鸡肌苷酸相关候选基因遗传效应及表达规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌苷酸(Inosine monophosphate, IMP)是重要的风味物质,对肌肉的鲜味程度起着巨大作用,目前世界上已有不少国家以肌苷酸的含量作为肉类新鲜程度的指标之一。肌苷酸(IMP)在体内的合成代谢过程十分复杂,从头合成涉及十种关键酶。本研究以鸡肌苷酸合成代谢相关酶中的谷氨酰胺磷酸核糖焦磷酸酰胺转移酶(GPAT)基因、5-氨基咪唑核苷酸羧化酶/5-氨基咪唑-4-(N-琥珀酰胺)核苷酸合成酶(AIRC)基因和氨基咪唑氨甲酰核苷酸转甲酰基酶/次黄嘌呤核苷酸环水解酶(PURH)基因为候选基因,采用PCR-SSCP和测序相结合的方法,在丝羽乌骨鸡、萧山鸡、白耳鸡、藏鸡等4个地方鸡种以及1个外来鸡种-隐性白羽肉鸡群体中对鸡GPAT、AIRC和PURH基因进行单核苷酸多态性(SNPs)扫描并分析其与肌肉肌苷酸含量之间的关系;利用相对定量RT-PCR法检测了ADSL、GARS-AIRS-GART、GPAT、AIRC和PURH等5个候选基因在白耳鸡不同组织中的时空表达规律;同时结合本实验室已有的对ADSL、GARS-AIRS-GART基因多态性研究结果,在白耳鸡群体中对ADSL、GARS-AIRS-GART、GPAT、AIRC和PURH基因进行多基因聚合分析,探讨不同基因组合之间合并基因型对肌肉肌苷酸含量的效应大小。主要研究结果如下:
     1.以鸡IMP合成代谢过程中紧密连锁的谷氨酰胺磷酸核糖焦磷酸酰胺转移酶(GPAT)基因、5-氨基咪唑核苷酸羧化酶/5-氨基咪唑-4-(N-琥珀酰胺)核苷酸合成酶(AIRC)基因为候选基因,对该两个基因的启动子区域、所有外显子和部分内含子区域进行单核苷酸多态性(SNPs)扫描。共检测出6个多态位点,分别为GPAT基因外显子2中29777处的碱基A缺失突变、内含子4中G34993A突变、内含子5中T35188A突变、AIRC基因外显子3中T1993C突变、外显子8中C5406G突变以及启动子区G-158C突变,将核苷酸序列翻译成相应的氨基酸序列后发现,位于编码区的突变均为沉默突变。
     2.在GPAT基因中,仅在外显子2的多态位点上存在显著的基因型效应,AA型个体胸肌IMP含量显著的高于AB型与BB型个体,AB型个体IMP含量稍高于BB型,但二者之间差异不显著。AIRC基因的两个多态位点在5个鸡种中均存在显著的基因型效应,在外显子3中CC型个体胸肌IMP含量显著高于TC型和TT型个体,TC型个体IMP含量均值稍高于TT型个体,但两者之间的差异不显著;而在外显子8中,CG型个体的胸肌IMP含量最高,并显著高于CC型和GG型个体,GG型个体IMP含量也显著地高于CC型个体。两基因启动子区的多态位点也与胸肌IMP含量之间存在着显著相关,GG型个体胸肌IMP含量显著高于GC型和CC型个体,GC型个体IMP含量稍高于CC型个体,但两者之间的差异不显著。推测GPAT/AIRC基因应是肌肉肌苷酸含量的主效QTL或与其主效QTL紧密连锁,有望用于标记辅助选择。
     3.以鸡IMP合成过程中的氨基咪唑氨甲酰核苷酸转甲酰基酶/次黄嘌呤核苷酸环水解酶(PURH)基因为候选基因,对该基因的所有16个外显子、外显子/内含子的结合区域以及3’侧翼部分序列进行SNPs扫描。共检测到两个多态位点,分别为外显子9中的A8023T突变和外显子16中的T17446C突变(从转录起始位点开始计起所得到的核苷酸位置),但这两个突变均为沉默突变,并没有导致对应的氨基酸序列发生变异。两个SNPs位点在不同鸡种中的基因型分布差异显著,进一步的关联分析显示,仅外显子16中的多态位点与肌肉IMP含量之间存在着显著的关联,其TT型个体胸肌IMP含量显著高于CT型与CC型个体,CT型个体IMP含量稍高于CC型,但二者之间差异不显著,初步认为该位点可以作为肌肉IMP含量的辅助选择标记。
     4.在白耳鸡群体中对肌苷酸合成相关酶基因(ADSL、GARS-AIRS-GART、GPAT、AIRC和PURH基因)在不同组织和肌肉中的表达规律进行了研究。结果在白耳鸡的不同生长阶段(3,6,9,12和15周龄)不同组织中均检测到了5个基因的mRNA,在某些时期的表达量上存在强弱之分,但没有发现有和无的差别,说明IMP合成过程中的5个基因是通过作用于一系列不同的组织器官而发挥其生理功能;并且ADSL、GARS-AIRS-GART、GPAT和PURH基因在所有组织中表达量的变化趋势基本一致,呈明显的时序性变化:12周龄前随着周龄的增加,表达量不断增加,在12周龄时达到最高,而后开始下降;而AIRC基因在不同组织中的表达随着周龄的增加并没有一定的规律,可能是由于其在不同组织中的表达存在特殊的调节机制。位于同一染色体上的基因(ADSL与GARS-AIRS-GART,GPAT与AIRC) mRNA表达量之间均存在显著或极显著的正相关,ADSL与AIRC、PURH与GPAT/AIRC基因mRNA表达量之间也存在显著的正相关,这些结果说明IMP合成涉及的关键酶的调控存在关联,它们之间存在着协同作用,并最终影响着肌苷酸的含量。
