基于视觉—激光的移动机器人自定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能移动机器人研究属于多学科交叉领域,它的研究越来越受到国内外学者的重视。移动机器人自主定位是智能导航和环境探索研究的基础,是机器人实现真正智能化和完全自主的关键技术。作为一个复杂的系统性问题,机器人的自定位需要综合考虑传感器特性、作业环境特征和定位算法采用的具体形式等。本文系统地研究了智能移动机器人的自定位。首先概述了移动机器人自定位研究的国内外现状,阐述了定位研究的主要方法、关键问题以及技术发展趋势。从两个方面概述本文解决自定位的思想:一方面是将该问题总体建立在传感器数据融合基础上,通过先验地图并结合传感器模型提出相应的环境特征提取,然后给出相应的计算方法估计机器人的位姿状态:另一方面,本文又从模式分类角度解释机器人认识客观世界的过程。本文通过大量真实环境下的实验分析、比较了所提方法的性能。
     面向RobCup中型移动机器人足球比赛以及SmartROB2嵌入式移动机器人平台,本文首先实现了基于单向视觉的移动机器人自定位任务。开发了基于MAP位姿估计的自定位系统,提出针对比赛环境的三维矢量表述形式,充分研究了单向视觉的成像特点并利用Unscented Transform有效传播系统内部的不确定性,实验表明基于MAP的迭代优化算法能够提高位姿估计的精度。
     面向大型室内结构化环境的移动机器人视觉定位任务,要以有效的方式理解,解释以及表达工作环境的相关信息,才利于机器人对场景的有效分析。本文阐述了基于全向视觉的室内走廊环境的自定位,开发了基于Pioneer3D的人机交互式可视化自定位系统,提出几何—拓扑混合三维地图的环境地图,给出了全向传感器成像模型以及基于反馈分层估计融合的自定位算法。实验分析了不同初始位姿和观测信息下定位系统的精度和位姿估计的收敛情况,在考虑动态障碍物的遮挡情况下完成了机器人的在线环境感知和运动自定位任务。
     考虑采用两种不同方式实现机器人在复杂室内环境中的自定位任务,一种是面向结构化走廊环境,借助单向摄象机实现基于地图的机器人自定位;另一方面,在处理办公室准结构化环境时,本文采用基于激光测距仪的扫描匹配方法,分析比较了ICP、Mb—ICP以及融合多次扫描匹配的自定位方法。
     面向基于图像外观表象的移动机器人自定位任务,本文研究了描述机器人作业空间的特殊模型—基于外观的环境建模方法。分别研究了基于批处理PCA以及递增PCA的图像外观数据空间的构建方法,然后进一步给出了基于广义回归神经网络(GeneralizedRegression Neural Networks)的数据映射方法。
Autonomous mobile robot is the research focus in the field of robotics and automation. Self-localization is one of the foremost problems for intelligent navigation and envoriment exploration. As a complicated issue, self-loalization task should consider sensor characters, envorimental features and implementation of localization algorithms, et al. This dissertation provides a systematic research towards self-localization of mobile robot. We firstly expound state of the art in localization research, and present the leading methods, key technical issues and future development trends. To summarize the central contribution of this dissertation from two aspects, the first is to develop the localization methods based on multi-sensor fusion strategy; on the other hand, this dissertation interperate the cognitive procedure of robot from a statiscal pattern recognition viewpoint. Morever, this dissertation provides a mass of practical experiments based on real robot platform to verify the proposed methods.
     Towards Robocup Middle-Sized Soccer, a localization system is developed for mobile robot. The robot estimates its pose recursively through a MAP estimator that incorporates the information collected from odometry and unidirectional camera. We build a 3D envorimental map for soccer field, the nonlinear sensor models and, maintain that the uncertainty manipulation of robot motion and inaccurate sensor measurements should be embedded and tracked throughout our system. We describe the uncertainty framework in a probabilistic geometry viewpoint and, use unscented transform to propagate the uncertainty which undergoes the given nonlinear functions. Considering the processing power of our robot, image features are extracted in the vicinity of corresponding projected features. In addition, data associations are evaluated by statistical distance. We conduct a series of systematic comparisons to prove the reliable and accurate performance of this self-localization system.
