无限深透水地基上土石坝坝基渗流控制计算方法和防渗措施的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地质条件良好的坝址日趋减少,许多可开发的坝址都坐落在无限深透水地基上。而对于建在无限深透水地基上的土石坝,到目前为止还没有提出一套有效的渗流控制计算理论。有学者曾提出:“无限深透水地基按理论计算渗透流量将很大,所以不宜在其上建坝。”但是从现在的实际建设经验来看,在无限深透水地基或较深厚覆盖层上建坝其渗流破坏及渗流量是可防可控的。此外,对于已建在无限深透水地上的土石坝,由于当初设计时仍按有限深坝基的渗流理论进行计算和设计,运行后出现了许多问题,例如:渗漏量过大、渗透破坏严重、坝后地面沼泽化和盐渍化等等,其中部分问题无法用现有的渗流理论给出合理的解释和回答。本论文针对无限深透水地基上土石坝坝基的渗流问题,利用现已被大家广泛认可的数学理论和数值方法来对此进行较深入和系统的研究,并用室内试验对理论结果进行了验证。
     理论分析包括保角变换、有限元法和边界元法三部分。首先,利用保角变换理论建立了无限深透水坝基渗流计算的数学模型,通过将复杂的地下轮廓转化为平面问题进行研究,推导出一系列的渗流计算公式,利用这些解析公式能很快的计算出坝基渗流的主要参数。该方法属于解析法,优点是计算方法简单、便于掌握;不足之处未考虑坝体渗流问题,且只能适用于均质地基。接着,应用有限元和边界元分别建立了无限深透水坝基渗流计算的数值模型。其中,在有限元模型中,采用一个足够大的半圆渗流区域来模拟无限域渗流边界,并将坝基和坝体进行整体考虑,编写了计算程序,求解出坝体浸润线的位置和大坝的渗流总量;在边界元模型中,利用边界元积分方程来描述稳定渗流的拉普拉斯方程,以此为基础来求解渗流边界上水头和流速,使问题求解。利用VB语言对渗流计算进行编程计算,简化了计算过程,大大提高了计算的效率。有限元和边界元属于数值方法,优点是能较好的拟合实际边界,可以解决复杂边界条件下的渗流问题;不足之处是,计算工作量,不便于掌握。
     在理论分析的基础上,通过设计砂槽模型试验来验证理论分析的结论。实验中针对坝基采用不同的防渗体来进行数据监测,通过收集大量的实验数据来进行分析研究,与理论数据对比后发现,二者之间能较好的验证,从而说明本文研究的方法较为可靠,计算结果相对准确。
     通过对无限深透水坝基渗流的综合研究发现,(1)无论采用水平铺盖还是垂直防渗墙,均存在一个有效尺寸,当防渗体达到该尺寸大小后,坝基的渗流量和渗透坡降都会趋于稳定;(2)采用垂直防渗墙时,防渗墙的位置对坝基渗流的影响较大,并求出坝基轮廓的有效渗径;(3)垂直防渗体和水平铺盖在控制渗流效果方面,存在着一定的数量关系,该数值与坝前的水头、坝基的渗透系数以及防渗体的位置等有关,不仅仅是莱茵和布莱认为的3倍关系;(4)通过对坝基下游渗透出逸坡降的计算,可以较准确的确定出坝后反滤层的铺设范围。
     此外针对无限深透水坝基下游出现的土壤次生盐渍化问题,提出了“生态长度”概念,并推导出计算公式来求解此长度;对无限深透水地基根据地质情况不同进行了分类,并针对不同的地质情况提出了适合于此类坝基的防渗措施等。
     最后,在文章中结合了大量的工程实例来进行计算,使理论、实验和实际工程得到了较好的验证,找出无限深透水地基上土石坝坝基渗流的基本规律。
The dam locations with the good geologic condition gradually are decreasing in our country, many dams which will be developed have to be seated on the infinite deep foundation. But there is not a suit of seepage control calculation theoretic effectively by far. The paper aims at the seepage calculation of the infinite deep pervious foundation to do a deeply and systemic analysis using the numeric calculation approbatory method and mathematics method, finally to validate by the experimentation.
