压燃式发动机超细颗粒排放特性及其在大气环境中的污染特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国机动车保有量的迅速增长,机动车已经成为城市大气环境的主要污染源。机动车排放的超细颗粒能够附着大量有害组分,并通过呼吸道进入人体。这些有害组分的摄入会引起呼吸系统、心脑血管系统和消化系统等组织发生病变。因此,机动车超细颗粒污染已成为当今城市大气环境研究领域的热点。
     本文通过发动机台架实验、机动车实际大气环境排放现场测试以及CFD模拟计算等方法对影响发动机超细颗粒排放及其在大气环境中的稀释变化的主要因素进行了深入系统的研究。
     在自制的单级稀释系统上研究了燃料含氧量对压燃式发动机排气超细颗粒数浓度粒径分布及其化学组成的影响。研究表明,燃料含氧量对发动机超细颗粒排放特性有明显影响。随着燃料含氧量的增大,排气积聚模态微粒数浓度显著下降,而排气核模态微粒数浓度显著增大,排气总颗粒数浓度明显增大,排气总颗粒质量浓度则明显降低。随着燃料含氧量的增加,干碳烟含量明显降低,而可溶性有机物(SOF)含量显著增加,硫酸盐含量变化较小。燃用普通柴油和含氧混合燃料时,柴油机排气微粒中SOF主要成分为饱和烷烃。同时滤膜SOF分析得出,随着燃料含氧量的增加,烷烃和PAHs的含量降低,有机酸脂的含量增大。
     通过对比研究燃用普通柴油和超低硫柴油排气超细颗粒的特性,分析了燃料含硫量对压燃式发动机超细颗粒排放特性的影响。研究表明,燃料含硫量对压燃式发动机超细颗粒排放特性有显著影响。相对于燃用普通柴油,燃用超低硫柴油其排气积聚模态微粒数浓度变化不明显,而核模态微粒数浓度显著降低,排气总颗粒质量浓度略有降低,而总颗粒数浓度则显著降低,且降幅随负荷和转速增大。燃用普通柴油和超低硫柴油其排气微粒元素组成基本相似,主要由C、O、Cl、S、Si、Ca、Na、Al、K元素组成,但燃用超低硫柴油其排气微粒中没有发现S元素。排气微粒中SOF主要成分有饱和烷烃、有机酸酯和多环芳烃等。燃用超低硫柴油时微粒采样中未发现多环芳烃。
     在国产两缸压燃式发动机上研究了喷油参数(喷油提前角和燃油起喷压力)以及模拟EGR对柴油直喷燃烧时其超细颗粒排放特性的影响。研究表明,喷油提前角对发动机排气超细颗粒数浓度分布曲线形状影响较小,随着喷油提前角的增大,发动机排气积聚模态和核模态微粒数浓度均明显减小;随着燃油起喷压力的增大,排气积聚模态微粒数浓度明显减小,而核模态微粒数浓度则显著增大;随着进气道CO2浓度的增大,其排气积聚模态数浓度显著增大,而核模态微粒则明显减少。
     在改造的发动机上研究了正庚烷和二甲醚缸内直喷压燃、进气道喷射均质压燃(HCCI)以及进气道—气缸喷射复合燃烧3种燃烧模式发动机排气超细颗粒特性。正庚烷燃烧试验研究表明,排气超细颗粒数浓度粒径分布曲线随预混合率变化显著。正庚烷直喷燃烧时,排气超细颗粒以积聚模态微粒为主。随着预混合率的增大,排气积聚模态微粒数浓度明显降低;而核模态数浓度则显著增大。正庚烷HCCI燃烧时发动机排气超细颗粒以核模态微粒为主,积聚模态微粒数浓度很低。正庚烷复合燃烧和HCCI燃烧相对于直喷燃烧发动机排气总颗粒数浓度明显较高。排气核模态数浓度与HC排放明显相关。二甲醚燃烧研究表明,发动机排气超细数浓度分布特征随着预混合率变化较小,均以核模态为主,积聚模态数浓度很低。DME复合燃烧其排气总颗粒数浓度相对DME HCCI燃烧时略小,然而相对DME直喷燃烧时明显较大。排气核模态数浓度和总颗粒数浓度均与HC排放显著相关。
     实地测试了上海市3种典型道路(城市主干道、城市支干道和高速公路)旁机动车超细颗粒实时排放特性。结果表明,实际大气环境中,车流量、车流种类构成对测试结果有明显影响。超细颗粒数浓度和质量浓度随时间变化明显,超细颗粒数浓度随车流量的增大而增大;相对下午车流高峰期,上午车流高峰期超细颗粒数浓度和质量浓度明显较大。3种道路超细微粒数浓度粒径分布曲线形状差异较小,数浓度分布几何平均粒径约为22~35nm;质量浓度分布几何平均直径差异较大。总颗粒平均数浓度、CO平均浓度以及PM1平均浓度之间明显线性相关。计算得到机动车超细颗粒平均数量排放因子为4.52×1014 ~ 8.50×1014 particles/(km·Vehicle)。
     现场测试了高速公路下风向超细颗粒横向分布特性,并通过风向频率加权模型结合CFD模型对超细颗粒的横向分布特性进行了模拟研究。实测试验发现,随着横向距离的增加,超细颗粒数浓度和质量浓度浓度峰值均显著下降,而其峰值粒径变化较小。对于数浓度分布,不同距离处积聚模态的峰值和峰值粒径变化较小。同时可以得出,随着距离的增加,超细颗粒数浓度分布平均粒径显著增大。106m处相对于17m处,其平均颗粒数浓度粒径分布平均粒径增大了约12nm。NTotal与CO平均浓度有较好的相关性(R2=0.78)。幂函数能较好地反映高速公路超细颗粒横向CFD模拟值和实际测量值衰减率。由实际测量的结果与风向加权结合CFD模拟计算结果比较可知,相对于CFD模拟,实际测量超细颗粒数浓度和质量浓度横向衰减率均明显较大。同时对实际测量数据的分析得出,总颗粒数浓度的衰减主要是由核模态微粒的衰减所引起。
With the rapid increase of the vehicle population in China, the vehicle emission pollution have been becoming as the major pollution source in the urban atmosphere. Many toxicological studies reported that ultrafine particles (Dp<100 nm) contain considerable trace amounts of toxic substances and organic pollutants, which can penetrate deep into the lung and enter interstitial tissues, causing severe respiratory inflammation and acute pulmonary toxicity. Therefore, the ultrafine particles from vehicle have attracted extensive attention.