     5.在较大规模的白耳鸡群体中对IMP合成过程中的5个相关酶基因进行多基因聚合效应分析,分别分析了单基因、两基因、三基因、四基因以及五基因聚合后对胸肌IMP含量的影响效应大小,结果表现出五基因合并效应>四基因合并效应>三基因合并效应>两基因合并效应>单基因效应,合并基因型的效应不是各自基因型效应的简单相加,但却要高于最好的单个基因型效应,这提示我们在分析多基因控制的数量性状时,需要同时对多个位点组成的合并基因型(单倍型)进行分析,这样才能得到基因与性状之间的真实相关性,这个结论对于利用DNA标记进行辅助选择特别有意义,表明评估品种或种群的遗传改良必须以合并基因型的影响效应为准。
Meat flavor is one of the most important aspects of the meat quality in chicken, many evidences indicated that Inosine monophosphate (IMP) is one of the key components for meat flavor, and then more and more countries use IMP content as the criterion of meat flavor and freshness now. The process of the synthesis and metabolism for IMP is very complicated, with ten-step reactions involved. In the first part of the present study, we chose GPAT、AIRC and PURH gene as candidate genes for IMP contents in chicken. To explore the relationships between these three genes with IMP contents in chicken, single strand conformation (SSCP) analysis and sequencing reactions were performed to screen single nucleotide polymorphisms (SNPs) in four Chinese indigenous chicken breeds, Silkies chickens (SC), Xiaoshan chickens (XS), Baier chickens (BE), Tibetan chickens (TC), and an exotic breed, Recessive White broilers (RW). In the second part, the developmental pattern of ADSL、GARS - AIRS - GART、GPAT、AIRC and PURH mRNA expression in different tissues in Baier chickens were determined by relative quantitative RT-PCR withβ-actin as an internal standard. And in the third part, we analyzed the effects of combined genotypes of different genes involved in de novo purine biosynthesis pathway on muscle IMP content. The main results were as follows:
     1. The promoter sequence and all 20 exons with flanking intronic sequences of GPAT/AIRC genes were screened in the five chicken breeds mentioned above, by the method of PCR-SSCP analysis, combined with sequencing reactions. Six SNPs were detected: A deletion mutation from exon 2, G34993A from intron 4, T35188A from intron 5 in GPAT gene; T1993C from exon 3, and C5406G from exon 8 in AIRC gene; and a G-158C mutation in the promoter region. All the mutations in the coding regions were silence mutations; they didn’t cause the alteration of the corresponding amino acid.
