用户名: 密码: 验证码:
极区地基雷达电离层特性和弱小目标测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以地基雷达观测空间弱小目标和电离层特性为出发点,利用欧洲非相干散射雷达电离层观测实验模式下保存的原始数据作为研究对象,提出了一种新的实验方案即充分利用观测数据,在电离层观测实验模式下,从A/D变换器后的原始数据中提取空间弱小目标信息。由相关领域研究现状和存在问题分析可见,非相干散射雷达具备空间弱小目标的观测能力,而主要问题和困难都集中在如何利用观测电离层的历史数据提取空间弱小目标的参数信息上。本文将工作重点放在观测电离层数据的实验模式和地基雷达观测空间弱小目标理论及方法处理方面。随着航天活动的频繁,日益增长的空间垃圾已经成为雷达领域的热点问题之一,亟待解决。作为研究工作基础,首先概要介绍了欧洲非相干散射雷达的硬件和电离层观测研究的基本实验模式。在此基础上,主要开展工作如下:
     第一,提出了电离层观测模式下,观测弱小目标的实验研究方案,实验验证了EISCAT-UHF雷达观测电离层的原始数据可提取空间碎片的信息。
     在欧洲非相干散射雷达电离层观测实验模式下,基于观测实验模式以及空间弱小目标轨道特点和电离层观测的基本原理,提出了电离层观测实验模式下,空间弱小目标参数提取的实验研究方案,以UHF雷达实验取得A/D变换后的原始数据为出发点,通过分析2010年3月25日10点31分05秒UHF雷达观测实验数据处理结果,利用美国公开的空间弱小目标信息和已有理论预测模型计算证实,该目标为国际标识为1965-016F的美国的报废业余通信卫星,名字为OSCAR3;使用观测电离层程序分析了电子温度,离子温度,电子密度,离子漂移速度等,数据分析结果属合理范围。该结果的意义在于,证明欧洲非相干散射雷达协会UHF雷达观测电离层的实验数据可提取空间目标的信息,从而表明电离层观测实验模式下,空间弱小目标参数提取的实验研究方案是可行的。
     第二,实验验证了UHF雷达电离层观测模式下进行空间碎片探测时,时频系统精度不够,应采用具有更高频率稳定度的频率源。
     根据观测目标本身固有的特点,利用非相干散射雷达观测原理,提取电离层和空间弱小目标这两个不同目标参数,从原始数据出发采用不同的信号理论分析原始数据。分析结果表明:1)根据UHF雷达设备配置,适用于电离层观测的雷达设备在观测空间弱小目标时,需运用双频雷达匹配滤波理论,其性质与单频信号处理具有类似的性质,结合2010年3月25日实验UHF雷达采用的双频发射频率差300KHz,得出发射包络自相关函数距离维剖面谐振变化规律,距离上存在500m的振荡模糊。由于发射频率的微小差异性,存在天线双频增益和距离谐振,由此雷达方程解算的RCS存在跃变,以1000km高度处的目标RCS变化为例,结果表明UHF雷达双频电离层观测工作模式下计算由于发射频率距离谐振造成的RCS大小误差可以忽略。2)指出了UHF雷达电离层实验模式下的时频系统频率源GPS和发射机双频工作模式,作为大气参数观测考虑到其固有特性而设计的,作为空间弱小目标观测有其可行性也存在不足。3)指出双频雷达存在的500米距离谐振模糊远小于此次实验有效距离分辩率1.8km,为了更精确的探知空间弱小目标高度信息,应采用具有更好距离分辩率的调制编码方式。
     第三:提出了根据碎片所处雷达波束位置信息修正RCS值的方法,获得更高精度的空间碎片RCS值
     通过理论计算OSCAR3卫星经过挪威Troms雷达波束位置,按照理论天线理想方向图修正目标的RCS,从定量的角度解析了目标处于雷达波束位置的不确定性,结果表明:由于目标偏离天线轴中心0.52致使Troms雷达接收信号能量存在大约22dB的损失,修正后的RCS值与美国公布的RCS值仅有3dB差异。本次实验在单站观测的同时也启用了两个遥测站,采用完全相同的电离层观测实验模式,组成了三站系统。计算了国际标识为1965-016F的美国报废名字为OSCAR3的业余通信卫星三站同时观测的RCS大小,比较了三站RCS大小;分析结果表明:三站雷达观测空间弱小目标的雷达散射截面优越性在于降低了目标相对于接收雷达天线方向图中心位置的偏差不确定性,追踪三站峰值散射截面最大程度上接近雷达接收方向图的中心位置,但无法减少目标处于雷达发射天线波束位置偏差不确定性。
     非相干散射雷达以电离层观测研究而闻名,欧洲非相干散射雷达协会所有的UHF雷达具有强大的发射功率和灵敏的接收终端设备,可以获得较高的信噪比,在积分时间很短的情况下,较高的信噪比可以研究目标的快速变化特性;多频段多站雷达可以在天线波束不动的情况下,更多的获取精确的雷达频谱或自相关函数,多种实验模式可以获取高的时间分辨率和距离分辩率。正是由于非相干散射雷达具备的如此优良的特性,使其具备了开展空间弱小目标研究的潜在能力。
     由于空间弱小目标对航天器的危害性以及人类社会生活对航天器依赖性的加强,使得空间弱小目标日益引起人们的关注,利用非相干散射雷达兼做空间弱小目标研究的必要性和急迫性是不言而喻的。通过本文的研究工作指出,只要在做电离层观测实验时,保存原始数据就可以从中提取空间弱小目标信息,为利用非相干散射雷达观测空间弱小目标工程化提供了实践方法。
This dissertation report that small-size target could be observated using theEurope Incoherent Scatter (EISCAT) Radar. On the basis of theoretical studysmall-size target and ionosphere parameter obersations with ground-based radar, tothis goal as a starting point, a special observation model for the small-size target wasdeveloped to measure small-size target. Recorded raw sample data after A/D Converterused the standard EISACT radar receiver, confirm that ionosphere observation raw datacould provide small-size target parameter. A thorough search of the relevant literaturereveals that existing incoherent scatter ionospheric radar can be used to detect andcharacterize small-size target. However, there are many difficulties and issues unsolvedin probabilistic solution for the small-size target parameters from ionosphericobservation data. Consequently, this dissertation focuses on normal ionosphericexperiments,especially on UHF radar and the mathematic method in small-size targetobservation signal processing with ground-based radar. Because of the developmentof human space activity, the increasing small-size target has become one of hot topicsin radar techniques and is in urgent need of further study. As basis, a brief review isgiven on the incoherent scatter radar hardware and the standard EISCAT ionosphericradar experiment model. The main topics and results are as follows,
     First, a new observation model for the small-size target was developed to measurewith ionosphere experiment pattern. The result of the experiment confirm thationosphere observation raw data could provide small-size target parameter withEISCAT-UHF radar.