     The aim of this study is to evaluate the effects of engine factors on ultrafine particles from engines and atmospheric factors on dispersion of ultrafine particles during exhuast dilution. Using a single-stage dilution tunnel and SMPS particle size analyse instrument, author conducted engine rig test, roadside measurement and CFD simulation.
     Effect of oxygen content of fuel on the exhuast particle number concentration and size distribution was studied. The results indicate that, with the increase of oxygen content of fuel, number concentration in the accumulation mode decreases obviously, number concentration in the nucleation mode increases significantly. Meanwhile, with the increase of oxygen content of fuel, number concentration of total particles (10~487nm) increases, mass concentration of total particles decreases obviously. Also, with the increase of oxygen content of fuel, the mass content of DS decreases significantly. However, the mass contents of SOF and ester increase evidently with oxygen content of oxygenated diesel.
     Number size distributions (NSDs, 10-487nm) and composition of nanoparticle emitted from an engine fuelled with ordinary diesel (OD) and low sulfur diesel (LSD) fuel were comparatively studied. The results indicate that, compared with the OD, the LSD is found to slightly reduce the mass concentration, and significantly reduce the number concentration of the total particles (10-487 nm), and the reduction of number increases with the speed and load of engine. Under the same engine conditions, the nucleation mode for LSD fuel is significantly lower than those of ordinary diesel. However, the accumulation mode for the two fuels shows little difference. The elements composition of exhaust particles include C, O, Cl, S, Si, Ca, Na, Al and K. The S element is not detected in LSD fuel case. The main components of soluble organic fraction (SOF) of exhaust particles for the two fuels include saturated alkane (C15-C26), ester and polycyclic aromatic hydrocarbons (PAHs). However PAHs are not found in LSD fuel case.
     Effects of fuel supply advance angle , injection pressure , and simulated exhaust gas recirculation (EGR) on NSDs of exhaust particles emitted from a DI diesel engine were experimentally investigated. The results show that increase fuel supply advance angle slightly reduces the total exhasust particle. Increasing injection pressure is found to reduce the accumulation mode particle number and favour the formation of nucleation mode particles. With the increase of CO2 concention of the engine intake manifold, number concentration in the accumulation mode increases, but number concentration in the nucleation mode decreases evidently.
     Effect of combustion modes (including compression ignition direct injection (CIDI), homogeneous charge compression ignition (HCCI) and compound charge compression ignition combustion (CCCI)) on NSDs of exhaust particles from engines fuelled with n-heptane and dimethyl ether (DME) was studied. The results indicate that the structure of NSDs for n-heptane changes with rp obviously. Accumulation mode dominantes in CIDI case. With the increase of premixed ratio(rp), the accumulation mode decreases, the nucleation mode increases significantly. In HCCI case, nucleation mode occupies the dominant part of the total particles, and the number concentration of accumulation mode is very low. And the total exhaust particles number concentrations for CCCI and HCCI are obviously higher than those of CIDI. In addition, the number concentration of nucleation mode is highly correlation with HC concentrations. The results of combustion mode study for DME indicate that the structure of NSDs for DME shows less change with rp at all test engine conditions. In all cases, nucleation mode occupies the dominant part of the total particles, and the number concentration of accumulation mode is very low. Under the same engine condition, the total exhaust particles number concentrations for CCCI are slightly lower than those of HCCI, but higher than those of CIDI significantly. The number concentrations of nucleation mode particles and total particles have a significantly positive correlation with HC concentrations.
     Field measurements of particle number and mass concentrations, CO concentration, and PM1 mass concentration were performed at 3 typical roads in Shanghai at daytime of 7:30~19:30. Mean diurnal variations show that the ultrafine particles concentrations, PM1 and CO concentrations change obviously with traffic situation. The total number and mass concentrations of particles increase with the traffic volume. Also, the mean particles concentrations in morning rush hour are evindently higher than those of afternoon rush hour for three cases. The CO average concentration and PM1 average concentration are highly correlation with total particle number average concentration (Ntotal). Moreover, the mean emission factor per vehicle was calculated, which is about 4.52×1014~8.50×1014 particles Km-1Vehicle-1.