     2. Statistical analysis was applied to test the significance of the difference of breed effect and genotype effect between three genotypes of the six gene loci, respectively. Only significant genotypic effect (P<0.05) existed in four of the loci, they were SNP in exon 2 of GPAT gene, in exon 3 and exon 8 of AIRC gene, and in promoter region, respectively. So we analyzed genotypic effect with the combination of all breeds in these four loci. The least square analysis showed that AA genotype birds had significant higher IMP content than AB and BB genotype birds, AB genotype birds also had a little higher IMP content than BB genotype birds, but the difference was not significant in GPAT gene exon 2; In AIRC gene, CC genotype birds had significant higher IMP content than TC and TT genotype birds, TC genotype birds also had a little higher IMP content than TT genotype birds, but the difference was not significant in GPAT gene exon 3, while CG genotype birds had the highest IMP content in exon 8, CG genotype birds had significant higher IMP content than CC and GG genotype birds, GG genotype birds also had significant higher IMP content than CC genotype birds; SNP in the promoter region also had significant effect on muscle IMP content, GG genotype birds had significant higher IMP content than GC and CC genotype birds, GC genotype birds also had a little higher IMP content than CC genotype birds, but the difference was not significant. We putatively drew the conclusion that GPAT/AIRC gene could be a candidate locus or linked to a major gene (s) that affected muscle IMP content and could be used as the potential molecular marker for meat quality trait in chicken.
     3. All 16 exons with flanking intronic sequences, as well as a fragment of the 3’flanking region, of PURH gene, were screened in the same five populations, by the method of PCR-SSCP analysis, combined with sequencing reactions. Two SNPs were detected: A/T substitution at position 8181 in exon 9 [A8181T] and a T/C point mutation at position 17608 in exon 16 [T17608C], but these two mutations didn’t cause the alteration of the corresponding amino acid. The least square analysis of the two SNPs detected in exon 9 and exon 16 showed that only the polymorphic site in exon 16 existed significant genotypic effect. The association study between genotypes in exon 16 and muscle IMP content showed that TT genotype birds had significant higher IMP content than CT and CC genotype birds, but the difference of IMP content between CT and CC genotype birds were not significant. The breed effect and the interaction effect between breed and genotype are not significant, so we could conclude that there may be a relationship between this SNP site and IMP content in chicken.
     4. The developmental pattern of ADSL、GARS-AIRS-GART、GPAT、AIRC and PURH mRNA expression in different tissues in Baier chickens were studied. The results showed that the mRNA of all the studied genes was detected in different tissues of different growth stages (3, 6, 9, 12 and 15 weeks of age). The pattern of developmental changes of ADSL、GARS-AIRS-GART、GPAT and PURH mRNA in different tissues were similar, which increased with the age before 12-week-old, the peak level was found at 12-week-old, and then declined. Nevertheless, there was no rule to follow in the expression pattern of AIRC mRNA, this might due to special regulation mechanism existing in the expression of AIRC mRNA in different tissues. The correlation analysis showed that mRNA levels between genes located on the same chromosome were found to be positively correlated; Meanwhile, ADSL mRNA level was positively correlated with AIRC mRNA level; PURH mRNA level was also found to be positively correlated with GPAT/AIRC mRNA level. These results indicated that the regulation of genes involved in de novo purine biosynthesis pathway had some relations; they are coordinately expressed and may play an important role in the final IMP content.
     5. The combine effects of the five candidate genes were analyzed in a relative large sample size of Baier chicken, the effects of the single gene, the two gene combination, the three gene combination, the four gene combination and the five gene combination on muscle IMP content were evaluated, respectively. The result showed that five gene effect>four gene effect>three gene effect>two gene effect>single gene effect, which suggested that when analysis quantative traits, we should analysis the combined genotypes (haplotypes) of the multiple loci, so that we could get the real relationships between gene and traits. Genetic effect of combination genotypes was not the simple addition of different genotypic effects. This is useful for marker assisted selection of meat quality traits in chicken, if we evaluating genetic improvement in breeding base on the effect of combination genotype, larger genetic improvement will be obtained using molecular marker assisted selection.