     This paper report small-size target results from the standard ionospheric radarexperiment conducted with the EISCAT UHF radars. A new observation model for thesmall-size target was developed to measure. Recorded raw sample data used thestandard EISACT radar receiver after A/D device based on the conventional ionosphericspectra obtained by EISCAT radar in many experiment and the ultimate principle ofsmall-size target and ionospheric observation. Analyze the small-size target raw datafrom EISCAT radar,compared the target information at10:31:05am March252010with the theory forecast small-size target model of National AstronomicalObservatories Chinese Academy of Sciences,authenticated that target is discardcommunications satellite named OSCAR3of United States, international designatoris1965-065F.To confirm atmospheric and small-size target measurements toproceed simultaneously, we had also got the electron temperature, electron density,ion temperature, ion excursion speed by analysing the raw data using theconventional ionospheric spectra program. The result of the present work confirm that ionosphere observation raw data could provide small-size target parameter andshowed that the new observation model for the small-size target with ionosphericobservation model is feasible.
     Second, the result of the experiment confirm that the precision of inherencytime-frequency system is deficient and as small-size target detection with UHF radarionospheric experiment pattern. In order to better ascertain the height information of thesmall-size target, more accurate time-frequency system should be used.
     Because of the inherent characteristics of the probe target, ionospheric andsmall-size target, combined with the theory of EISCAT radar, in order to extract twodifferent target parameters from the original data using different signal theoreticalanalysis the raw data. The analysis results show that,
     1) According to the small-size target detection with the EISCAT radar equipment, andthe theory of matched filtering equation, dual and single frequency the radar matchedfiltering theory has a similar nature, with transmitter frequency differential300KHz onMarch25,2010experiment with EISCAT-UHF radar, which had gived the the distancedimension regular surface-emitting envelope, that is autocorrelation function the slowresonance change and distance dimension oscillation Fuzzy is500m. there are dual bandantenna gain and distance of resonance due to the minor differences exist frequency, sothe presence of RCS jump with the the radar equation solution, the target RCS of1000km height as an example, the results show that the RCS size error caused by thefrequency and distance resonance with EISCAT UHF radar under ionospheric modelcan be ignored.
     2)pointed out that the frequency source GPS and transmitter dual-frequency operationmode as ionospheric experimental model with EISCAT UHF radar system, which isused to the atmospheric inherent characteristics parameters detection, and which isdeficient as small-size target detection.
     3) pointed out that500meters from the resonant fuzzy caused by the existence ofdual-frequency is much smaller than the effective distance of the experimentalresolution1.8km. In order to better ascertain the height information of the small-sizetarget, more accurate distance resolution encoding or modulation should be used.
     Third,the monostatic radar observation the small-size target withsimultaneously-probely bistatic radar using the same standard ionospheric radarexperiment model, composed of a three-station system. For the purpose of analysisdiscrepancy of tristatic RCS, taking observation the amateur communications satellitewith international logo for1965-016F, named OSCAR3as an example. Analysis of thesmall-size target RCS diversity using the location of a small-size target in radarbeam.The geographical configuration of the three receivers has been exploited such thatthe common volume of the antenna beams was simultaneously viewed from disparate angles,offering a unique possibility to compare the monostatic RCS of the small-sizetarget. And the analysis results showed that the superiority in tristatic observation ofsmall-size target RCS is to reduce the uncertainty of the target position to the receivebeam center, and the peak SNR RCS target is proximal to the center of the antennabeam received.But can not be reduced to the target in the radar the transmitter antennabeam position deviation uncertainty.It is found that the actual position of the target withrespect to the radar sum beam center is a major unsolved problem.
     Taking observation satellite named OSCAR3traversing the Troms radar inNoway as an example, the revised RCS from double-ways theoretical antenna idealpattern at off-axis distance0.520according to the forecast small-size target model ofNational Astronomical Observatories Chinese Academy of Sciences and the theoreticalantenna pattern. Which have resulted in the radar received signal energy about22dB ofloss. The revised RCS have only3dB difference than U.S. Space Surveillance Network.
     The EISCAT radar is notable for being the only radar system producing truevelocity tristatic ionospheric measurement.which have powerful transmitter power andsensitivity of the reception terminal device, so a better signal-to-noise ratio can beobtained and the the fast-changing characteristics of objectives can be research in thecase of a very short integration time. The accurate radar spectrum or autocorrelationfunction can be obtained under the fixed antenna beam with multi-band andmulti-station radar, the higher time resolution and distance resolution can be obtainedwith a variety of experimental models. Because of incoherent scatter radar have suchexcellent features, it has the potential ability to small-size target research.