     Transverse distribution characteristic of ultrafine particles at the downwind of a major road (Highway A4)were investigated. CFD numerical simulation coupling with the wind direction frequency weighted (WDFW) method was carried out based on the actual conditions. The results indicate that the peak concentrations of NSDs and MSDs decrease significantly with the increase of the distance. However, the diameters of peak concentration are in the same range. For NSDs, the peak concentration and the diameters of peak concentration of accumulation mode show less change. Meantime, it is found that the mean diameter of NSDs increases with the increase of the distance. The mean diameter for NSDs at 106m sampling site is 12nm larger than that of 17m sampling site. The CO average concentration is highly correlation with Ntotal(R2=0.78). From the results of CFD simulation, it was concluded that the decay rates of Ntotal and M total in field measurement case are larger than those of simulation case. And the number concentration decay mainly reflect the dacay of nucleation mode. The decay rates of simulated result and experimetal data can be described by a power function.
引文
[1]谢晓敏.街道峡谷内气流运动和污染物扩散研究,[学位论文].上海:上海交通大学,2005
    [2]国家环境保护总局.《2007年全国城市环境管理与综合整治年度报告》, 2008年10月
    [3]李新令.发动机超细颗粒排放特性及排气稀释过程中其形成和变化研究,[学位论文].上海:上海交通大学,2007
    [4] Pope C A, Thun M J, Namboodiri M M, et al. Particulate air pollution as a predictor of mortality in a prospective study of US adults, American Journal of Respiratory and Critical Care Medicine, 1995, 151:669–674
    [5] Joellen L, Toxico L. Effects of emissions from diesel engines. New York: Elsevier Science Publishing Co, Inc, 1982.
    [6] Spix H R, Anderson J, Schwartz M A, et al. Short term effects of air pollution on hospital admissions of respiratory diseases in Europe A quantitative summary of APHEA project results, Archives of Environmental Health, 1998,53 (1):54–64
    [7] Li N, Hao M, Phalen R F, et al. Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects, Clinical Inmunology , 2003,109:250–265
    [8] Pope III C A, Dockery D W, Spengler J D, et al. Respiratory health and PM10 pollution: a daily time series analysis, American Review of Respiratory Disease, 1991,144:668–674
    [9]魏复盛,胡伟,腾恩江等.空气污染与儿童呼吸系统患病率的相关分析中国,环境科学,2000,20(3):220–224
    [10]胡伟,魏复盛,ZHANG Jim.室内燃煤与大气污染对儿童肺功能的交互影响,环境与健康杂志,2004,21(5):275–278
    [11]钱孝琳,阚海东,宋伟民等.大气细颗粒物污染与居民每日死亡关系的Meta分析,环境与健康杂志, 2005,22(4):246–248
    [12]Oberd?rster G, Utell M J. Ultrafine particles in the urban air to the respiratory track and beyond, Environmental Health Perspectives, 2002,110: A440–A441
    [13]Nygaard U C, Samuelsen U, Aase A, et al. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicology Science, 2004, 82:515–524
    [14]Harder V, Gilmour P, Lentner B, et al. Cardiovascular responses inunrestrainsdWKY rats to inhaled ultrafine carbon particles, Toxicology, 2005,17(1):29–42
    [15]赵金镯,宋伟民.大气超细颗粒物的分布特性及其对健康的影响,环境与职业医学, 2007,24 (1):76–79
    [16]戴海夏.上海市大气细颗粒物污染特征及人群健康效应研究,[学位论文].上海:复旦大学,2003
    [17]Donaldson K, Li X Y, MacNee W. Ultrafine(nanometer) Particle Mediated Lung Injury. Journal of Aerosol Science. 1998, 29( 5/6):553–560
    [18]Johnston C J, Finkelstein J N, Mercer P, et al. Pulmonary effects induced by ultrafine particles. Toxicology and Applied Pharmacology, 2000, 168:208–215
    [19]Augustinus E M, Johan M M, Erik L, et al. An aggregate public health indicator to represent the impact of multiple environmental exposures. Epidemiology, 1999, 10: 606–617.