引文
[1] Hofmann. What is quality? Definitions, measurement and evaluation of meat quality [J]. Meat Focus International, 1994, 3: 73-82.
    [2]邱祥聘,嘉勇.优质肉鸡的内涵和改良之我见[C].第一届优质鸡研讨会文集, 1989.
    [3]吴常信.优质鸡育种特点及遗传标记辅助选择(MAS)的应用[C].第三届优质肉鸡的改良、生产及发展研讨会论文集, 1994.
    [4] Groen A., Jiang X., Emmerson D.A. A deterministic model for the economic evaluation of broiler production systems [J]. Poultry Science, 1998, 77(7): 925-933.
    [5] Allen C.D., Russell S.M., Fletcher D.L. The Relationship of Broiler Breast Meat Color and pH to Shelf-Life and Odor Development [J]. Poultry Science, 1997, 76: 1042-1046.
    [6] Allen C.D., Fletcher D.L., Northcutt J.K. The relationship of broiler breast color to meat quality and shelf-life [J]. Poultry Science, 1998, 77(2): 361-6.
    [7]孙德文,詹勇,许梓荣.畜禽肉质改进剂的研究进展[J].饲料博览, 2002, 2: 9-11.
    [8] Barbut S. Problem of pale soft exudative meat in broiler chickens [J]. British Poultry Science, 1997, 38: 355-358.
    [9] Sams A.R. Meat Quality During Processing [J]. Poultry Science, 1999, 78: 798-803.
    [10] Spanier A.M., Okai H., Tamura M. Food flavor and safety, Molecular analysis and design [C]. American Chemical Society, Washington DC, US, 1993.
    [11] Farmer L.J. Richardsl'on RI Mead GC. Poultry meat flavor [J]. Poultry Meat Science, 1999: 127-158.
    [12] Brand J.G., Bryant B.P. Receptor mechanisms for flavour stimuli [J]. Food Quality and Preference, 1994, 5: 31-40.
    [13] Ramarathnam N., Rubin L.J., Diosady L.L. Fractionation, characterization, and qualification of volatiles from uncured and cured beef and chicken [J]. Journal of Agricultural and Food Chemistry, 1993, 41(6): 939-945.
    [14]马长伟.国外肉品风味研究进展[J].肉类研究, 1995, 2: 13-17.
    [15]李建军文杰,陈继兰.肉品风味研究进展[J].食品科技, 2002, 6: 23-26.
    [16] Hall G., Andersson J, Lingnert H, et al. Flavor changes in whole milk powder during storage. II. The kinetics of the formation of volatile fat oxidation products and other volatile compounds [J]. Journal of Food Quality, 1985, 7(3): 153-190.
    [17] Zhang Y.G., Ho C.T. Formation of meat-like aroma compounds from thermal reaction inosine 5’-monophosphate with cysteine and glutathione [J]. Journal of Agricultual and Food Chemistry, 1991, 39(6): 1145-1148.
    [18] Buttery R.G,. Haddon W.F., Seifert R.M. Thiamine odor and bis (2-methyl-3-furyl) disulfide [J]. Journal of Agricultual and Food Chemistry, 1984, 32(3): 674-676.
    [19] Elmore J.S., Mottram D.S. , Enser M., et al. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles [J]. Journal of Agricultural and Food Chemistry, 1999, 47(4): 1619-1625.
    [20] Mottram D.S., Edward R.A. he role of triglycerides and phospholipids in the aroma of cooked beef [J]. Journal of the Science of Food and Agriculture, 1983, 34(4): 517-522.
    [21] Pigpen E.L., Mecchi E.P., Nonaka M. Origin and nature of aroma in fat of cooked poultry [J]. J. Food Sci, 1969, 34(5): 436-442.
    [22] Keeton J.T. Low-fat meat products-technological problems with processing [J]. Meat Sci, 1993, 36: 261-267.