     Small-size target is posing an increasing threat to all manned spacecraft and thereliable use of space-based services is continued. The small-size target had got thegrowing concern. And the necessity and urgency of the small-size target researchwith incoherent scatter radar is very explicit. The result of the present work confirm thationosphere observation raw data could provide small-size target parameter andprovide the practical engineered method of the small-size target observation usingincoherent scatter radar.
引文
[1] IAA Space Debris Subcommittee. Position Paper on Small-size target.IAA,2001
    [2]欧空局空间弱小目标减缓手册》第二版欧洲空间局2003
    [3] Small-size target Quarterly News(Volume15,Issue2April2011)
    [4]严俊空间弱小目标研究发展趋势和总体设想第六届全国空间弱小目标学术交流会2011中国成都
    [5]Finckenor M M,Edwards L D,et al. Test and analysis capabilities of the spaceenvironment effects team at Marshall space flight center[R].NASA/TP-2002-212076
    [6]李宏伟,蔡明辉,韩建伟,黄建国,李小银,于金祥,高著秀,刘丹秋微小空间弱小目标与原子氧协同效应研究空间科学学报2011,31(4):503-508
    [7]Toru S.,Ken-ichiro I.,Toshio W. et.al.MU radar observations of space debris AnAmerican Astronautical society Publication1992,Volume77AAS91-636,273-274
    [8] Kessler,D.J.,Small-size target environment for spacecraft in low earth OrbitJournal of spacecraft and rockets,vol.28,no.3,pp.347-351May1991
    [9]Toru S.,Takuji N.,Orbit Determination of Meteors Using the MU Radar Special Issueon Advances in Radar Systems IEICE TRANS.COMMUN.,VOL.E83-B,NO.9September2000
    [10]杨旭刘静王荣兰于友成利用精化误差进行危险交会分析空间科学学报201131(4)521
    [11]王荣兰,刘静张庆明解题速度增量计算方法研究空间科学学报2009,29(6):599-604
    [12]王荣兰刘静张庆明Cosmos2421卫星解体事件分析空间科学学报2010,30(1):43-48
    [13]宋正鑫唐辉胡卫东郁文贤基于相控阵雷达波束篱笆的空间弱小目标数量与分布估计方法空间科学学报,2002,27(4):321~326
    [14] http://scitech.people.com.cn/GB/16530882.html
    [15] http://lt.cjDBy.net/thread-1313078-1-1.html
    [16] http://news.eastday.com/c/20110331/u1a5816275.htm
    [17] http://news.qq.com/a/20090213/000548.htm
    [18] http://news.sciencenet.cn/html/showsbnews1.aspx?id=196481
    [19]T. Hagfors. Incoherent scatter radar obser vations of the plasma line with a chirpedpulse system [J]. Radio Science,1982,17:727-734.
    [20]J. R ttger. Middle atmosphere and lower the rmosphere processes at high latitudestudied with the EISCAT radars [J]. J. Atmos. Terr. Phys.,1994,56:1173-1195.
    [21]Bob Robinson. Incoherent scatter radars past, present, future [EB/OL]http://cedarweb.hao.ucar.edu/workshop/archive/2006/workshops/robinson06.pdf.
    [22] Foster, J. C., del Pozo, C., and Groves, K.: Radar observations of the onset ofcurrent driven instabilities in the topside ionosphere, Geophys. Res. Lett.,15,160,1988.
    [23] Rietveld, M. T., Collis, P. N., van Eyken, A. P., and Lovhaug, U. P.:Coherentechoes during EISCAT UHF Common Programmes, J.Atmos. and Terr. Phys.,58,161–174,1996.
    [24]Rietveld, M. T., Collis, P. N., and St-Maurice, J.-P.: Naturally en-hanced ionacoustic waves in the auroral ionosphere observed with the EISCAT933-MHzRadar, J. Geophys. Res.,96,19291,1991.
    [25] Wahlund, J.-E., Forme, F. R. E., Opgenoorth, H. J., and Persson,M. A. L.:Scattering of electromagnetic waves from a plasma:Enhanced ion-acousticfluctuations due to ion-ion two-stream in-stabilities, Geophys. Res. Lett.,19,1919–1922,1992.
    [26]Sedgemore-Schulthess, F. and St-Maurice, J.-P.: Enhanced ion-acoustic spectra andtheir interpretation, Surv. Geophys.,22,1,55–92,2001.
    [27] Sedgemore-Schulthess, F., Lockwood, M., Trondsen, T. S., Lanch-ester, B. S., Rees,M. H., Lorentzen, D. A., and Moen, J.: Coher-ent ESR spectra from the daysidecusp/cleft and their implica-tions for transient field-aligned currents, J. Geophys.Res.,104,24613–24624,1999.
    [28] J. Porteous, A. M. Samson, K. A. Berrington, and I. W. McCrea Automateddetection of satellite contamination in incoherent scatter radar spectra AnnalesGeophysicae (2003)21:1177–1182
    [29] I. I. Virtanen, M. S. Lehtinen, T. Nygr Lag profile inversion method for EISCATdata analysisAnn. Geophys.,26,571–581,2008ww.ann-geophys.net/26/571/2008/
    [30] Djuth, F. T., Sulzer, M. P., and Elder, J. H.: High resolution observa-tions ofHF-induced plasma waves in the ionosphere, Geophys.Res. Lett.,17,1893–1896,1990.
    [31]Djuth, F. T., Sulzer, M. P., and Elder, J. H.: Application of the coded long-pulsetechnique to plasma line studies of the ionosphere,Geophys. Res. Lett.,21,2725–2728,1994.