     Towards large scale corridor environment, a novel metric-topological 3D map is proposed for robot self-localization based on omnidirectional vision. The local metric map, in a hierarchical manner, defines geometrical element according to its environmental feature level. Then, the topological parts in global map are used to connect the adjacent local maps. We design a nonlinear omnidirectional camera model to project the probabilistic map elements with uncertainty manipulation. For self-localization task, a human-machine interaction system is developed using hierarchical logic. It provides a fusion center which applies feedback hierarchical fusion method to fuse local estimates generated from multi-observations.
     Without loss of generality, any indoor envoriment consists of at least two kinds of descriptions, namely, structural and semi-structural descriptions. The former is consistent with the proposed metric-topological 3D map, while the latter representing the office envoriment can not be simply modeled as a map. Therefore, we propose a hybrid localization system based on a sensor switching strategy between unidirectional camera and laser range finder. In this system, a sence analyzer is used to identify the envorimental features and, make desicisions on when to use camera or laser. In this way, the corresponding map-based and scan-matching methods are invoked when system is operating in camera and laser mode, respectively. Experimental results are shown accordingly.
     Regression analysis between features of high-dimension is receiving attention in environmental learning of mobile robot. In this dissertation , we propose a novel framework, namely General regression neural network (GRNN), for approximating the functional relationship between high-dimensional map features and robot's states. We firstly adopt batch-PCA and increment-PCA to preprocess images taken from omnidirenctional vision. The method extracts map features optimally and reduces the correlated features while keeping the minimum reconstruction error. Then, the robot states and corresponding features of the training panoramic snapshots are used to train the given neural network.
引文
[1]Meystel A.Autonomous Mobile Robots.Singapore:World Scientific,1991.
    [2]Borenstein J,Everett H R,Feng L Q.Navigating Mobile Robots:Sensors and Techniques.Wellesley,MA:A K Peters,Ltd.,1996.
    [3]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [4]Guilherme N D,Avinash C K.Vision for Mobile Robot Navigation:A Survey.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(2):237-267.
    [5]Durrant-Whyte H.Where am I? A Tutorial on Mobile Vehicle Localization.Industrial Robot:An International Journal,1994,21(2):11-16.
    [6]Cox I J.Blanche-An Experiment in Guidance and Navigation of an Autonomous Robot Vehicle.IEEE Transactions on Robotics and Automation,1991,7(2):193- 204.
    [7]王珂,庄严,王伟等.自主移动机器人足球比赛视觉定位方法综述.控制理论与应用,2005,22(4):597-603.
    [8]Giralt G,Sobek R,Chatila R.AMulti-Level Planning and Navigation System for a Mobile Robot:A First Approach to Hilare.Proceeding of International Joint Conference on Artificial Intelligence,Tokyo,1979:335-337.
    [9]Moravec H P.Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover:(PhD.dissertation),Stanford University,1980.
    [10]Kosaka A,Kak A C.Fast Vision-Guided Mobile Robot Navigation Using Model-Based Reasoning and Prediction of Uncertainties.Computer Vision,Graphics,and Image Understanding,1992,56(3):271-329.
    [11]Moravec H P,Elfes A.High Resolution Maps from Wide Angle Sonar.Proceeding of IEEE International Conference Robotics and Automation,St.Louis,MO,1985:116-121.
    [12]Borenstein J Koren Y.Real-Time Obstacle Avoidance for Fast Mobile Robots.IEEE Transaction on Systems,Man,and Cybernetics,1989,19(5):1179-1187.
    [13]Kim D,Nevatia R.Representation and Computation of the Spatial Environment for Indoor Navigation.Proceeding of International Conference on Computer Vision and Pattern Recognition,Seattle,USA,1994:475-482.
    [14]Borenstein J,Koren Y.Real-Time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments.Proceeding of IEEE International Conference on Robotics and Automation,Cincinnati,USA,1990:572-577.
    [15]Borenstein J,Koren Y.The Vector Field Histogram- Fast Obstacle Avoidance for Mobile Robots.IEEE Transaction on Robotics and Automation,1991,7(3):278-288.