    [23] Maga J.A. Organoleptic properties of umami substances. [Miscellaneous] Umami: a basic taste [C]. Physiology, biochemistry, nutrition, food science, New York, 1987.
    [24] R.A. Lawrie. Meat science[M]. offord: Pergamon press, 1991.
    [25]孙玉民,罗明主编.畜禽肉品学[M].山东:山东科技出版社, 1991.
    [26]刘望夷,竺来发,翁志发,等.肉用鸡肌肉中肌苷酸含量的比较[J].中国农业科学, 1980, 4: 79-83.
    [27]苏淑贞,朱汉炎,刘建梁,等.鹌鹑、鸡、鸽子肌肉中的肌苷酸含量的比较[J].家禽, 1987, 2: 32-33.
    [28] Davidek J., Khan A.W. Estimation of inosinic acid in chicken muscle and its formation and degradation during post-mortem aging [J]. Journal of Food Science, 1967, 32(2): 155-157.
    [29]陈国宏,候水生,吴信生,等.中国鸡品种肌肉肌苷酸含量研究[J].畜牧兽医学报, 2000, 31(3): 211-215.
    [30]徐日福.肉用型鸡血浆激素含量与肉质指标关系的研究[C].第九次全国动物遗传育种学讨论会论文集,北京, 1997.
    [31]傅传龙,陈鹭江.泰和公鸡外周血浆睾酮含量的变化[J].中国畜牧杂志, 1998(5): 24-25.
    [32]李家胜,陈利民.高效液相色谱法测定畜禽肌肉中肌苷酸含量[J].浙江农业大学学报, 1998, 24(3): 295-296.
    [33]陈国宏,李慧芳,吴信生,等.泰和乌骨鸡肌肉肌苷酸含量变化规律及其遗传力估测[J].扬州大学学报(农业与生命科学版), 2002, 23(2): 29-32.
    [34]黄梅楠,李建凡,虞凌.不同品种鸡胸肉中肌苷酸、氨基酸含量比较[C].第三届优质肉鸡的改良、生产及发展研讨会论文集, 1994.
    [35]余东游,许梓荣.甜菜碱对生长猪的生长性能和胴体组成的影响[J].中国兽医学报, 2004, 24(5): 490-493.
    [36]李卫芬,钱利纯,占秀安.甜菜碱对中华鳖肌肉和裙边食用品质指标的影响[J].水产科学, 2001, 20(4): 4-6.
    [37] Kim Y.J., Kim J.S. Influence of electrical stimulation on meat flavor of Korean native cattlemeat [J]. Korean Journal of animal science, 1993, 35(3): 217-222.
    [38] Khan A.W., Davidek J., Lentz C P. Degradation of inosinic acid in chicken muscle during aseptic storage and its possible use as an index of quality [J]. Journal of Food Science, 1968, 33: 25.
    [39]朱汉炎,苏淑贞.鹌鹑肌肉中肌苷酸含量的分析[J].河北农业大学学报, 1988, 11(4): 90-93.
    [40]嵇宝华,张学余,季从亮,等.利用荧光原位杂交技术定位家鸡腺苷琥珀酸裂解酶(ADSL)基因[C].第十二次全国家禽学术讨论会,成都, 2005.
    [41] Wong LeeJun C., O'Brien W. E. Characterization of the cDNA and the gene encoding murine adenylosuccinate lyase [J]. Genomics (San Diego), 1995, 28(2): 341-343.
    [42] Aimi J., Badylak J., Williams J., et al. Cloning of a cDNA encoding adenylosuccinate lyase by functional complementation in Escherichia coli [J]. J. Biol. Chem, 1990, 265(16): 9011-9014.
    [43] Stanislav K., Hana H., Blanka S., et al. Human adenylosuccinate lyase(ADSL), cloning and characterization of full-length cDNA and its isoform, gene structure and molecular basis for ADSL deficiency in six patients [J]. Human Molecular Genetics, 2000, 9(10): 1501-1513.