     The theoretic analysis part of the paper is that author uses the conformal transformation to establish a mathematics model of infinite deep pervious foundation, the model makes the complex subterranean contour to transform a plane and to study and ratiocinates a series of seepage calculation formulas. According to the characteristic of foundation soil, we can confirm the scope of filtrate layer. The numerical method part of the paper includes FEM and BEM. First, author uses the FEM establish a model of infinite deep pervious foundation; we can get the seepage discharge, seepage gradient and location of paretic line. Besides, author uses the BEM to establish models of horizontal blanket and vertical cut-off wall respectively and to calculate. Based on the theoretic analysis and numerical method, author uses seepage sand groove experiment to validate the above conclusions by collecting the dates when the foundation took the different anti-seepage. At the same time, this paper build a model of“preventing of the up and drainage the down”, find out the relations of anti-seepage measures and ground water level of the downstream, seek after a right size of anti-seepage measures to prevent the solid sanitization of downstream.
     Based on the validating of each method, to calculate the actual project and find that the horizontal blanket has a effective length, the size is 22-30 times than water-head of upstream; the vertical cut-off wall exist a effective depth is 11-15times than water-head of upstream, when the size of anti-seepage measures reaches to the effective scope, we prolong the size of anti-seepage measures is not significance. Through studying the anti-seepage effect of the both measures, we find that there is a given relation between them, the anti-seepage effect of vertical cut-off wall is 1.5-3.5 times than horizontal blanket’s. Besides that author find that it will affect the seepage discharge and average seepage gradient of dam foundation when the position of vertical cut-off wall is changed under the dam foundation, the best position should be located the forefront of dam base and the worst position is located the middle of dam base.
     The scope of filtrate layer is count for much with the pervious or not of dam. When the dam is impervious, the worst point of seepage escape gradient is located on the corner of downstream dam slope, the number goes to infinity, so we can letdown the seepage escape gradient of the corner. The filtrate layer should be set from the point. When the dam is pervious, the worst point is the joint of vertical cut-off wall and dam base, the number is H/πs (H is the water-head of upstream, s is the depth of cut-off wall). The filtrate layer should be set from the joint.
     On the premise confirm of the horizontal blanket effective length, author bring forward the calculation method of economical length about horizontal blanket. Through actual project analyzing, we find that the economical length is longer much than the length of common horizontal blanket which is on the limited deep pervious foundation (6-8 times water-head of upstream). It shows that the length of horizontal blanket is not economy but also is not in reason. Aims at the soil sanitization problem of actual engineering (plain reservoir based on the infinite deep pervious foundation), author brings forward the concept of ecotypes length of horizontal blanket, and constitutes a integrality calculation formulas when the downstream located a drainage well.
     Finally, according to difference of the geology, author takes the infinite deep pervious to divide into three types: monolayer configuration, double deck configuration and complex configuration. Integrative analyze from anti-seepage effect, project cost, construction, etc, suggests that the best anti-seepage measures is horizontal blanket when the foundation is belong to the monolayer configuration or double deck configuration, but to the complex configuration, the choice of anti-seepage should be all-round, whether takes vertical cut-off wall or not, we should pay attention to the distributing and place of weak pervious layer.
引文
[1]王柏乐.中国当代土石坝工程[M].北京:中国水利水电出版社,2004:75-79.
    [2]吴媚玲编著.水工建筑物[M].北京:清华大学出版社,1991:45-46.
    [3]陈明致编著.土坝设计[M].北京:水利电力出版社,1985:48.
    [4]毛昶熙.渗流计算分析与控制[M] .北京:中国水利水电出版社,2003:144-149.
    [5]毛昶熙,段祥宝,蔡金傍.堤基渗流管涌发展的理论分析[J].水利学报,2004(12):46 -50.
    [6]邓苑苑,刘建军.土石坝工程渗流计算的理论发展及方法探析[J].甘肃农业,2006:44-46.
    [7]刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992:67-69.
    [8]顾慰慈.闸坝地基的渗透计算[J].河北水利水电技术,1998(1):67.
    [9]祁庆和.水工建筑物[M].北京:中国水利水电出版社,2003:1-2.
    [10]安徽省水利科学研究所.多层地基和减压井的渗流计算理论[M].北京:水利出版社,1980:65-67.