    [16]Burgard W,Cremers A,Fox D et al.Experiences with an Interactive Museum Tour-guide Robot.Artificial Intelligence,1999,114:3-55.
    [17] Thrun S, Beetz M, Bennewitz M et al. Probabilistic Algorithms and the Interactive Museum Tour-guide Robot Minerva. International Journal of Robotics Research, 2000, 19(11) :972-999.
    [18] Burgard W, Fox D, Hennig D, Fast Grid-based Position Tracking for Mobile Robots. Proceeding of the 21st German Conference on Artificial Intelligence, Springer, Berlin, 1997:289-300.
    [19] Raschke U, Borenstein J. A Comparison of Grid-type Map-building Techniques by Index of Performance. Proceeding of IEEE International Conference on Robotics and Automation, Cincinnati USA, 1990:1828-1832.
    [20] Schiele B, Crowley J. A Comparison of Position Estimation Techniques Using Occupancy Grids, Proceeding of IEEE International Conference on Robotics and Automation, San Deigo, USA, 1994:1628-1634.
    [21] Gutmann J S, Burgard W, Fox D et al. An Experimental Comparison of Localization Methods. Proceeding of the International Conference on Intelligent Robots and Systems, Victoria, Canada, 1998:736-743.
    [22] Oriolo G, Ulivi G, Vendittelli M. Fuzzy Maps: A New Tool for Mobile Robot Perception and Planning. Journal of Robotic Systems, 1997, 14(3):179 - 197.
    [23] Lim J H, Leonard J J. Mobile Robot Relocation from Echolocation Constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(9): 1035 - 1041.
    [24] Austin D J, Jensfelt P. Using Multiple Gaussian Hypotheses to Represent Probability Distributions for Mobile Robot Localization. Proceeding of IEEE International Conference on Robotics and Automation, San Francisco, USA, 2000:1036-1041.
    [25] Gutmann J S, Weigel T, Nebel B. Fast, Accurate, and Robust Self-localization in Polygonal Environments. Proceeding of IEEE International Conference on Intelligent Robots and Systems, Kyongju, South Korea, 1999:1412-1419.
    [26] WeiβG, Wetzler C, von Puttkamer E. Keeping Track of Position and Orientation of Moving Indoor Systems by Correlation of Range-finder Scans. Proceeding of the IEEE International Conference on Intelligent Robots and Systems, Munich, Germany, 1994:595-601.
    [27] Arras K O, Tomatis N, Jensen B T et al. Multisensor on-the-fly Localization: Precision and Reliability for Applications. Robotics and Autonomous Systems, 2001, 34(2-3): 131 - 143.
    [28] Kleeman L. Optimal Estimation of Position and Heading for Mobile Robots using Ultrasonic Beacons and Dead-reckoning. Proceeding of IEEE International Conference on Robotics and Automation, Nice, France, 1992:2582-2587.
    [29] Jetto L, Longhi S, Venturini G. Development and Experimental Validation of an Adaptive Kalman Filter for the Localization of Mobile Robots. IEEE Transactions on Robotics and Automation, 1999, 15(2):219 - 229.
    [30] Julier S J, Uhlmann J K. A Non-divergent Estimation Algorithm in The Presence of Unknown Correlations. Proceeding of American Control Conference, Albuquerque, NM, USA, 1997:2369-2373.
    [31] Antoniali F M, Oriolo G. Robot Localization in Non-smooth Environments: Experiments with A New Filtering Technique. Proceeding of IEEE International Conference on Robotics and Automation, 2001:1591-1596.
    [32] Thrun S, Fox D, Burgard W et al. Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence, 2001, 128(1 -2):99 - 141.
    [33] Meng M, Kak A C. Mobile Robot Navigation Using Neural Networks and Nonmetrical Environment Models. IEEE Control Systems Maganize, 1993, 13(5):30-39.
    [34] Neto G, Costelha H, Lima P. Topological Navigation in Configuration Space Applied to Soccer Robots, RoboCup 2003: Robot Soccer World Cup VII. Heidelberg: Springer-Verlag, 2003:551-558.