    [32]Golub, G. H. and Van Loan, C. F.: Matrix Computations, The Johns HopkinsUniversity Press, Baltimore and London,2ndedn.,1989.
    [33]Grydeland, T., Blixt, E., L vhaug, U., Hagfors, T., La Hoz, C., and Trondsen, T.:Interferometric radar observations of filamented structures due to plasmainstabilities and their relation to dynamic auroral rays, Ann. Geophys.,22,1115–1132,2004,http://www.ann-geophys.net/22/1115/2004/.
    [34]Grydeland, T., Chau, J. L., La Hoz, C., and Brekke, A.: An imaging interferometrycapability for the EISCAT Svalbard Radar, Ann.Geophys.,23,221–230,2005a.
    [35]Grydeland, T., La Hoz, C., Belyey, V., and Westman, A.: A proce-dure to correct theeffects of a relative delay between the quadra-ture components of radar signals atbase band, Ann. Geophys.,23,39–46,2005b.
    [36]Grydeland, T., Lind, F. D., Erickson, P. J., and Holt, J. M.: Software Radar signalprocessing, Ann. Geophys.,23,109–121,2005c.
    [37] Chau, J. L. and Woodman, R. F.: Observations of meteor-head echoes using theJicamarca50MHz radar in interferometer mode,Atmos. Chem. Phys.,4,511–521,2004,http://www.atmos-chem-phys.net/4/511/2004/.
    [38]Sulzer, M. P.: Recent incoherent scatter techniques, Adv. SpaceRes.,9,153–162,doi:10.1016/0273-1177(89)90353-0,1989.
    [39]Sulzer, M. P.: Meteoroid velocity distribution derived from head echo data collectedat Arecibo during regular world day observa-tions, Atmos. Chem. Phys.,4,947–954,2004,http://www.atmos-chem-phys.net/4/947
    [40]Sulzer, M. P., Aponte, N., and Gonz′alez, S. A.: Application of linear regularizationmethods to Arecibo vector velocities,J. Geophys. Res.(Space Physics),110,10305,doi:10.1029/2005JA011042,2005.
    [41] J. Markkanen M. Lehtinen M. Landgraf Real-timespacedebris monitoring withEISCAT Advances in Space Research Volume35, Issue7,2005, Pages1197–1209
    [42] G. Wannberg, A. Westman, J. Kero The EISCAT meteor code Ann. Geophys.,26,2303–2309,2008www.ann-geophys.net/26/2303/2008
    [43] J Markkanen, M Lehtinen, A Huuskonen,Measurement of small-size debris withbackscatter of radio waves European space agency contract report2002
    [44] Wannberg, G., Wolf, I., Vanhainen, L. G., Koseniemi, K., R¨ottger,J., Postila, M.,Jacobsen, R., Stenberg, A., Larsen, R., Eliasen,S., Heck, S., and Huuskonen, A.: TheEISCAT Svalbard Radar:A case study in modern incoherent scatter radar systemdesign,Radio Sci.,32,2283–2307,1997.
    [45]B.J.I.Bromage.Errors in velocities determined from EISCAT data. J.atmos. terr.Phys,46:577–591,1984.
    [46]K.Folkestad,T. Hagfors,andS.Westerlund. EISCAT:An updated description oftechnical characteristics and operational capabilities. RadioSci,18:867–879,1983.
    [47]M.S.LehtinenandI. H¨aggstrom. A new modulation principle for incoherent scattermeasurements. Radio Sci,22):625–634,1987
    [48]马君国,付强,肖怀铁等雷达空间目标识别技术综述现代防御技术VOL34No52006
    [49]杨朋翠,施浒立,李圣明空间弱小目标地基雷达观测综述天文研究与技术V01.4No.4Dec.,2007
    [50]宋正鑫,胡卫东,郁文贤空间弱小目标的雷达观测—技术与趋势现代防御技术2008Vo.l36No.4
    [51]霍江涛,秦大国,祁先锋空间弱小目标概况研究装备指挥技术学院学报2007Vol.18No15
    [52]《空间弱小目标科普片》 http://www.baidu.com/s?word=%BF%D5%BC%E4%CB%E9%C6%AC%BF%C6%C6%D5%C6%AC&tn=sitehao123
    [53]郭宝柱.我国空间弱小目标研究的进展情况与后续工作考虑[J].AerospaceChina,2003,(9):7
    [54]中国制订未来空间弱小目标行动计划纲要[DB/OL]. http://www. space.cetin. net. cn/docs/ht0403/ht0403zgbd02. htm,2004.3.
    [55]国防科工委.空间弱小目标行动计划—空间弱小目标监测预警工程发展规划(2006—2010)[R]
    [56]和平利用外层空间委员会-科学和技术小组委员会第四十届会议2003年2月17日至28日,维也纳
    [57] I. Molotov, A. Konovalenko, V. Agapov,et al radar interferometer measurement ofspace debris using the Evpatoria RT-70transmitter Advances in SpaceResearch,Vol.34(5),2004, pages884–891
    [58]1. Molotov E. P., Ground radio technique systems for control of spacecrafts, Book,M.: FIZMATLIT, Moscow, Russia,1-256,2004(in Russian).
    [59]Sagdeev R. Z. et al. Differential VLBI Measurements of the VEGA BalloonTrajectories, Soviet Astronomy Letters, Vol.14, no.2,154,1988.
    [60] Alexeev V. A. et al. Long baseline narrow-band radio interferometry for spacenavigation. Interplanetary spacecrafts; measurements of coordinates of AMS “Vega”.Kosmicheskiye Issledovaniya, Vol.27, Is.3,447-453,1989(in Russian).
    [61] Alexeev, V. A. et al., Long baseline narrow-band radio interferometry for spacenavigation. Orbital spacecraft; measurements of Astron satellite coordinates,Kosmicheskiye Issledovaniya,27,765-771,1989(in Russian).