    [11]郁孟龙,郑敏生.安基县赋石水库大坝渗流分析[J].浙江水利科技,1999 (11):124.
    [12]顾慰慈.渗流计算原理及应用[M].北京:中国建材工业出版社,2000:112-115.
    [13]陈磊.基于ANSYS的钢筋混凝土结构试验有限元分析[D].西安理工大学,2004:45-52.
    [14]饶寿期编.有限元和边界元法基础[M].北京:北京航空航天大学出版社,1990:92-84.
    [15]魏宁等.渗流计算的一种实用方法[J].武汉大学学报(工学版),2005 (38):39-43.
    [16]张乾飞,顾冲时,等.土石坝渗流确定分析模型研究[J].武汉大学学报,2004(4):5-9.
    [17]水利部.碾压式土石坝设计规范[M].北京:中国水利水电出版社,2001(SL-274):56-58.
    [18] E.E瓦尔斯特龙著.戚筱俊译.大坝与水库地质[M].成都科技大学出版社,1988:53-59.
    [19]刘杰.土石坝渗流控制理论的发展和实践[C].第四届全国水利水电工程渗流学术讨论文集,1993:38-42.
    [20]袁莹.无限深透水地基上土石坝坝基渗流控制计算模型及有关问题研究[D].乌鲁木齐:新疆农业大学,2007:5-10,37-39.
    [21]毛昶熙,周名德,柴恭纯.闸坝工程水力学与设计管理[M].北京:水利电力出版社,1995:98-100.
    [22]张有天,张武功.半无限域渗流问题边界元方法[J].水力学报,1981(7):27-32.
    [23]周保中.无限深透水地基上不透水铺盖斜墙土坝渗流计算[J].水利学报,1981(5):61-68.
    [24]杨德全,等.坝基渗流的边界元分析[J].大坝与安全,2005(6):23~25.
    [25]袁莹,侍克斌,等.无限深透水地基上土石坝铺盖长度对坝基渗流的影响[J].水力发电,2007(1):32-34.
    [26]中国水力学会编.命脉—新中国水利50年[M].北京:中国三峡出版社,2001:34-35.
    [27] H.T.Anastassiu, P.E. Atlamazoglou,D.I. Kaklaman (quatemion) algebra to fundamentalelectrmagnetics A Helmholtz equation[J]. IEEE Trans Antennas and Propagat,1997:143-145.
    [28]沈燮昌.复变函数逼近论[M].科学出版社,1998:56-58.
    [29]任福尧.应用复分析[M].复旦大学出版社,1993:61-63.
    [30]曹伟杰.保形变换理论及其应用[M].上海科学技术,1992:37-44.
    [31] E.Costamagna,A new approach to standard Schwarz-Christoffel formula calculations[J].Microwave and Optical Technology Letters, 2002:196-199.
    [32] E.Costamagna,Numerical inversion of the Schwarz-Christoffel conformal transformation:strip-ling case studies[J]. Microwave and Optical Technology Letters, 2001:179-183.
    [33] E.Costamagna,Conformal mapping and field singularities in perfectly conducting wedge and rotational symmetry structures[J],Microwave and Optical Technology Letters,vol 24,no 3,February 2000:191-195.
    [34] E.Costamagna and A.Fanni,Needle electrode fields with space-charge effects[J]. Microwave and Optical Technology Letters. vol 26,no 5,September 2000:321-325.
    [35] E.Costamagna,Error-Masking phenomena during numerical computation of Scharz-Christoffel conformal transformations[J]. Microwave and Optical Technology Letters. vol 20,no 4,February 1999:223-225.
    [36] E.Costamagna,Integration formulas for numerical calculation of the Schwarz-Christoffel conformal transformation[J]. Microwave and Optical Technology Letters, vol 15,no 4,July 1997:219-224.
    [37] E.Costamagna,A.Fanni, P.Gamba.Thickc oplanar line quasi-TEM parameter calculations[J]. Microwave and Optical Technology Letters, vol 14,no 1,January 1997:48-52.
    [38] J.Svalina. Analytical models of width-limited microstrip lines[J].Microwave and Optical Technology Letters, vol 36,no1,January 2003:63-65.