    [35] Murase H, NayarS K. Visiual Learning and Recognition of 3-d Objects from Appearance. International Journal of Computer Vision, 1995, 14(1):5~24.
    [36] Sugihara K. Some Location Problems for Robot Navigation Using a Single Camera. Computer Vision, Graphics, and Image Processing, 1988 42(1):112-129.
    [37] Krotkov E. Mobile Robot Localization Using a Single Image. Proceeding of IEEE International Conference on Robotics and Automation, Scottsdale, USA, 1989:978-983.
    [38] Atiya S, Hager G D. Real-Time Vision-Based Robot Localization. IEEE Transactions on Robotics and Automation, 1993, 9(6):785-800.
    [39] Simmons R, Koenig S. Probabilistic Robot Navigation in Partially Observable Enironments. Proceeding of International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995:1080-1087.
    [40] Dellaert F, Fox D, Burgard W et al. Monte Carlo Localization for Mobile Robots. Proceeding of IEEE International Conference on Robotics and Automation, Michigan, USA, 1999:1322-1328.
    [41] Cox I J. Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach. Artificial Intelligence, 1994, 66(2):311-344.
    [42] Kabuka M R, Arenas A E. Position Verification of a Mobile Robot Using Standard Pattern. IEEE Journal of Robotics and Automation, 1987, 3(6):505-516.
    [43] Tsumura T. Survey of Automated Guided Vehicle in Japanese Factory. Proceeding of International Conference on Robotics and Automation, San Francisco, USA, 1986:1329-1334.
    [44] Hashima M, Hasegawa F, Kanda S et al. Localization and Obstacle Detection for a Robot for Carrying Food Trays. Proceeding of IEEE International Conference on Intelligent Robots and Systems,Grenoble,France,1997:345-351.
    [45]Murase H,Nayar S K.Visual Learning and Recognition of 3D Objects from Appearance,International Journal on Computer Vision,1995,14(1):5-24.
    [46]Nayar S K,Poggio T.Early Visual Learning.Oxford:Oxford University Press,1996.
    [47]Matjǎz J,Alěs Y,Matsumoto M et al.Visual Navigation Using View-Sequenced Route Representation.Proceeding of IEEE International Conference on Robotics and Automation,Minneapolis,USA,1996:83-88.
    [48]Horswill I.Polly:Vision-Based Artificial Agent.Proceeding of International Conference on AAAI,Washington,DC,USA,1993:824-829.
    [49]Jones S D,Andresen C,Crowley J L.Appearance Based Processes for Visual Navigation.Proceeding of IEEE International Conference on Intelligent Robots and Systems,Grenoble,France,1997:551-557.
    [50]Ohno T,Ohya A,Yuta S.Autonomous Navigation for Mobile Robots Referring Pre-recorded Image Sequence.Proceeding of IEEE International Conference on Intelligent Robots and Systems,Osaka,Japan,1996:672-679.
    [51]Balkenius C.Spatial Learning with Perceptually Grounded Representations.Robotics and Autonomous Systems,1998,5(3-4):165-175.
    [52]Martlnez A,Vitria J.Clustering in Image Space for Place Recognition and Visual Annotations for Human-robot Interaction.IEEE Transactions on Systems,Man,and Cybernetics B,2001,31(5):669-682.
    [53]Jogan M,Leonardis A.Robust Localization Using An Omnidirectional Appearance-based Subspace Model of Environment.Robotics and Autonomous Systems,2003,45(1):51-72.
    [54]Emanuele M,Takeshi M,Hiroshi I.Image-based Memory for Robot Navigation Using Properties of Omnidirectional Images.Robotics and Autonomous Systems,2004,47(4):251-267.
    [55]Linaker F,Ishikawa M.Real-time Appearance-based Monte Carlo Localization.Robotics and Autonomous Systems,2006,54(3):205-220.
    [56]Hashem T,Henrik A,André T et al.Localization of Mobile Robots with Omnidirectional Vision Using Particle Filter and Iterative SIFT.Robotics and Autonomous Systems,2006,54(9):758-765.