    [62] Agapov D. L. et al. Interferometry navigation measurements of Phobos-2spacecraft coordinates. Abstracts of21all-union radio astronomy conference,Erevan, USSR,246,1989(in Russian).
    [63] I.Molotov, G.Tuccari, M.Nechaeva First results of European VLBI radarobservations of space objects Proceedings of the7thEuropean VLBI NetworkSymposium Bachiller, R.Colomer, F.,Desmurs,J.F.,deVicente, P.(eds.)October12th-15th2004, Toledo, Spain
    [64] G.Tuccari, I. Molotov, S.Buttaccio Radar VLBI activity with participation of NotoProceedings of the6thEuropean VLBI Network SymposiumRos,E.,Porcas,R.W.,Lobanov,A.P.,&Zensus,J.A.(eds.) June25th-28th2002, Bonn,Germany
    [65]Oral history of Leo C.Young, recorded October15,1953regarding the origin ofradar at Naval Research Laboratory,from the rear admiral Stanford C.Hoppercollection of the library of congress, history of Naval Radio,LWO4934R23B.Reels150and151.
    [66] Merrill I Skolnik Introduction to Radar Systems(Third Edition)
    [67]H.Rishbeth P.J.S.Williams The EISCAT Ionospheric Radar:the System and its EarlyResults Q.Jl R.astr.soc26478-5121985
    [68] H. Rishbeth A.P.van Eyken EISCAT: early history and the first ten years ofoperation Journal of Atmospheric and Terrestrial Physics Volume55, Issues4–5, March–April1993, Pages525–542
    [69] G. Wannberg I. Wolf L.-G. Vanhainen K. Koskenniemi The EISCAT Svalbard radar:A case study in modern incoherent scatter radar system design RADIO SCIENCE,VOL.32, NO.6, PP.2283-2307,1997doi:10.1029
    [70] Mario M. Bisi Interplanetary Scintillation Studies of the Large-Scale Structure ofthe Solar Wind June2006
    [71] http://www.docin.com/p-82277715.html
    [72]吴永宏非相干散射雷达系统及其关键技术研究西安电子科技大学2007年
    [73] J. V. Evans. A comparison of rocket, satellite and radar determinations of electrontemperature at midlatitudes [J]. J. Geophys. Res.,1965,70:4365-4374.
    [74] J. E. Salah and J. M. Holt. Midlatitude thermospheric wi nds from incoherentscatter radar and theory [J]. Radio Sci.,1974,9:301-313.
    [75] J. P. St.-Maurice, J. C. Foster, J. M. Holt, and C. del Pozo. First Results on the10observation of440-MHz high-latitude cohere nt echoes from the E Region with theMillstone Hill radar [J]. J. Geophys. Res.,1989,94:6771-6798.
    [76] M. J. Buonsanto. Comparison of incoherent scatter observations of electrondensity,and electron and ion temperature at Millstone Hill with the internationalreference ionosphere [J]. J. Atmos. Terr. Phys.,1989,51:441-468.
    [77] M. J. Buonsanto. Millstone Hill incoherent scat ter F-region observations duringthe disturbances of June1991[J]. J. Geophys. Res.,1995,100:5743-5755.
    [78] J. V. Evans, J. M. Holt and R. H. Wand. A differential-Doppler study of travelingionospheric disturbances from Millstone Hill [J]. Radio Sci.,1983,18:435-451.
    [79] G. B. Loriot. Millstone Hill radar: capabilities for S/T observations [M]. InInternational Council of Scientific Uni ons Middle Atmosphere Program.HanDBook for MAP,1984,14:362-363.
    [80] R. F. Woodman, and J. L. Chau. Antenna compression using binary phase coding[J].Radio Sci.,2001,36:45-51.
    [81] T. Farley. Status of the Jicamarca radar [M]. In International C ouncil of ScientificUnions Middle Atmosphere Program. HanDBook for MAP,1984,14:319-320.
    [82] E. Kudeki and P. K. Rastogi. A multibeam vorticity measurement technique formodular MST radars [J]. Radio Sci.,1992,27:769-774.
    [83]S. Fukao, T. Sato, R. M. Harper and K. Ka to. Radio wave scattering from thetropical mesosphere observed with the Jicamarca radar [J]. Radio Sci.,1980,15:447-457.
    [84] Rastogi P. K. and Woodman R.F. Meso spheric Studies Using the JicamarcaIncoherent-Scatter Radar [J]. J. Atmos.Terr. Phys.,1974,36,1217-1231.
    [85]B. B. Balsley. The MST technique-a brief review [J]. J. Atmos. Terr. Phys.,1981,43:495-509.
    [86]Maekawa, Y., S. Fukao, M. Yamamoto, M.D. Yamanaka and R. F. Woodman. Firstobservation of the upper stratos pheric vertical wind velocities using the JicamarcaVHF radar [J]. Geophys. Res. Lett.,1993,20:2235-2238.
    [87] Woodman, R. F., J. E. Pingree, and W. E. Swartz, Spread-F-like irregularitiesobserved by the Jicamarca radar during the daytime [J]. J. Atmos. Terr. Phys.,1985,47,867-874.
    [88] D. L. Hysell. Incoherent scatter experiment s at Jicamarca using alternating codes[J]. Radio Sci.,2000,35:1425-1435.
    [89]D. T. Farley. Early incohere nt scatter observations at Ji camarca J. Atmos.Terr.Phys.,1991,53:665-675
    [90] Q. Zhou, C. A. Tepley and M. P. Sulzer. Meteor observations by the Arecibo430MHz incoherent scatter radar--I. results from time-integrated observations [J]. J.Atmos. Terr. Phys.,1995,57:421-431.