    [39] H.Yang and S.Lee. analysis of a nonconfocal suspended strip in an elliptical cylinder by conformal mapping[J]. Microwave and Optical Technology Letters, vol 32, no 2,January 2002:115-119.
    [40] Jui-Ming Hsu,Mount-Learn Wu,and Ching-Ting Lee,Hybrid approach for quasistatic analysis of shielded strip lines[J].Microwave and Optical Technology Letters,vol14,no2,February 1997:111-115.
    [41]胡家延,彭旭麟.复变函数[M].高等教育出版社,1986:34-42.
    [42]毛海涛,侍克斌等.无限深透水地基上土石坝坝基垂直防渗的保角变换渗流计算[J].水利水运工程学报,2008(12):71-77.
    [43]李炜等.水力学[M] .武汉:武汉水利电力大学出版社,2000:64.
    [44]毛昶熙,段祥宝等.悬挂式防渗墙控制管涌发展的试验研究[J].水利学报,2005(1):42-50.
    [45]毛昶熙,周保中.闸坝地基渗流计算的改进阻力系数法[J] .水利学报,1980:51-59.
    [46]郑颖,时卫民.库水位下降时渗透力及地下水浸润线的计算[J].岩土力学与工程学报,2004:23(18):32-33.
    [47]荣冠.三峡工程茅坪溪防护土石坝渗流分析[J].人民长江,2004,35(10):21-23.
    [48]郦能惠.土石坝安全监测分析评价预报系统[M].北京:中国水利水电出版社,2002:98-100.
    [49] ZHU Yu-xue. Reliability analysis in slope[M]. Beijing:Metallurgical Industry Press,1993:34-36.
    [50]郝文化,刘春山等. ANSYS土木工程应用实例[M].北京:水利水电出版社,2005:77-78.
    [51] D.Cusson. Sensitivity analysis of the early-age properties of high-performance concrete-a case study on bridge barrier walls. Materials Conference[M]. Cambridge, Mass,August 20-22, 2001:325-330.
    [52]刘洁,毛昶熙.堤坝饱和与非饱和渗流计算的有限单元法[J].水利水运科学研究,1997:24-27.
    [53]杨军,秦卫星. VC++在开发二维渗流有限元分析软件中的应用[J].江西水利科技,2004 30(4):20-22.
    [54]刘希云,赵润祥编著.流体力学中的有限元与边界元法[M].上海:上海交通大学出版社,1993:178-182.
    [55]黄丹,肖伟,李勇.地下水三维数值模拟及其优化开采[J].资源调查与环境,2005:137-145.
    [56]李致家. FEFLOW—有限元地表、地下水流与污染物质模拟系统[J].水科学进展,1996:304.
    [57]陈建余,朱岳明,龚道勇.江口拱坝坝基渗流场有限元法分析[J].水力发电,2002:22-25.
    [58]陆文端.微分方程中的变分方法[M].北京:科学出版社,2003:98-101.
    [59]薛禹群.地下水动力学原理[M].北京:地质出版社,1996:33-43.
    [60]张铁.数值分析[M].北京:冶金工业出版社,2001:124-125.
    [61]王勖成.有限单元法[M].北京:清华大学出版社,2003:87-90.
    [62]谢康和.周健.岩土工程有限元分析[M].北京:科学出版社,2002:14-15.
    [63]方海挺. AutoCAD和有限元软件联合建模及计算[J].水利与建筑工程学报, 2005(3):22-25.
    [64] Donald,c.The AEDC Three-Dimensional Potential Flow Computer Program[M]. ADAO21693 1976:19-21.
    [65] Jun Mo Kim.Three 2 dimensional numerical simulationof fully coupled groundwater flow and land deformationin unsaturated true anisotropic aquifers due to groundwater pumping[J].Water resources,2005:41.
    [66]彭华.饱和非饱和非稳定渗流有限元加速技术[J].武汉大学学报,2001,34 (3):92.
    [67]薛明等.恰拉水库坝基渗流控制措施比较[J].巴州技术,2003(3):18-20.
    [68]唐杰编著.边界元法基础[M].上海:上海交通大学出版社,1988:77-79.
    [69]布雷拜,沃克著.边界元法的工程应用[M].北京:北京科学出版社,1985:90-97.
    [70]杨思德等译.边界元方法基础[M].哈尔滨:东北工学院出版社,1987:77-79.