    [20]Wei Q, Kittelson D B, Watts W F, et al. Single-stage dilution tunnel performance. SAE Paper, 2001-01-0201
    [21]邹建国,钟秦.柴油机排放颗粒物组成分析.环境污染治理技术与设备,2006,Vol. 22(3):23-26
    [22]Baumgard K, Johnson J H. The effect of fuel and engine design on diesel exhaust particle size distributions. SAE Paper, 1996, 960131
    [23]Lin C C, Chen S J, Huang K L, et al. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology, 2005, 39(21):8113–8123
    [24]Shi J P, Mark D, Harrison R. Characterization of particles from a current technology heavy-duty diesel engine. Environmental Science & Technology, 2000, 34: 748–755
    [25]Kleeman M J, Schauer J J, Cass G R, et al. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology, 2000, 34 (7): 1132–1142
    [26]Schneider J, Hockn N, Weimer S. Nucleation particles in diesel exhaust: composition inferred from in situ mass spectrometric analysis. Environmental Science & Technology, 2005, 39 : 6153–6161
    [27]Suresh A, Johnson J H. A study of the dilution effects on particle size measurement from a heavy-duty diesel engine with EGR. SAE Paper, 2001-01-0220
    [28]Jaime P. Study of particle size distributions emitted by a diesel engine. SAE Paper, 1999-01-1141
    [29]Shi J P, Harrison R. Investigation of ultrafine particle formation during diesel exhaust dilution. Environmental Science & Technology, 1999, 33: 3730–3736
    [30]Andersson J, Wedekind B. DETR/SMMT/CONCAWE particulate research program 1998–2001. Summary Report Ricardo Consulting Engineers, 2001, 26
    [31]Concawe. A study of the number, size & mass of exhaust particles emitted from european diesel and gasoline vehicles under steady-state and european driving cycle conditions, prepared for the CONCAWE automotive emissions management group by its special task force AE/STF-10, (Brussels, Belgium) CONCAWE Report , 1998, 98/51, 56
    [32]Graskow B R, Kittelson D B, Abdul-Khalek I S, et al. Characterization of exhaust particulate emissions from a spark ignition engine. Society of Automotive Engineers, Warrendale, 1998, 980528
    [33]Greenwood S, Coxon J E, Biddulph T, et al. An investigation to determine the exhaust particulate size distributions for diesel, petrol, and compressed natural gas fuelled vehicles. Society of Automotive Engineers, Warrandale,1996, 961085
    [34]Kittelson D B, Watts W F, Johnson J P. Diesel aerosol sampling methodology- CRC E-43 final report. Coordinating Research Council, Alpharetta, 2002
    [35]Cheng A S. Effects of oxygenates blended with diesel fuel on particulate matter emissions from a compression-ignition engine. PhD Dissertation. Berkeley: University of California, 2002
    [36]Hallgren B E, Heywood J B. Effects of oxygenated fuels on DI diesel combustion and emissions. SAE Paper, 2001-01-0648
    [37]Ristovski Z D, Jayaratne E R, Lim M. Influence of Diesel Fuel Sulfur onNanoparticle Emissions from City Buses. Environmental Science & Technology, 2006, 40: 1314–1320
    [38]Hall D, Dickens C. The effect of sulphur-free diesel fuel on the measurement of the number and size distribution of particles emitted from a heavy-duty diesel engine equipped with a catalysed particulate filter. SAE Paper, 2003-01-3167
    [39]Wahlin P, Palmgren F, Dingenen R V. Pronounced decrease of ambient particle number emissions from diesel traffic in Denmark after reduction of the sulphur content in diesel fuel. Atmospheric Environment. 2001 (35):3549–3552
    [40]Lee D, Miller A, Kittelson D. Characterization of metal-bearing diesel nanoparticles using single-particle mass spectrometry. Journal of Aerosol Science, 2006 (37): 88–110
    [41]Andersson J D, Preston H, Warrens C. Lubricant composition impact on theemissions from a european heavy duty diesel engine equipped with a diesel particulate filter. SAE Paper, 2004-01-3012
    [42]Jung H, Kittelson D B, Zachariah M R. The influence of engine lubricating oil on diesel nanoparticle emissions and kinetics of oxidation. SAE Paper, 2003-01-3179
    [43]Desantes J M, Bermúdez V, García J M, et al. Effects of current engine strategies on the exhaust aerosol particle size distribution from a heavy-duty diesel engine. Aerosol Science, 2005 (36):1251–1276
    [44]Mathis U, Mohr M, Kaegi R, et al. Influence of diesel engine combustion parameters on primary soot particle diameter. Environmental Science & Technology, 2005, 39:1887–1892
    [45]Annel K K, Ristim?ki J M, Vaaraslahti K M, et al. Effect of engine load on diesel soot particles. Environmental Science & Technology, 2004, 38: 2551–2556
    [46]Patschull J, Roth P. Measurement and reduction of particles emitted from a two-stroke engine. SAE Paper, 941683
    [47]Jung H, Kittelson D B, Zachariah M R. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combustion and Flame , 2005 (142): 276–288
    [48]Kim S H, Fletcher R A, Zachariah M R, et al. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals. Environmental Science & Technology, 2005, 39:4021–4026
    [49]Walker A P. Controlling particulate emissions from diesel vehicles. Topics in Catalysis, 2004, 28: 165–170
    [50]Saiyasitpanich P, Keener T C, Lu M, et al., Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators. Environmental Science & Technology, 2006,40 (24): 7890–7895
    [51]Kittelson DB, Reinertsen J, Michalski J. Further studies of electrostatic collection and agglomeration of diesel particles. SAE Paper,910329
    [52]Gulijk C, Heiszwolf J J, Makkee M, et al. Selection and development of a reactor for diesel particulate filtration. Chemical Engineering Science, 2001 (56):1705–1712
    [53] Zhang K M, Wexler A S, Zhu Y F, et al. Evolution of particle number distribution near roadways—Part II: the‘road-to-ambient’process, Atmospheric Environment, 2004, 38: 6655–6665
    [54]Palmgren F, Berkowicz R, Ziv A, et al. Actual car fleet emissions estimated from urban air quality measurements and street pollution models. Science of the TotalEnvironment, 1999, 235:101–109
    [55]Christoph H, Brigitte B, Weber R O. Long-term observation of real-world road traffic emission factors on a motorway in Switzerland. Atmospheric Environment, 2006,40:3696–3709
    [56]Whitby KT, Clark WE, Marple VA, et al., Characterization of California aerosols I: Size distributions of freeway aerosol. Atmospheric Environment, 1975,9: 463–482
    [57]Gramotnev G, Brown R, Ristovski Z, et al. Determination of average emission factors for vehicles on a busy road. Atmospheric Environment, 2003,37 (4): 465–474
    [58]Li X L, Wang J S, Tu X D, et al. Vertical variations of particle number concentration and size distribution in a street canyon in Shanghai, China. Science of the total environment, 2007,378: 306–316
    [59]王英.北京地区机动车排放颗粒物的污染特征研究,[学位论文].长春:吉林大学,2002
    [60]宁智,刘双喜,资新运.柴油机排气微粒特性的试验研究,环境科学学报, 2003,23(6): 765-770
    [61]Maricq M M, Podsiadlik D H, Chase R E. Examination of the size-resolved and transient nature of motor vehicle particle emissions. Environmental Science & Technology, 1999,33:1618–1626.