    [91]C. A. Tepley. Current developments at Areci bo for research in the atmosphericsciences at low latitudes [J]. J. Atmos. Terr. Phys.,1997,59(13):1679-1686.
    [92]J. B. Hagen and H. A. Baumgartner. Backscatter gain of aperture antennas [J].Radio Sci.,1996,31,693-700.
    [93]Arecibo radar astronomy [EB/OL]. http://www.naic.edu/~nolan/radar/AUSAC.html.
    [94]The305meter telescope [EB/OL] http://www.naic.edu
    [95] T. R. Pedersen, B.G. Fejer, R. A. Doe a nd E. J. Weber. Incoherent scatter radarobservations of horizontal F region plas ma structure over Sondrestrom, Greenlandduring polar cap patch events [J]. Radio Sci.,1998,33(6):1847-1866.
    [96]J. D. Kelly, C. J. Heinselman, J. F. Vickrey and R. R. Vondrak. The Sondrestromradar and accompanying ground-based instrumentation [J]. Space Sci. Rev.,1995,71:797-813.
    [97] J. L. Scali, B. W. Reinisch, C. J. Heinse lman and T.W. Bullett. Coordinateddigisonde and incoherent scatter radar F-region drift measurements at SondreStromfjord [J].Radio Science,1995,30(5):1481-1498.
    [98]M. J. Buonsanto, S. Gonzales, X. Pi, J. M. Ruohoniemi, M. Sulzer, W. Swartz, J. P.Thayer and D. N. Yuan. Radar chain study of the May1995storm [J]. J.A.S.T.P.,1999,61:233-248.
    [99]A. J. Gerrard, T. J. Kane, J. P. Thayer and S. D. Eckermann. Concerning the upperstratospheric gravity wave and mesospheric cloud relationship over Sondrestrom,Greenland [J]. J.A.S.T.P.,2004,66:229-240.
    [100] V. O. Papitashvili and C. R. Clauer. Comment on the paper “Sondrestromoverview” by Wickwar et al.[J]. Geophys.1994.
    [101]Z. Wang, T. J. Rosenberg, P. Stauning, S. Basu and G. Crowley. Calculations ofriometer absorption associated with F region plasma structures based on SondreStromfjord incoherent scatter radar obs ervations [J]. Radio Science,1994,29(1):209-215.
    [102] W. A. Bristow and B. J. Watkins. Incoherent scatter observations of thin ionizationlayers at Sondrestrom [J]. Journal of Atmospheric and Te rrestrial Physics,1993,55(6):873-894.
    [103]J. C. Foster, P. M. Banks and J. Doupnik. Electrostatic potential in the auroralionosphere derived from Chatanika radar observations [J]. Journal ofGeophysical Research,1982,87(A9):7513-7524.
    [104] Shun-rong Zhang, John M. Holt, Anthony P. van Eyken, Mary McCready,Christine Amory-Mazaudier, Shoichiro Fukao and Mich ael Sulzer. Ionosphericlocal model and climatology from long-term databases of multiple incoherentscatter radars [J]. Geophysical Research Letters,2005,32, L20102.
    [105]P. Bauer, P. Waldteufel and C. Vialle. The Fr ench quadristatic incohe rent scatterfacility [J]. Radio Science,1974,9:77-83.
    [106]P. J. S. Williams and G. N. Taylor. The UK in coherent scatter radar. Radio Science[J]. Radio Science,1974,9:85-88.
    [107]G. N. Taylor, H. Rishbeth and P. J. S. Williams. Multistatic incoherent scattermeasurements of ionospheric drift velocity [J]. Nature242,1973,109-111.
    [108] MU radar. http://www-lab26.kuee.kyoto-u.ac.jp/study/mu/mu_e.htm l
    [109] Kharkov IS radar.http://cedarweb.ha o.ucar.edu/instruments/kkv
    [110] A. V. Medvedev, A. P. Potekhin, V. I. Kurkin, D. S. Kushnarev, V. P. Lebedev, B. G.Shpynev, A. V. Zavorin. Irkutsk incoherent scatte r radar upgrading: newtechniques and hardware [A].36th COSPAR Scientific Assembly [C], Beijing,2004,1881.
    [111]D.O.North,Anlysis of factors which Determine signal-to-noise discrimination inpulsed carrier system RCA Rept PTR-6C,1943
    [112]P.M.Woodward and F.L.Devies A Thoey of Radarinformation,Phi.Mag.Vol41,pp1001-10171950
    [113]《关于空间弱小目标的技术报告草稿》和平利用外层空间委员会.
    [114]Matney, M., et al.,1999. Recent results from Goldstone small-size target radar,Adv. Space Res.23.Settecerri, T.J., et al.,1997. Haystack radar measurements ofthe small-size target environment;1994-1996, JSC-27842.
    [115]Settecerri, T.J., et al.,1999. Radar observations of the small-size targetenvironment: Haystack and HAX radars Oct1990-Oct1998, NASA JSC-28744.
    [116]Stansbery, E.G., et al.,1996. Haystack radar measurements of the small-size targetenvironment;1990-1994, JSC-27436.
    [117]Kessler, D.J.,1981. Derivation of the collision probability between orbitingobjects: The lifetimes of Jupiter’s outer moons, ICARUS48.
    [118]Kessler, D.J.,1984. Small-size target Environment for Space Station, JSCInternal Note20001. Kessler, D.J., et al.,1989. Small-size target Environment forSpacecraft Designed to Operate in Low Earth Orbit, NASA TM-100471.
    [119]Kessler, D.J., et al.,1991. Meteoroids and small-size target. In Space StationProgram Natural Environment Definition for Design, NASA SSP-30425/Rev. A.