    [57]Santos-Victor J,Sandini G,Curotto F et al.Divergent Stereo for Robot Navigation:Learning from Bees.Proceeding of IEEE Conference on Computer Vision and Pattern Recognition,New York,USA,1993:434-439.
    [58]Besl P J,McKay H D.A Method for Registration of 3-D Shapes.IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
    [59]Lu F,Milios E.Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans.Journal of Intelligent and Robotic Systems,1997,18(3):249-275.
    [60]Gutmann J S,Schlegel C.AMOS:Comparison of Scan Matching Approaches for Self-Localization in Indoor Environments.Proceeding of Euromicro Workshop on Advanced Mobile Robots,Kaiserslautern,Germany,1996:61-67.
    [61]Hinkel R,Knieriemen T.Environment Perception with a Laser Radar in a Fast Moving Robot.Proceeding of IFAC Symposium on Robot Control,Karlsruhe,Germany,1988:271-278.
    [62]Dubrawski A,Siemiatkowska B.A Method for Tracking the Pose of a Mobile Robot Equipped with a Scanning Laser Range Finder.Proceeding of IEEE International Conference on Robotics and Automation,Leuven,Belgium,1998:2518-2523.
    [63]Lingemann K,N(u|¨)chter A,Hertzberg J et al.High-speed Laser Localization for Mobile Robots.Robotics and Autonomous Systems,2005,51(4):275-296.
    [64]徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用,2001,3:7-13.
    [65]李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述.机器人.2003,25(6):560-573.
    [66]杨明,王宏,张钹.基于激光雷达的移动机器人位姿估计方法综述.机器人,2002,23(2):177-183.
    [67]厉茂海,洪炳熔.移动机器人的概率定位方法研究进展.机器人,2005,27(4):380-384.
    [68]方正,佟国峰,徐心和.基于贝叶斯滤波理论的自主机器人自定位方法研究.控制与决策,2006,21(8):841-847.
    [69]Xu D,Tan M.Accurate Positioning in Real Time for Mobile Robot.ActaAutomatica Sinica,2003,29(5):716-725.
    [70]张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究.自动化学报,2007,33(9):941-946.
    [71]高庆吉,雷亚莉,胡丹丹等.基于自适应感知复位算法的移动机器人定位.电子学报,2007,35(11):2166-2171.
    [72]潘良晨,陈卫东.室内移动机器人的视觉定位方法研究.机器人,2006,28(5):504-509.
    [73]王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究.机器人,2005,27(1):41-45.
    [74]李桂芝,安成万,杨国胜等.基于场景识别的移动机器人定位方法研究.机器人,2005,27(2):123-127.
    [75]房芳,马旭东,戴先中.基于霍夫空间模型匹配的移动机器人全局定位方法.机器人,2005,27(1):35-40.
    [76]厉茂海,洪炳熔,蔡则苏.一种新的移动机器人全局定位算法.电子学报,2006,34(3):553-558.
    [77]蔡则苏,洪炳镕,魏振华.使用NDT激光扫描匹配的移动机器人定位方法.机器人,2005,27(5):414-419.
    [78]刘志斌,石宗英,赵明国等.基于环境势场的移动机器人主动定位.控制与决策,2008, 23(2):187-194.
    [79]庄严,王伟,王珂等.移动机器人基于激光测距和单目视觉的室内同时定位和地图构建.自动化学报,2005,31(6):925-933.
    [80]潘学军,王玉峰,庄严等.基于改进角度直方图和最小二乘法的移动机器人地图构建.机器人,2003,25(7):680-685.
    [81]王珂,郭显久,庄严等.基于单目视觉的RoboCup全自主移动机器人定位研究.第五届全球智能控制与自动化大会,中国杭州,2004:4797-4801.
    [82]Duda R O,Hart P E.Use of the Hough Transform to Detect Lines and Curves in Pictures.Communications of the Association Computing Machinery,1972,15(1):11-15.
    [83]Bar-Shalom Y,Tse E.Tracking in a Cluttered Environment with Probabilistic Data Association.Automatica,1975,11(5):451-460.
