~2116.
    [122] Shigang C, Zhan Z. Localized algorithm for aggregate fairness in wireless sensor networks. InProceedings of the International Conference on Mobile Computing and Networking (ACMMOBICOM). Los Angeles: ACM,2006.274~285.
    [123] Motegi S, Yoshihara K, Horiuchi H. DAG based in-network aggregation for sensor networkmonitoring. In Proceedings of the International Symposium on Applications and the Internet(SAINT). Phoenix: IEEE,2006.289~299.
    [124] Marian K I, Adam J L, Daniel M. Privacy and robustness for data aggregation in wireless sensornetworks. In Proceedings of the17th ACM conference on Computer and communicationssecurity (CCS). New York: ACM,2010.699~701.
    [125] Jing Y, Mai X, Jinfu X, et al. A cluster-based multipath delivery scheme for wireless sensornetworks. In Proceedings of the2nd IEEE International Conference on Broadband Network&Multimedia Technology (IC-BNMT). Beijing: IEEE,2009.286~291.
    [126] Cunqing H, Yum T S P. Optimal routing and data aggregation for maximizing lifetime ofwireless sensor networks. IEEE/ACM Transactions on Networking. Hong Kong: IEEE,2008.892~903.
    [127] Jamal N A, Raza M, Ahmed E K. Data aggregation and routing in wireless sensor networks:optimal and heuristic algorithms. Computer Networks,2009,53(7):945~960.
    [128] Konstantinos K, Koustuv D, Parag N. Maximum lifetime data gathering and aggregation inwireless sensor networks. In Proceedings of the Joint International Conference on WirelessLANs and Home Networks (ICWLHN) and Networking (ICN). Atlanta: IEEE,2002.685~696.
    [129] Lin F Y S, Yeanfu W. Multi-sink data aggregation routing and scheduling with dynamic radii inWSNs. IEEE Communications Letters. Taipei: IEEE,2006.692~694.
    [130] Kevin Y, Baochun L, Ben L. Distributed data gathering in multi-sink sensor networks withcorrelated sources. Networking,2006,2006(3):868~879.
    [131] Wen-Hwa L, Yucheng K, Chien-Ming F. Data aggregation in wireless snesor networks usingant colony algorithm. Journal of Network and Computer Applications,2008,31(4):387~401.
    [132] Hongpeng W, Neng L. An improved ant-based algorithm for data aggregation in wireless sensornetworks. In Proceedings of the International Conference on Communications and MobileComputing (CMC). Shenzhen: IEEE,2010.239~243.
    [133] Kakeru M, Akihide U, Hisao Y. Bio-inspired data transmission scheme to multiple sinks for thelong-term operation of wireless sensor networks. ARTIFICIAL LIFE AND ROBOTICS,2010,15(2):189~194.
    [134] Hong L, HongYi Y, BaiWei Y, et al. Timing control for delay-constrained data aggregation inwireless sensor networks. International Journal of Communication Systems,2007,20(7):875~887.
    [135] Fei H, Xiaojun C, May C. Optimized scheduling for data aggregation in wireless sensornetworks. In Proceedings of the International Conference on Information Technology: Codingand Computing (ITCC). New York: IEEE,2005.557~561.
    [136] Fei H, May C, Xiaojun C. Data aggregation in distributed sensor networks: towards an adaptivetiming control. In Proceedings of the3rd International Conference on Information Technology:New Generations (ITNG). Las Vegas: IEEE,2006.256~261.
    [137] Zhikui C, Song Y, Xiaodi H, et al. An adaptive feedback timing control algorithm of delay-constrained data aggregation in wireless sensor networks. In Proceedings of the InternationalConference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).Zhangijajie: IEEE,2009.337~342.
    [138] Bo Y, Jianzhong L, Li Y. Distributed data aggregation scheduling in wireless sensor networks.In Proceedings of the IEEE Conference on Computer Communications (IEEE INFOCOM). Riode Janeiro: IEEE,2009.2159~2167.
    [139] Bo Y, Jianzhong L. Minimum-time aggregation scheduling in multi-sink sensor networks. InProceedings of the8th Annual IEEE Communications Society Conference on Sensor, Mesh andAd Hoc Communications and Networks (SECON). Salt Lake City: IEEE,2011.422~430.
    [140] Rajagopalan R, Varshney P K. Data-aggregation techniques in sensor networks: a survey. IEEECommunications Surveys&Tutorials,2006,8(4):48~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700