    [120]Kessler, D.J., et al.,1996. A Computer-Based Small-size target EnvironmentModel for Spacecraft
    [121]Design and Observation in Low Earth Orbit, NASA TM-104825.
    [122]Goldstein, R.M., et al.,1998. Radar observations of space debris, Planet. Space Sci.46.
    [123]Settecerri, T.J. and E.G. Stansbery,1997. Measurements of the small-size targetenvironment: Comparison of the Haystack and HAX radars, JSC-27971.
    [124]祁先锋郑娟空间弱小目标观测技术研究空间电子技术2006年增刊
    [125]祁先锋空间弱小目标观测综述中国航天2005年第7期
    [126]刘伟胡以华骆盛空间监视的现状及发展趋势电子对抗2008,No.2
    [127] A Sourcebook for the Use of the FGAN Tracking and Imaging Radar forSatellite Imaging Version of2012-04-22.
    [128]王淑芬法国的几项新雷达计划飞航导弹1999年05期.
    [129]张晓芳,严卫中高层大气观测技术的发展气象科学Vol.27NO.42007.
    [130] Grydeland, Tom Interferometric and high time-resolution observations ofnaturally enhanced ion-acoustic echoes at the EISCAT Svalbard radar: Softwareradar and incoherent scattering University of Troms24-Jun-2003
    [131] Markku S. Lehtinen Statistical theory of incoherent scatter radar measurementsEISCAT Scientific Association S-98127Kiruna, Sweden June1986
    [132] Tuomo Nygrén Incoherent scatter and radar modulation EISCAT Radar School,Mariehamn31.07.2007
    [133] Sulzer, M. P.: A new type of alternating code for incoherent scattermeasurements, Radio Science,28,1993
    [134] Vierinen, J., Lehtinen, M. S., Orisp¨a¨a, M., and Damtie, B.: General radartransmission codes that minimize measurement error of astatic target,http://aps.arxiv.org/abs/physics/0612040v1
    [135] Huuskonen, A., P. Pollari, T. Nygre′n, and M. Lehtinen, Range ambuiguityeffect s in Bar ker-coded multipules experiments with incoherent scatter radars, J.A tmos. Terr.P hy s.,50,265–276,1988.
    [136] Gray R.W. and D.T. Farley, Theory of incoherent-scatter measurements usingcompressed pulses, Radio Sci.,8,123-131,1973.
    [137] Huuskonen A., High resolution observations of the collision frequency andtemperatures with the EISCAT UHF radar, Planet. Space Sci.,37,211-221,1989
    [138] Huuskonen A. and M.S. Lehtinen, The accuracy of incoherentscatterexperiments: Error estimates valid for high signal levels, J. Atmos. Terr.Phys.,58,453-463,1996.
    [139] Huuskonen A., M.S. Lehtinen and J. Pirttil, Fractional lags in alternating codes:improving incoherent scatter measurements by using lag estimates at non-integermultiples of baud length, Radio Sci., in press,1996
    [140] Djuth, F. T., Sulzer, M. P., and Elder, J. H.: High resolution observa-tions ofHF-induced plasma waves in the ionosphere, Geophys.Res. Lett.,17,1893–1896,1990.
    [141] Djuth, F. T., Sulzer, M. P., and Elder, J. H.: Application of the coded long-pulsetechnique to plasma line studies of the ionosphere,Geophys. Res. Lett.,21,2725–2728,1994
    [142] D.O.North Analysis of Factors which Determine Signal-to-noise Discrimirationin Pulsed Carriter System.RCA Rept.PTR-6C,June1943
    [143]Woodman, R. F., Hagfors, T. Methods for the measurement of vertical ions sphericmotions near the magnetic equator by incoherent scattering. Journal ofGeophysical Research,1969,74:1205-1212.
    [144] Gray, R. W., Farley, D. T. Theory of incoherent scatter measurements usingcompressed pulse. Radio Science,1973,8:123-131.
    [145]Farley, D. T. Multipule-pulse incoherent scatter correlation function measurementsRadio Science,1972,7:661-666.
    [146] Farley, D. T. Incoherent scatter correlation function measurements. RadioScience,1969,4:935-953.
    [147] Rino, C. L., Baron, M. J., Burch, G. H., et al. A multipulse correlator design forincoherent scatter radar. Radio Science1997.
    [148] Markku S.Lehtinen Statistical Theory of Incoherent Scatter RadarMeasurements University of Helsinki198637
    [149]Woodman, R. F. A general statistical instrument theroy of at mospheric andionospheric radars. Journal of Geophysical Research,1991,96:7911-7928.
    [150]Lehtinen, M. S., Huuskonen, A. Genetal incoherent scatter analysis and GUISDAP.Journal of Atmospheric and Solar-Terrestrial Physics,1996,58(1-4):435-452.
    [151]Lehtinen, M. S., Haggstrom, I. A new modulation principle for incoherent scattermeasurements. Radio Science,1987,22:625-634.
    [152]J.L.Lawson and G.E.Uhlenbeek Threshold signals,radiation lad.SeriesNo.24.McGrawHill1950
    [153]H. Urkowitz, Filter for Detection of small signal in Clutter J.Appl.Phy.Vol.24PP1024July1950
    [154]R.Manasse,The use of Pulse coding to discriminate against clutter,AD260.230,1951
    [155]P.M.Woodward,Probability and information theory theory with Application toradar,McGraw-Hill1953
    [156] M Baron The EISCAT facilityJournal of Atmospheric and Terrestrial PhysicsVolume46, Issues6–7, June–July1984, Pages469–472http://dx.doi.org/10.1016/0021-9169(84)90065-5
    [157]Kay,S.M.Fundamentalsofstatisticalsignalprocessing,Vol.II:detectionTheory.Prentice Hall Upper Saddle River,NJ1998
    [158] Johnson,D.H., D.E.Dudgeon, Array Signal processing. Prentice Hall,EnglewoodCliffs,NJ,1993
    [159]姬长华张秀丽二相码雷达信号及其常见问题现代电子技术20088
    [160] M. LehtinenMethod and system for measuring radar reflectivity andDoppler-shift my means of a pulse radar.US Patent No. US6,232,913B1, May15,2001.