    [84]Fortmann T E,Bar-Shalon Y,Scheffe M.Multi-target Tracking Using Joint Probabilistic Data Association.Proceeding of IEEE Conference on Decision and Control,1980:807-812.
    [85]Mackworth A K.On Seeing Robots.Computer Vision:Systems,Theory,and Applications.Singapore:World Scientific Press,1993.
    [86]Minoru A,Hiroaki K.The RoboCup Challenge.Robotics and Autonomous Systems,1999,29(1):3-12.
    [87]Simon J,Jeffrey U,Durrant-Whyte Hugh F.A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimator.IEEE Transanctions on Automatic Control,2000,45(3):477-482.
    [88]Iocchi L,Nardi D.Hough Localization for Mobile Robots in Polygonal Environments.Robotics and Autonomous Systems,2002,40(1):43-58.
    [89]Stroupe A,Sikorski K,Balch T.Constraint-based Landmark Localization.In:Gal A K ed.RoboCup 2002:Robot Soccer World Cup Ⅳ.Heidelberg:Springer-Verlag,2002:8-24.
    [90]Stroupe A W,Balch T.Collaborative Probabilistic Constraint-Based Landmark Localization.Proceeding of IEEE International Conference on Intelligent Robots and System,Takamatsu,Japan,2000:447-453.
    [91]Stroupe A,Martin M C,Balch T.Distributed Sensor Fusion for Object Position Estimation by Multi-Robot Systems.IEEE International Conference on Robotics and Automation.Washington,DC,USA,2001:1092-1098.
    [92]Adorni G,Cagnoni S.Landmark-based Robot Self-localization:A Case Study for the RoboCup Goal-keeper.International Conference on Information Intelligence and Systems.Washington,DC,USA,1999:164-171.
    [93]De J F,Caarls J,Bartelds R.A Two-Tiered Approach to Self-localization.In:Andreas B ed.RoboCup 2001:Robot Soccer World Cup V.Heidelberg:Springer-Verlag,2002:405-410.
    [94] Fox D, Burgard W. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. Proceeding of International Conference on Artificial Intelligence. Orlando, USA, 1999: 343-349.
    [95] Enderle S, Ritter M, Fox D. Vision-Based Localization in RoboCup Environments. In: Stone P ed. RoboCup 2000: Robot Soccer. World Cup IV. Heidelberg:Springer-Verlag, 2001: 291-296.
    [96] Plagge M, Gunther R, Ihlenburg J et al. The Attempto RoboCup Robot Team. In: Veloso Med. RoboCup-99: Robot Soccer World Cup III. London: Springer-Verlag, 2000:424-433.
    [97] Bartelds R. Real Time Vision based Self Localization:[Ph. D dissertation]. Delft: Delft University of Technology, 2002.
    [98] Marando F, Piaggio M. Real Time Self Localization Using a Single Frontal Camera. Proceeding of International Symposium of Intelligent Robotic Systems, Toulouse, France, 2001.
    [99] Schmitt T, Hanek R, Beetz M. Cooperative Probabilistic State Estimation for Vision-Based Autonomous Mobile Robots. IEEE Trans on Robotics and Automation, 2002, 18(5):670-684.
    [100] Diosi A, Kleeman L. Advanced Sonar and Laser Range Finder Fusion for Simultaneous Localization and Mapping, Proceeding of International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2004:1854-1859.
    [101] Chong K S, Kleeman L. Accurate Odometry and Error Modeling for a Mobile Robot. Proceeding of IEEE International Conference on Robotics and Automation, Albuquerque, USA, 2003:2783-2788.
    [102] Dhome M, Richetin M, Lapreste J T et al. Determination of the Attitude of 3D Objects from A Single Perspective View. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(12):1265-1278.
    [103] Ola B, Albert-Jan B. Robot Localization Based on Scan-Matching—Estimating the Covariance Matrix for the IDC Algorithm. Robotics and Autonomous Systems, 2003, 44(1): 29-40.
    [104] Zhang Z Y. Olivier F. 3D Dynamic Scene Analysis: A Stereo-based Approach. Berlin: Springer-Verlag, 1992.