    [62]Vouitsis E, Ntziachristos L. Particulate matter mass measurements for low emitting diesel powered vehicles: what’s next? Progress in Energy and Combustion Science, 2003 (29): 635–672
    [63]Ntziachristos L, Samaras Z. New directions: Emerging demands for vehicle particle emission characterisation. Atmospheric Environment, 2003,37: 441-442
    [64]Berkowicz R. OSPM—a parameterised street pollution model. Environmental Monitoring and Assessment, 2000, 65:323–331
    [65]Hitchins J, Morawska L, Wolff R, et al. Concentration of submicrometre particles from vehicle emissions near a major roal. Atmospheric Environment, 2000,34(1): 51–59
    [66]COPERT II computer programme to calculate emissions from road transport methodology and emission factors technical report No. 6. European Environment Agency November, 1997, Denmark
    [67]吴烨,郝吉明.澳门机动车排放清单,清华大学学报(自然科学版),2002,42(12):1601-1604
    [68]李伟,傅立新.中国道路机动车10种污染物的排放量,城市环境和城市生态,200316(2):36-38
    [69]Cheng Y, Lee S C, Ho K F, et al., On-road particulate matter (PM2.5) and gaseous emissions in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 2006,40 : 4235–4245
    [70]Kittelson D B, Watts W F. Nanoparticle emissions on Minnesota highways. Atmospheric Environment , 2004,38: 9–19
    [71]Kristensson A, Johansson C. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmospheric Environment , 2004 ,38: 657–673
    [72]Gillies J A, Gertler A W, Sagebiel J C, et al. Onroad PM2.5 and PM10 emissions in the Sepulveda Tunnel, Los Angeles, California. Environmental Science & Technology , 2001,35:1054–1063
    [73]Gertler A W, Sagebiel J C, Wittorff D N,et al. Vehicle emissions in five urban tunnels, final report under CRC project E-5, prepared for the coordinating research council, Auto/Oil improvement research program. National Renewable Energy Laboratory, and South Coast Air Quality Management, 1997b, 329:753–1759
    [74]Geller M, Sardar S B, Phuleria H, et al., Measurements of particle number and mass concentrations and size distributions in a tunnel environment. Environmental Science & Technology, 2005, 39: 8653–8663
    [75]曾凡刚,王玮.机动车排放颗粒物中多环芳烃化合物的研究.环境科学研究, 2001,14(4):32-35
    [76]王伯光,张远航.广州市机动车排放因子隧道测试,环境科学研究,2001,14(4):13-16
    [77]Abu-Allaban M, Coulomb W, Gertler A W, et al., Exhaust particle size distribution measurements at the Tuscarora Mountain tunnel. Aerosol Science and Technology, 2002,36 (6): 771–789
    [78]Hueglin C, Buchmann B, Weber R O. Long-term observation of real-world road traffic emission factors on a motorway in Switzerland. Atmospheric Environment, 2006,40:3696–3709
    [79]Ntziachristos L, Ning Z, Geller M D, et al. Particle concentration and characteristics near a major freeway with heavy-duty diesel traffic. Environmental Science & Technology, 2007,41:2223–2230
    [80]Kulmala M, Dal M M, Makel A, et al. Formation and growth nucleation modeparticles. Finnish association for aerosol research. Report Series in Aerosol Science, 2000,48: 83–88.