    [161]马晓岩向家彬朱裕生雷达信号处理湖南科学技术出版社1998
    [162] M. A. Richards.Fundamentals of radar signal processing. in Chinese(刑孟道,王彤,李真芳等译,雷达信号处理基础,电子工业出版社,北京,2008:117-138).
    [163]刘立东,袁伟明,吴顺君,孙晓闻基于GPS照射源的天地双基地雷达观测系统[J]电波科学学报,2004,19(1):109113.
    [164]赵宏钟,付强.雷达信号的加速度分辨性能分析.中国科学E辑:技术科学,2003,33(7):638―646
    [165] Stein S. Algorithms for ambiguity function processing. IEEE T ransAerosp Electron Syst,1981,29(3):588―599
    [166]郭强陶然沙南生等双基地雷达低空目标信号建模与电视“同步加白”信号的模糊函数研究兵工学报VOL.24.no1.2003
    [167]蒋锦星应新瑜信号检测与估值理论西安电子科技大学1993.6
    [168]赵树杰信号检测与估值理论西安电子科技大学1998.6
    [169]袁天鑫最佳估计原理国防工业出版社1980
    [170]YangGao双频GPS数据处理中的周跳检测和模糊度解算测绘科技情报2000
    [171]王文贯陆海波单双频GPS数据联合处理基线分析水利规划与设计2010
    [172] Liu Yongjun, Ge Debiao, Jin Wang. Match function method for spacedebris detection using incoherent scatter radar measurement.Chin. J.Space Sci.,2012,32(1):60-67
    [173]非相干散射雷达实施方案(内部资料)2008
    [174]子午工程非相干散射雷达建议书(内部资料)2008
    [175]非相干雷达技术协议(内部资料)2008
    [176]http://www.hudong.com/wiki/%E9%9B%B7%E8%BE%BE%E6%B5%8B%E9%87%8F%E7%B2%BE%E5%BA%A6
    [177]光电观测方式与观测系统http://jiaohu.buaa.edu.cn/Download
    [178]王磊高频地波雷达信号波形分析与设计(毕业论文)2007
    [179]张直中,《雷达信号的选择与处理》,国防工业出版社,1979。
    [180] http://210.38.0.10:8000/UploadFile/message/20070607082248046.doc
    [181] http://www.1000bbs.com/dispbbs.asp?boardid=5&id=12473
    [182] http://bbs.81tech.com/forum.php?mod=viewthread&tid=144785
    [183] http://wenku.baidu.com/view/e5eebb4133687e21af45a9a2.html
    [184] http://www.amsat.org/amsat-new/satellites/satInfo.php?satID=26
    [185]Merrill I.Skolnik,雷达手册电子工业出版社2003南京电子技术研究所
    [186] Ramo, S., and J. R. Whinnery:“Fields and Waves in Modern Radio,”2d ed., John Wiley&Sons, New York,1960, pp.272-273.
    [187] Stratton, J. A.:“Electromagnetic Theory,” McGraw-Hill BookCompany, New York,1941, pp.414-420,563-567.
    [188]Ross,R,A.”Radar Cross Section of Rectangular Flat Plates”.IEEETrans,Ap-14(May1966)PP329-335.
    [189] Merrill I.S. Radar HanDBook (SecondEdition) Beijing:PublishingHouse of Electronics Industry2005(Merrill I.S.雷达手册(译)北京电子工业出版社2005)
    [190] Perraut S.,Brekke A.,Baron M.,er al EISCAT measurement of iontemperatures which indicate non-isotropic ion velcitydistributions[J] J ATMOS TERR PHYS vol.461984doi:10.1016/0021-9169(84)90072-2
    [191] Yang Zhenqi,Zhang Yongshun Bistatic(multistatic)Radar systemsNational Defence Industrial Press1998(杨振起张永顺双(多)基地雷达系统国防工业出版社1998)
    [192] Virtanen I. XII Meeting of Finnish Space Researchers Fincospar2009[C] OuluUniversity Press2009
    [193]JanchesD.,A.Pellinen-Wannberg,G.Wannberg A.et al Tristatic Obervations ofmeteors using the930MHZ European Incoherent Scatter radar system[J]J.Geophy.Res.,107(All)2002Doi:10.1029/2001JA009205
    [194]Markkanen J.Lehtinen M.,Landgraf M.et al Real-time small-size space debrisdetection with EISCAT radar[J] ADV SPACE RES-SERIES2005
    [195]Katsuhiro Ono,Toru Tajima,Akio Mizutani et al. Development of the FirstJapanese Space Debris Observation Radar[C] The Third European Conference onSpace Debris19-21March2001
    [196]David K.Barton, Final Report of the Haystack Small-size target Data ReviewPanel[R] Technical Memorandum48091998
    [197]http://www.baidu.com/s?tn=sitehao123&ie=utf-8&bs1640
    [198]杜红聂景峰无晶振振荡器的频率稳定度的研究计量与测试技2005年3期
    [199] http://www.cpooo.com/products/3031157.html
    [200]Lehtinen M S,Haggstrom I. A new modulation principle for incoherent scattermeasurements[J].Radio Sci.,1987,22:625-634
    [201]Technical Report97/53-EISCAT Scientific Association
    [202]非相干散射雷达电讯总体方案(内部资料)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700