    [105] Nicholas A, Olivier D F. Maintaining Representations of the Environment of a Mobile Robot. IEEE Transanctions on Robotics and Automation, 1989, 5(6):804-819.
    [106] Richard L, Burden J, Douglas Faires. Numerical Analysis (Seventh Edition). Beijing: Higher Education Press, 2001.
    [107] Neira J, Tardos J D, Horn J et al. Fusing Range and Intensity Images for Mobile Robot Localization. IEEE Transactions on Robotics and Automation, 1999, 15(1):76-84.
    [108] Brega R, Tomatis N, Arras K O. The Need for Autonomy and Real-Time in Mobile Robotics: A Case Study of XO/2 and Pygmalion.Proceeding of IEEE International Conference on Intelligent Robots and Systems,Takamatsu,Japan,2000:1422-1437.
    [109]庄严,邢睿智,王伟.XO/2实时操作系统在嵌入式移动机器人中的应用.中南大学学报,2005,36(1):359-364.
    [110]Vasudevan S,G(a|¨)chter S,Nguyen Viet et al.Cognitive Maps for Mobile Robots--an Object based Approach.Robotics and Autonomous Systems,2007,55(5):359- 371.
    [111]Nicola T.Hybrid,Metric-Topological,Mobile Robot Navigation.[Ph.D.Dissertation],Lausanne:Swiss Federal Institute of Technology,2001.
    [112]Geovany A,Marie B.Robustified Estimation Algorithms for Mobile Robot Localization Based on Geometrical Environment Maps.Robotics and Autonomous Systems,2003,45(3-4):131-159.
    [113]郑宏,王景川,陈卫东.基于地图的移动机器人自定位与导航系统.机器人,2007,29(4):397-402.
    [114]Clerentin A,Delahoche L.Brassart E el al.Self-localization:a New Uncertainty Propagation Architecture.Robotics and Autonomous Systems,2005,51(2-3):151-166.
    [115]庄严.移动机器人基于多传感器数据融合的定位及地图创建研究:(博士学位论文).大连:大连理工大学,2004.
    [116]Reid D B.An Algorithm for Tracking Multiple Targets.IEEE Transactions on Automatic Control,1979,24(6):843-854.
    [117]Cox I J,Hingorani S L.An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(2):138-150.
    [118]Liggins M E,Chong C Y,Kadar I et al.Distributed Fusion Architectures and Algorithms for Target Tracking.Proceedings of IEEE,1997,85(1):95-107.
    [119]庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究.控制与决策,2005,20(7):815-822.
    [120]Nayar S K,Venkata P,Folded Catadioptric Cameras.Proceeding of International Conference on Computer Vision ad Pattern Recognition,Fort Collins,USA,1999:217-223.
    [121]Geyer C,Daniilidis K.A Unifying Theory for Central Panoramic Systems and Practical Implications.Proceeding of European Conference on Computer Vision,Dublin,USA,2000:445-461.
    [122]Geyer C,Daniilidis K.Catadioptric Projective Geometry.International Journal of Computer Vision,2001,45(3):223-243.
    [123]Barreto J P,Araujo H.Geometric Properties of Central Catadioptric Line Images and Their Application in Calibration.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1327-1333.
    [124] Baker S, Nayar S K. A Theory of Single-viewpoint Catadioptric Image Formation. International Journal of Computer Vision, 1999, 35(2):1-22.
    
    [125] Brian D O A, Moore B J, Optimal filtering. Englewood Cliffs, N J:Prentice-Hall, 1979.
    [126] Chong C Y, Mori S, Chang K C. Distributed Multitarget Multisensor Tracking. In: Bar-Shalom Y ed. Multitarget-Multisensor Tracking: Advanced Applications, Norwood, MA: Artech House, 1990:247-295.
    [127] Bar-Shalom Y. On the Track-to-Track Correlation Problem. IEEE Transactions on Automatic Control, 1981, 26(2):571-572.
    [128] Chang K C, SahaRK, Bar-Shalom Y. On Optimal Track-To-Track Fusion. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4):1271-1276.