    [81]Lesley L S, Irene M S. PM10 and PM2.5-legislation, measurement and control. International Journal of Environment and Pollution, 2002,17:157–169
    [82] Zhang K M, Wexler A S, Niemeier D A, et al. Evolution of particle number distribution near roadways. Part III: Traffic analysis and on-road size resolved particulate emission factors. Atmospheric Environment, 2005,39: 4155–4166
    [83]Bihan O L, W?hlin P, Ketzel M et al. Application of dispersion modelling for analysis of particle pollution sources in a street canyon. Water, Air, and Soil Pollution,2002, 2: 395–404
    [84]Ketzel M, Wahlina P, Berkowicza R. Particle and trace gas emission factors under urban driving conditions in Copenhagen based on street and roof-level observations Finn Palmgrena. Atmospheric Environment, 2003,37: 2735–2749
    [85]Imhof D, Gartner E W, Ordonez C et al. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland. Environmental Science & Technology, 2005, 39: 8341–8350
    [86]Janh?ll S, Hallquist M. A novel method for determination of size-resolved, submicrometer particle traffic emission factors. Environmental Science & Technology, 2005, 39: 7609–7615
    [87]Janh?ll S, Jonsson A M, Molnár P. Size resolved traffic emission factors of submicrometer particles. Atmospheric Environment, 2004,38:4331–4340
    [88]Longley I D, Inglis D W, Gallagher M W. Using NOx and CO monitoring data to indicate fine aerosol number concentrations and emission factors in three UK conurbations. Atmospheric Environment, 2005,39:5157–5169
    [89]Jamriska M, Morawska U L. A model for determination of motor vehicle emission factors from on-road measurements with a focus on submicrometer particles. Science of the Total Environment, 2001:264: 241–255
    [90]Li X L, Huang Z, Wang J S, et al. Ultrafine particle number concentration and size distribution measurements in a street canyon. Environmental Science, 2007,28(4):695–700
    [91]Wehner B, Birmili1 W, Gnauk T. Alfred wiedensohler their transformation into the urban-air background: measurements and a simple model study. Atmospheric Environment,2002, 36:2215–2223
    [92]Hitchins J, Morawska L. Concentrations of submicrometre particles from vehicle emissions near a major road. Atmospheric Environment,2000, 34: 51–59
    [93]Palmgren F, Wahlin P. Characterisation of particle emissions from the driving carfleet and the contribution to ambient and indoor particle concentrations . Physics and Chemistry of the Earth, 2003, 28:327–334
    [94]Palmgren F, Wahlin P. Experimental studies of ultrafine particles in streetsand the relationship to traffic. Atmospheric Environment,2001, 35 : 63–69
    [95]Kittelson D B, Watts W F, Johnson JP. Fine particle (nanoparticle) emissions on Minnesota highways. Minnesota Department of Transportation Report, 2001-12: 87
    [96]Longley I D, Gallagher M W, Dorsey J, et al. A case study of aerosol (4.6 nm    [97]Charron A, Harrison R M. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment, 2003, 37 : 4109–4119
    [98]Zhu Y F, Hinds W C, Kim S, et al. Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric Environment , 2002,36: 4323–4335
    [99]Pirjola L, Paasonen P, Pfeiffer D, et al. Dispersion of particles and trace gases nearby a city highway. Atmospheric Environment, 2006, 40, 867–879
    [100]付娟,宁智,卢小珍.汽车排气颗粒的形成及其演变分析,环境科学与管理, 2006,31(4):56–58
    [101] Kittelson D B, Johnson J, Watts W, et al. Diesel aerosol sampling in the atmosphere. SAE Paper, 2000-01-2212
    [102] Kittelson D, Abdul-Khalek I. Formation of nanoparticles during exhaust dilution, EFI member conference:“Fuels, Lubricants Engines, & Emissions”, January 18-20,1999
    [103] Mathis U, Mohr M, Zenobi R. Effect of organic compounds on nanoparticle formation in diluted diesel exhaust. Atmospheric Chemistry and Physics Discussions, 2004, 4: 609–620
    [104]付娟,宁智,苏丽萍等.资新运汽车排气尾流中颗粒分布及其变化特性的研究,环境科学,2007, 28(5):952–957
    [105]刘红杰,王英,王玮等.机动车排放颗粒物采集分析系统的开发,现代科学仪器, 2001, 6:20-22.
    [106] Vouitsis E, Ntziachristos L, Samaras Z. Modeling of diesel exhaust aerosol during libratory sampling. Atmospheric Environment, 2005,39:1335–1345
    [107] Du H, Yu F Q. Role of the binary H2SO4-H2O homogeneous nucleateon in theformation of volatile nanoparticles in the vehicular exhaust. Atmospheric Environment, 2002, 40:7579–7588
    [108]余皎.柴油机排气颗粒测试系统的研究和应用,[学位论文],吉林大学,1999
    [109] Wong C P, Chan T L, Leung C W. Characterisation of diesel exhaust particle number and size distributions using mini-dilution tunnel and ejector–diluter measurement techniques. Atmospheric Environment, 2003, 37:4435–4446.
    [110] Pirjola L. Effects of the increased uvradiation and biogenic voc emissions on ultrafine sulphate aerosol formation. Journal of Aerosol Science, 1999,30: 355–367
    [111] Pilinis C, Seinfeld J H. Continued development and evaluation of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmospheric Environment, 1987, 21:2453-2466
    [112] Jakobson M Z, Lu R, Turco R P, et al. Development and application of a new air pollution modelling system—Part I: Gas-phase simulations. Atmospheric Environment , 1996,30:1939–1963
    [113] Settumba N, Garrick S C. Direct numerical simulation ofnanoparticle coagulation in a temporal mixing layer via a moment method. Aerosol Science, 2003, 34 :149–167
    [114] Settumba N, Garrick S C. A comparison of di usive transport in a moment method for nanoparticle coagulation. Aerosol Science, 2004,35:93–101
    [115] Owen B, Edmunds H A, Carruthers D J, et al. Use of a new generation urban scale dispersion model to estimate the concentration of oxides of nitrogen and sulphur dioxide in a large urban area. Science of the Total Environment , 1999, 235: 277–291
    [116] Eerens H C, Sliggers C J. The CAR model: the dutch method to determine citystreet air quality. Atmospheric Environment, 1993, 27: 389–399