    [44]季从亮,张学余,陈国宏,等.鸡腺苷琥珀酸裂解酶(Adsl)基因cDNA克隆及序列分析[C].第九次全国畜禽遗传标记研讨会论文集, 2004.
    [45]季从亮.鸡肉IMP含量相关侯选基因SNP筛查及其用于地方鸡种群体遗传结构分析的研究: [学位论文][D].扬州:扬州大学, 2005.
    [46] Aimi J., Qiu H., Wiliams J., et al. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli [J]. Nucleic Acids Research, 1990, 18(22): 6665-6671.
    [47] Kan J.L.C., Jannatipour M., Taylor S. M., et al. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glycinamide ribonucleotide synthetase [J]. Gene, 1993, 137(2): 195-202.
    [48] Kan J.L.C., Moran, R.G. Analysis of a mouse gene encoding three steps of purine synthesis reveals use of an intronic polyadenylation signal without alternative exon usage [J]. Journal of Biological Chemistry, 1995, 270(4): 1823-1832.
    [49] Iwahana H., Oka J., Mizusawa N., et al. Molecular cloning of human amidophosphoribosyltransferase [J]. Biochem.Biophys.Res.Commun, 1993, 190(1): 192-200.
    [50] Iwahana H., Yamaoka T., Mizutani M., et al. Molecular cloning of rat amidophophoribosyltransferase [J]. Journal of Biological Chemistry, 1993, 268(10): 7225-7237.
    [51] Iwahana H., Honda S., Tsujisawa T., et al. Rat genomic structure of amidophosphoribosyltransferase, cDNA sequence of aminoimidazoleribonucleotide carboxylase, and cell cycle-dependent expression of these two physically linked genes [J]. Biochimica et Biophysica Acta, Gene Structure and Expression, 1995, 1261(3): 369-380.
    [52] Stanley W. Chu E.H. Assignment of the gene for phosphoribosylpyropho sphate amidotransferase to the pter leads to q21 region of human chromosome 4 [J]. Cytogenet Cell Genet, 1978, 22(126): 228-231.
    [53] Palmer D.K., Jones C. Genes mapping in chicken-Chinese hamster somatic cell hybrids, Serum albumin and phosphoglucomutase-2 structural genes on chicken chromosome 6 [J]. Journal of Heredity, 1986, 77(2): 106-108.
    [54] Bnsdorff T., Gautier M., Farstad W., et al. Mapping of the bovine genes of the de novo AMP synthesis pathway [J]. Animal Genetics, 2004, 35(6): 438-444.
    [55] Greasley S.E., PIorton P.A., Ramcharan J., et al. Crystal structure of a bifunctional transformylase and cyclohydrolase enzyme in purine biosynthesis [J]. Nature Structural Biology, 2001, 8(5): 402-406.
    [56] Ni L., Guan K., Zalkin H., et al. De novo purine nucleotide biosynthesis: cloning, sequencing and expression of a chicken PurH cDNA encoding 5 - aminoimidazole - 4-carboxamide-ribonucleotide transformylase-IMP cyclohydrolase [J]. Gene, 1991, 106(2): 197-205.
    [57] Akira T., Komatsu M., Nango R., et al. Molecular cloning and expression of a rat cDNA encoding 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase / IMP cyclohydrolase [J]. Gene, 1997, 197: 289-93.
    [58] Ebbole D.J., Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis [J]. Journal of Biological Chemistry, 1987, 262(17): 8274-8287.
    [59] Aiba A., Mizobuchi K. Nucleotide sequence analysis of genes purH and purD involved in the de novo purine nucleotide biosynthesis of Escherichia coli [J]. Journal of Biological Chemistry, 1989, 264(35): 21239-21246.
    [60] Rayl E.A., Moroson B.A., Beardsley G.P. The human purH gene product, 5-aminoimidazole-4-carboxamidenribo nucleotide formyltransferase/IMP cyclohydrolase. Cloning,sequencing, expression, purification, kinetic analysis, anddomain mapping [J]. Journal of Biological Chemistry, 1996, 271: 2225-33.
    [61] Cook R.J., Lloyd R.S, Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase [J]. Journal of Biological Chemistry, 1991, 266(8): 4965-4973.