    [71]卢盛松主编.边界元法理论及应用[M].北京:高等教育出版社,1990:33-34.
    [72] C.A.布莱比亚著.武际可译.工程师用的边界元法[M].北京:科学出版社,1986:25-32.
    [73]祁国能,熊振南,宋振熊编著.工程实用边界元法[M].北京:中国铁道出版社,1989:34-36.
    [74] [英]P.K.班努杰,R.白脱费尔德编著.冯正兴译.工程科学中的边界元法[M].北京:国防工业出版社,1988:96-97.
    [75]李庆斌,等.特解边界元法及其工程应用[M].北京:科学技术文献出版社,1992:76-79.
    [76]杜庆华,等.边界积分方程法—边界元法[M].北京:高等教育出版社,1989:90-92.
    [78]王冠旭.边界元法理论及应用[M].北京:高等教育出版社,1990:78-80.
    [79]刘兴业,王成博.半无限域弹性力学问题的边界元法[J].天津大学学报,1988(2):32-34.
    [80]张有天,张武功.半无限域渗流问题边界元方法[J].水力学报,1981(7):88-90.
    [81]李建华.无限深透水地基上土石坝坝基垂直防渗渗流计算研究[D].乌鲁木齐:新疆农业大学,2008:15-17,21-25.
    [82] ZIJLSTRA J, DANE J H. Identification of hydraulic parameters in layered soils based on aquasi 2 Newton method[J]. Journal of Hydrology, 1996, 181 (1): 45-49.
    [83]陈亮亮.无限深透水地基上土石坝水平铺盖渗流的数值解[D].乌鲁木齐:新疆农业大学,2008:25-29,37-41.
    [84]张有天.用边界元求解有排水孔的渗流场[J].水力学报,1982:67-69.
    [85]白俊文等.采用模糊优选理论优选土石坝透水坝基防渗类型[J].东北水利水电,2004(10):1.
    [86] Vaughan, P. R., Soares, H. F.. Design of Filters for Clay Cores of Dams[J]. Proc. ASCE. Vol. 108. GT1, 1982: 24-28.
    [87] Abd-Alla MH, Omar S A. Wheat straw and cellulolytic fungi application increases nodulation, nodule efficiency and growth of fenugreek(Trigonella foenum-graceum L) grown in saline soil[J]. Biologyand Fertility of Soils. 1998, 26 (1):58~65.
    [88] Hu Jia-yan, Peng Xu-lin. Theory of functions of complex variable [M]. China Higher Education Press, 1986: 233-245.
    [89] SEOK-WON LEE,JONG-WON JUNG, SEOK-WOO NAM,IN MO LEE. The influence of seepage forces on ground reaction curve circular opening [J].Tunneling and Underground Space Techology, 2007, vol22(1): 28-38.
    [90] Tong-kang, Tao. Recent applications of geofextile filters in china[J]. Water power and Dam construction, 1987, 34-36.
    [91]陶同康,尤克敏.用化纤布作排水滤层的初步研究[J].水利水电技术,1984(11):56-57.
    [92] Ground, J.P. Filter criteria for geotextiles[C]. 2nd International conference on geotextiles, 1982: 60-61.
    [93]侍克斌,关静.土工织物与土工膜结合使用技术在国外的应用[J].水利水电技术,1989(3):45-46.
    [94]陶同康.麦子河水库土坝土工织物滤层实验报告[J].土工织物应用简讯,1985(2):33-34.
    [95]顾淦成.土石坝防渗新结构新材料土工膜防渗结构评述[J].土石坝工程, 1989(1):9-11.
    [96]中华人民共和国水利部.聚乙烯(PE)土工膜防渗工程技术规范(SLT231-98)[M].中国水利水电出版社. 1999:44-45.
    [97]中华人民共和国水利部.水利水电工程土工合成材料应用技术规范[M].中国水利水电出版社. 1999:32-36.
    [98] DIE, Neubauer and Prof,H. Peter Degischer. Creep resistance and creep bending resistance of light metal matrix composites for research in airframe structural efficiency[J], European major research infrastructure, 2000: 86-88.
    [99]白俊文,侍克斌.采用模糊优选理论优选土石坝透水坝基防渗类型[J].东北水利水电,2004(10):45-48.