    [117] Hout K D, Baars H P, Duijm N J. Effects of buildings and trees on air pollution byroad traffic. Proceedings of the Eighth World Clean Air Congress, Amsterdam, 1994
    [118] Boeft J, Eerens H C. CAR international: a simple model to determine citystreet air quality. Science of the Total Environment, 1996,189: 321–326
    [119] Johnson W B, Ludwig F L, Dabberdt WF, et al. An urban diffusion simulation model for carbon monoxide. Journal of the Air Pollution Control Association ,1973,23:490–498
    [120] Yamartino R J, Wiegand G. Development and evaluation of simple models forthe turbulence and pollutant concentration fields within an urban street canyon. Atmospheric Environment , 1986,20: 2137–2156
    [121] Micallef A, Colls J J. Measuring and modelling the airborne particulate matter mass concentration field in the street environment: model overview and evaluation. Science of the Total Environment , 1999,235: 199–210
    [122] Carissimo B, Dupont E, Marchand O. Local simulations of land-sea breeze cycles in Athens based on large-scale operational analyses. Atmospheric Environment, 1996,15:2691–2704
    [123] Levi A S, Sini J F. Simulation of diffusionwithin an urban street canyon. Journal of Wind Engineering , 1992,52: 114–119
    [124] Eichhorn J. Validation of a microscale pollution dispersal model. 21st International Meeting on Air Pollution Modeling and its Application, Baltimore, MD, USA, 1995
    [125] Colls J J . Alfred measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon. Science of the Total Environment, 1999,235:221–233
    [126] Vesovic V, Auziere A, Calviac G. Modelling of the dispersion and deposition of coarse particulate matter under neutral atmospheric conditions. Atmospheric Environment ,2001,35 :99–105
    [127] Martonena T B, Zhang Z, Yue G, et al. 3-D Particle transport within the human upper respiratory tract. Aerosol Science, 2002, 33: 1095–1110
    [128] Xia J, Dennis Y C. Pollutant dispersion in urban street canopies. Atmospheric Environment ,2001,35 : 2033–2043
    [129] Gemcia T. A CFD study of the throat during aerosol drug delivery using heliox and air. Aerosol Science, 2003,34 : 1175–1192
    [130] Stapleton K W. On the suitability of k-e turbulence modeling for aerosol depositin in mouth an thoat: a comparion with experiment. Journal of Aerosol Science, 2000, 31(6): 739–749
    [131] Petshy A, Flagan C, Seinfeld J. Theory of aerosol formation and growth in laminar flow. Journal of Colloid and Interface Science,1983, 91:525–545
    [132] Gidhagen L, Johansson C, Langner J, et al. Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmospheric Environment , 2004, 38: 2029–2044
    [133] Jouni P K, Jorma J. Computtional fluid dynamics based sectinal aerosol modelling schemes. Journal of Aerosol Science, 2000, 31(5): 531–550
    [134] Wagner P. Aerosol growth by condensation. In Topics in Current Physics, Aerosol Microphysics II (Edited by Marlow, W.), Springer, Berlin, 1982
    [135] Pohjola M, Pirjola L. Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment,2003, 37 :339–351
    [136] Vignati E, Berkowicz R, Palmgren F, et al. Transformations of size distributions pf emitted particles in streets. Science of the Total Environment 1999,235: 37–49
    [137] Gidhagen L, Johansson C. Model simulation of ultrafine particles inside a road tunnel. Atmospheric Environment,2003, 37: 2023–2036
    [138] Alleman T L,Eudy L, Miyasato M,et al. Fuel property, emission test, and operability results from a fleet of class 6 vehicles operating on Gas-To-Liquid fuel and catalyzed diesel particle filters. SAE Paper, 2004-01-2959
    [139] Kittelson D B. Engines and nanoparticles: A review. Journal of Aerosol Science 1998, 29: 575–588
    [140] Shi J P, Harrison R M, Brear F. Particle size distribution from a modern heavy duty diesel engine. Science of the Total Environment, 1999, 235:305–317
    [141]李新令,黄震,王嘉松.二甲醚发动机超细颗粒排放属性实验研究.科学通报,2007,52(14):1707–1713
    [142] Kittelson D B, Arnold M, Watts W. Review of diesel particulate matter sampling methods. EPA final report,1999: 1–64
    [143] Kittelson D B, Johnson J, Watts W, et al. Diesel aerosol sampling in the atmosphere, SAE Paper, 2000-01-2212
    [144] Alleman T L, Cormick M, Robert L. Fischer-tropsch diesel fuels-properties and exhaust emissions: a literature review. SAE Paper, 2003 - 01– 0763
    [145] Liu W, Qiao X Q, Wang J S, et al. Effects of combustion mode on exhaust particle size distribution produced by an engine fueled by Dimethyl Ether (DME). Energy & Fuels, 2008, 22 (6):3838–3843
    [146] Maricq M M, Chase R E, Podsiadlik D H. The effect of dimethoxy methane additive on diesel vehicle particulate emissions. SAE paper, 1998, 982572
    [147]吕兴才,张武高,黄震.燃料设计改善发动机燃烧和排放的研究(2)——对柴油机燃烧与排放影响的分析.内燃机学报,2004,22(3):210–216
    [148]乔信起,肖进,黄震等.含甲缩醛柴油喷雾和燃烧排放特性的试验研究.工程热物理学报,2005,26(1):174–176
    [149] Liu W, Huang Z, Wang J, et al. Effects of dimethoxy methane blended with GTL on particulate matter emissions from a compression-ignition engine. Energy &Fuels, 2008, 22(4): 2307–2313
    [150]陈虎,陈文淼,王建昕等.柴油机燃用乙醇-柴油含氧燃料时微粒特性的分析.内燃机学报,2005,23(4): 307–312
    [151] Carpenter K, Johnson J H. Analysis of the physical characteristics of diesel particulate matter using transmission electron microscope techniques. SAE Paper, 790815
    [152]马骏骏.基于燃料设计与管理的HCCI/DI分层复合燃烧的试验研究, [学位论文],上海交通大学, 2009
    [153]张俊军,乔信起,王真等.燃用二甲醚柴油机气道-气缸喷射复合燃烧.上海交通大学学报,2008,42(3):370-374
    [154]黄震,乔信起,童澄教.低污染二甲醚燃料发动机燃烧方式研究.上海汽车,1998, 980102
    [155] Sorenson S C, Mikkelsen S E. Performance and emissions of a 0.273 liter direct injection diesel engine fueled with neat dimethyl ether. SAE Paper, 950064
    [156] Wu J H, Huang Z, Qiao X Q, et al. Study on combustion and emissions characteristics of turbocharged engine fuelled with dimethyl ether. International Journal of Automotive Technology, KSAE, 2006, 7(6): 645–652
    [157] Shuichi K, Mitsuharu O, Tomoya M. DME fuel blends for low-emission, direct-injection diesel engines. SAE Paper, 2000-01-2004.