    [129] Li X R, Zhu Y M, Wang J et al. Optimal Linear Estimation Fusion-Part I: Unified Fusion Rules. IEEE Transanctions on Information Theory, 2003, 49(9):2192-2208.
    [130] Chang K C, Tian Z, Mori S. Performance Evaluation for MAP State Estimate Fusion. IEEE Transanctions on Aerospace and Electronic Systems, 2004, 40(2):706-714.
    [131] Zhou J, Zhu Y M, You Z S. An Efficient Algorithm for Optimal Linear Estimation Fusion in Distributed Multisensor Systems. IEEE Transactions on Systems, Man and Cybernetics-Part A, 2006, 36(5):1000-1009.
    [132] Zhu Y M, You Z S, Zhao J et al. The Optimality for the Distributed Kalman Filter with Feedback, Automatica, 2001,37(9):1489-1493.
    [133] Ji Q, Haralick M R, Breakpoint Detection Using Covariance Propagation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(8):845-851.
    [134] Pfister S T, Rourneliotis S I, BurdickJW. Weighted Line Fitting Algorithms for Mobile Robot Map Building and Efficient Data Representation. Proceeding of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003:1304-1311.
    [135] Minguez J, Montesano L, Lamiraux F. Metric-Based Iterative Closest Point Scan Matching for Sensor Displacement Estimation. IEEE Transactions on Robotics, 2006, 22(5):1047-1054.
    
    [136] Seugn H S, Lee D D. The Manifold Ways of Perception. Science, 2000, 290(22):2268-2269.
    [137] Judd S P D, Collett T S. Multiple Stored Views and Landmark Guidance in Ants. Nature, 1998, 392:710-714.
    [138] Dill M, Wolf R, Heisenberg M. Visual pattern recognition in Drosophila involves retinotopic matching. Nature, 1993, 365:751-753.
    [139] Specht D F. A General Regression Neural Network. IEEE Transactions on Neural Networks, 1991, 2(6):568-576.
    [140] Uenohara M, Kanade T. Optimal Approximation of Uniformly Rotated Images: Relationships between Karhunen - Loeve Expansion and Discrete Cosine Transform. IEEE Transactions on Image Processing, 1998, 7(1):116 - 119.
    [141] Bunch J R, Nielsenmm C P, Sorenson D C. A Rank-one Modification of the Symmetric Eigenproblem. Numerische Mathematik, 1978, 31(1):31-48.
    [142] Bunch J R, Nielsen C P. Updating the Singular Value Decomposition, Numerische Mathematik, 1978, 31(2):111 - 129.
    [143] Chandrasekaran S, Manjunath B S, Wang Y F et al. An Eigenspace Update Algorithm for Image Analysis. Graphical Models and Image Processing, 1997, 59(5):321 - 332.
    [144] DeGroat R D, Roberts R A. Efficient, Numerically Stablized Rank-One Eigenstructure Updating. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(2): 301-316.
    [145] Murakami H, Viaya Kumar B V K. An Efficient Calculation of Primary Images from a Set of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(5): 511-515.
    [146] Hall P, Marshall D, Martin R. Merging and Splitting Eigenspace Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(9): 1042 - 1049.
    [147] Dirk T, Andreas S. A Modified General Regression Neural Network (MGRNN) with New, Efficient Training Algorithms as a Robust 'black box' -tool for Data Analysis. Neural Networks, 2001, 14(8):1023 - 1034.
    [148] Schi(?)ler H, Hartmann U. Mapping Neural Network Derived from the Parzen Window Estimator. Neural Networks, 1992, 5(6):903-909.
    [149] Catassus M, Branagh W, Salin E D. Improved Calibration for Inductively Coupled Plasma-atomic Emission Spectrometry Using Generalized Regression Neural Networks. Applied Spectroscopy, 1995, 49(6):798-807.
    [150] Nadaraya E A. On Estimating Regression. Theory Probabilistic Applications, 1964, 9(1): 141-142.
    [151] Hansen J V, Meservy R D. Learning Experiments with Genetic Optimization of a Generalized Regression Neural Networks, Decision Support Systems, 1996, 18(3-4): 317-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700