    [100] Gelhar L W. Stochastic subsurface hydrology[M]. Englewood Cliffs, New Jersey: Prentice Hall, 1993: 345-347.
    [101]王祥荣.生态建设论[M].南京:东南大学出版社,2004:88-89.
    [102]黄光宇,陈勇.生态城市理论与规划设计方法[M].北京:科学出版社,2003:154-157.
    [103]钟超英,李卫国.茗洋关水库大坝渗流分析与评价[J].防渗技术,2002,8 (3) :529.
    [104]吴中如.水工建筑物安全监控理论及应用[M].南京:河海大学出版社,1990:92-99.
    [105] Abdallah I,Husein Malkawi. Mohanned Al-Sheriadeh.Evaluation andrehabilitation of dam seepage problems a case study:Kafrein dam[J]. Engineering Gelogy,2000(56): 335-345.
    [107]魏云杰,许模.新疆土壤盐渍化成因及其防治对策研究[J].地球与环境,2005 (33):593-597.
    [108]毛海涛,侍克斌等.干旱区防治土壤盐渍化的渗流计算[J].人民黄河,2009(11):115-117.
    [109]毛海涛,侍克斌等.新疆平原水库透水地基渗流防治的重要性和有效性[J].水利与建筑工程学报,2008(12):6-9.
    [110]周金龙,马英杰.新疆尉犁县平原灌区盐渍土壤调查与改良利用规划报告[R].乌鲁木齐:新疆绿水水资源科技服务有限责任公司,2007:46-48.
    [111]吕丽萍,史忠.浅谈影响混凝土弹性模量的因素.混凝土[J].水利发电,2003(1):89-92.
    [112]陈赓仪.我国水利水电混凝土防渗墙的发展[J].中国三峡建设,1999(5):23-27.
    [113]曲春慧,杜靖,刘民.松花江干流堤防土工膜垂直防渗墙的施工方法[J].防渗技术,2002(6):34-36.
    [114]刘建华,张云鹏,徐又建.平原水库土工膜防渗和混凝土预制板护坡研究[J].人民黄河,2000(6):38-40.
    [115]蔡汉生,王利.江娅大坝坝基防渗帷幕缺陷及其处理[J].水利水电快报,2002(5):78-80.
    [116]楚涛,张振民,戚英.高喷在丁庄平原水库坝基截渗中的应用[J].山东水利科技,1996:65-66.
    [117]顾淦臣.水库建设也要转变观念—革除平原水库的弊端[J].中国水利,1996(11):91-92.
    [118]郭耀明,方维凤,李国英.软土地基上筑堤渗流稳定分析[J].建筑技术开发,2003(8):18-19.
    [119]周革,李中伟,孙晓平,孙绪金.基于Delphi的土石坝渗流稳定分析软件开发研究[J].华北水利水电学院学报,2002(3):62-64.
    [120]郝春荣,吕绍龙,魏伟.振动切槽成墙技术在堤防截渗工程中的应用[J].施工技术,1999:19-21.
    [121]李林海,张志山,张震.振冲防渗板墙技术的试验和应用[J].山东水利,2001:23.
    [122]孙明权,张玉琴等.土坝防渗墙材料与厚度对墙体应力应变的影响[J].华北水利水电学报,2004(4):111-113.
    [123]孟丽娟,卢绍进.某平原水库防渗墙位置优化研究[J].浙江水利水电专科学校学报,2005(2):41-43.
    [124]杨秀竹,陈福全,雷金山,等.悬挂式帷幕防渗作用的有限元模拟[J].岩土力学,2005,26(1):107-108.
    [125]张家发,孙厚才,杨金忠.堤防加固工程中与防渗墙有关问题的研究[J].长江科学院院报,2001:12-15.
    [126]张家发,吴昌瑜,朱国胜.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟[J].水利学报,2002:108-111.
    [127]吴昌瑜,张家发,周小文.堤防破坏机理和安全评价方法初步研究[J].长江护岸及堤防防渗工程技术经验交流会论文汇编,2001:286-292.
    [128]李思慎.长江重要堤防隐蔽工程建设中的防渗处理[J].长江科学院院报,2000(12):4-8.