    [158] Xu S D, Yao M F, Xu J F. An experimental investigation on the spray characteristics of dimethyl ether (DME). SAE Paper , 2001-01-0142
    [159] Zhang J J, Qiao X Q, Guan B, et al. Search for the optimizing control method of compound charge compressionignition (CCCI) combustion in an engine fueled with dimethyl ether. Energy & Fuels, 2008, 22 (3):1581–1588
    [160] Kittelson D B, Watts W F, Arnold M. Review of diesel particulate sampling methods. Department of Mechanical Engineering: University of Minnesota,1998b
    [161] Vaaraslahti K, Virtanen A, Ristim?ki J, et al. Nucleation mode formation in heavy-duty diesel exhuast with and without a particulate filter. Environmental Science and Technology, 2004, 38:4884– 4890
    [162]陈晓北,黄荣华,陈达良.直喷式柴油机排放微粒尺寸分布特性.燃烧科学与技术, 2006, 12(4):335-339
    [163]翟鸿宾,李理光,刘志敏等.LPG小型点燃式发动机怠速工况下微粒排放特性研究.内燃机学报,2007,25(1):66-72
    [164]李德钢,黄震,乔信起等.二甲醚燃料均质压燃燃烧研究.内燃机学报,2005,23(2):193-198
    [165] Wehner B, Philippin S, Wiedenshler A, et al.Volatility of aerosol particles next to a highwy. Journal of Aerosol Science , 2001, 32:117–118
    [166]王嘉松,陈达良,宁治等.不同人类汽车排放超细微粒特性的实验研究。环境科学,2006,27(12):2382-2385
    [167]阚海东,陈秉衡,贾健.上海市大气污染与居民每日死亡关系的病例交叉研究。中华流行病学杂志,2003,24(10):863-867
    [168] Nelson S. A comparison of diffusive transport in a moment method for nanoparticle coagulation. Journal of Aerosol Science, 2004, 35:93–101
    [169]屠晓栋.发动机排放与城市道路超细颗粒物特性研究. [学位论文].上海:上海交通大学,2007
    [170] Pirjola L, Kulmala M. Modelling the formation of H2SO4-H2O particles in rural, urban and marine conditions. Atmospheric Research, 1998, 46: 321–347
    [171] Molnár P, Janh?ll S, Hallquist M. Roadside measurements of fine and ultrafine particles at a major road north of Gothenburg. Atmospheric Environment, 2002, 36: 4115–4123
    [172] Benson P E. A reviewof the development and application of the CALINE3 and CALINE4 models. Atmospheric Environment Part B-Urban Atmosphere, 1992, 26(3):379–390
    [173] Zhu Y F, Kuhn T, Mayo P, et al. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environmental Science & Technology, 2006, 40:2531–2536
    [174] Zou X D, Shen Z M, Yuan T, et al. Shifted power-law relationship between NO2 concentration and the distance from a highway:a new dispersion model based on the wind profile model.Atmospheric Environment,2006,40(40):8068–8073
    [175]王嘉松,陈达良,宁治等.城市道路CO和PM2.5浓度分布的线源模型预测及现场观测.第十三届全国大气环境学术会议,2006:92-97
    [176] Vardoulakis S, Fisher B E, Pericleous K, et al. Modelling air quality in street canyons: a review. Atmospheric Enviroment, 2003,37(2):155–182
    [177] Xie XM, Huang Z, Wang JS, et al. Impact of building configuration on air quality in street canyon. Atmospheric environment, 2005, 39: 4519–4530
    [178] Wang J S, Chan T L, Cheung C S, et al. Three-dimensional pollutantconcentration dispersion of a vehicular exhaust plume in the real atmosphere. Atmospheric Enviroment ,2006, 40(3):484–497
    [179]孙在.室内燃烧源细微颗粒物的传输机理研究,[学位论文].上海:上海交通大学,2007
    [180]叶春,王嘉松,李新令等.街道峡谷内汽车排放污染物浓度分布的观测与数值模拟,环境化学,2006,25(3):363-366
    [181] Launder B E, Spalding D B. The numerical computational turbulent flow. Computational Methods and Applied Mechanics,1974,3:269–289
    [182] Doyle G J. Self-nucleation in the sulfuric acid-water system. Journal of Chemical Physics, 1961, 35:795–799
    [183] Mariq M M, Podsiadlik D H, Chase R E. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: light duty diesel vehicles. Environmental Science & Technology, 2002, 36:283–289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700