    [129]李宁新.双层堤基承压水“渗而不流”模式初探[J].人民珠江,2002:22-23.
    [130]丁留谦.堤防除险加固技术进展(上) [J].中国水利,2000:26-27.
    [131]陆付民,李建林.堤防防渗加固方法研究[J].人民黄河,2004:7-8.
    [132]朱伯芳.推荐一种堤防[J].中国水利,1999:25-26.
    [133]包承纲,吴昌瑜,丁金华.中国堤防建设技术综述[J].人民长江,1999 (10):15-16.
    [134]杨晓东,丁留谦.堤防地基防渗技术[J].防渗技术,1999,5(3):1-5.
    [135]王玮,钱会.黑河水库单薄山梁灌浆帷幕效果影响因素分析[J].人民黄河,2005 (9):60-62.
    [136]刘川顺.冲击地基堤防垂直方案研究[J].岩石力学与工程学报,2002(3):45-46.
    [137]朱建强,欧光华,言鸽.长江中下游堤防渗流侵蚀机理及其治理[J].水土保持学报,2001:59-61.
    [138]刘敦高,张家发,朱国胜.悬挂式防渗墙控制渗透变形扩展过程研究[A].长江护岸防渗工程论文选集[C],2003:11-12.
    [139]张家发,朱国胜,曹敦侣.堤基渗透变形扩展过程和悬挂式防渗墙控制作用的数值模拟研究[J].长江科学院院报,2004,21(6):47-49.
    [140]郑水清,陈荣波.悬挂式防渗帷幕的电模拟试验[J].广东土木与建筑,2004(6):11-13.
    [141]毛海涛,侍克斌,魏东.无限深透水地基上土石坝防渗墙位置对坝基渗流的影响[J].水力发电,2008(1):45-47.
    [142]毛海涛,侍克斌,等.土石坝防渗墙深度对透水地基渗流的影响[J].人民黄河,2009(2):84-86.
    [143]毛海涛,侍克斌,等.新疆透水地基上土石坝防渗墙有效深度研究[J].人民长江,2008(19):81-84.
    [144]刘杰.土的渗透稳定与渗流控制[M].北京:水力电力出版社,1992:19-22.
    [145]沙金煊.多孔介质中的管涌研究[J].水利水运科学研究,1981(3):89-93.
    [146]毛海涛,侍克斌等.大坝无限深透水地基渗流计算深度的选取[J].水力发电,2009(4):48-50.
    [147]唐益群,施伟华,张先林.关于流土和管涌的试验研究和理论分析[J].上海地质,2003:31-32.
    [148]张我华,余功栓,蔡袁强.堤与坝管涌发生的机理及人工智能预测与评定[J].浙江大学学报(工学版),2004,38(7):902-908.
    [149]曹敦侣,邹大元,常耀胜.水工建筑物渗流管涌的Monte-Carlo模型[J].人民长江,1997,28(6):11~13.
    [150]陈建生,李兴文,赵维炳.典型地基渗漏的完整井管涌模型及其涌砂影响范围的估算[J].工程勘察,2002(4):32~35.
    [151]刘忠玉,乐金朝,苗天德.无粘性土中管涌的毛管模型及其应用[J].岩石力学与工程学报,2004:3.
    [152]刘建刚,陈建生,赵维炳.典型地基渗漏的完整井管涌模型及其涌砂影响范围的估算[J].工程勘察,2002(4):25-27.
    [153]滕凯,康百赢.关于堤坝管涌计算的进一步研究[J].岩土工程技术,2003(1):11-15.
    [154]王有祥,李晓娟.关于堤坝管涌计算方法的进一步研究[J].黑龙江水利科技,2005:16-17.
    [155]刘忠玉.无粘性土中管涌的机理研究[D].兰州:兰州大学博士学位论文,2001:33-34.
    [156]周红星,曹洪,林洁梅.管涌破坏机理模型试验覆盖层模拟方法的影响研究[J].广东水利水电,2005(2):6-8.
    [157] Zhu Yueming, et al. Some adaptive techniques for solution of free surface seepage flow through arch dam abutments[J]. Intern.symp.on Arch Dams,Oct,1992: 78-81.
    [158]王镭等.有排水孔幕的渗流场分析[J].水利学报,1992:33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700