    [62] Broad T.E., Lewis P.E., Burkin D.J., et al. Thirteen loci physically assigned to sheep chromosome 2 by cell hybrid analysis and in situ hybridization [J]. Mammalian Genome, 1995, 6(12): 862-866.
    [63] Elizabeth A., Rayl Barbara A. The human purH gene product, 5- aminoimidazole- 4- carboxamide ribonucleotide formyl-transferase / IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping [J]. Journal of Biological Chemistry, 1996, 271(4): 2225-2233.
    [64] Manoba T., Hasegawa K. Sensory changes in umami taste of inosine 5’-monophosphate solution after heating [J]. Journal of Food Science, 1991, 56(5): 1429-1432.
    [65] Sabina R.L., Morisaki T., Clarke P., et al. Characterization of the human and rat myoadenylate deaminase genes[J]. Journal of Biological Chemistry, 1990, 265(16): 9423-9433.
    [66] Stratil A., Knoll A., Moser G., et al. The porcine adenosine monophosphate deaminase1 (AMPD1) gene maps to chromosome 4 [J]. Animal Genetics, 2000, 31(2): 147-148.
    [67]张学余,黄兆明,苏一军,等.丝羽乌骨鸡腺苷单磷酸脱氨酶1(AMPD1)基因多态性及其与肌苷酸含量相关研究[J].畜牧兽医学报, 2004, 35(6): 605-607.
    [68]柴丽娟.鸡AMPD1基因多态性及其与肌苷酸含量关系的研究: [学位论文][D].山西:山西农业大学, 2003.
    [69]柴丽娟,储明星,文杰,等.北京油鸡AMPD1基因多态性及其与肌苷酸含量关系的研究[J].畜牧兽医学报, 2005, 36(11): 1117-1120.
    [70]陈继兰.肉鸡肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究: [学位论文][D].北京:中国农业大学, 2004.
    [71]杨烨.优质鸡肌内脂肪代谢调控及其与肉质性状关系的研究: [学位论文][D].北京:中国农业科学院, 2005.
    [72] DeVol D.L. Mckeith P., Bechtel P.J., et al. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses [J]. Jouranl of Animal Science, 1988, 66: 385-395.
    [73] Veerkamp J.H., Maatman R. Cytoplasmic Fatty Acid Binding Proteins:Their Structure and Genes [J]. Prog Lipid Rws, 1995, 34: 17-52.
    [74] Gerbens F., Rettenberger G., Lenstra J., et al. Characterization , chromosomal localization and genetic variation of the porcine heart fatty acid-binding protein gene [J]. Mamm Genome, 1997, 8: 328-332.
    [75]张桂香,曹红鹤,王立贤,等. 9个猪种H-FABP基因5’-上游区和第二内含子的遗传变异[J].畜牧兽医学报, 2002, 33(4): 340-343.
    [76] Gerbens F., de Koning D.J., Harders F.L., et al. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs [J]. Animal Science, 2000, 78(3): 552-529.
    [77]林万华,黄路生,任军,等.中外十个猪种H-FABP基因遗传变异的研究[J].遗传学报, 2002, 29(1): 12-15.
    [78]叶满红.鸡脂肪酸结合蛋白基因的克隆及其与肌内脂肪的关系: [学位论文][D].北京:中国农业科学院, 2003.
    [79]李文娟,李宏宾,文杰,等.鸡H-FABP和A-FABP基因表达与肌内脂肪含量相关研究[J].畜牧兽医学报, 2006, 37(5): 417-423.
    [80] Fisher R.M., Eriksson P., Hoffstedt J., et al. Fatty acid binding protein expression in different human adipose tissue depots in relation to rates of lipolysis and insulin concentration in obese individuals [J]. Molecular Cell Biochemistry, 2002, 239(1-2): 95-100.
    [81] Hertzel A.V., Bennaars-Eiden A., BernlohrD.A. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells [J]. Journal of Liplid Research, 2002, 43(12): 2105-2111.
    [82] Boord J.B. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia [J]. Arterioscler Thromb.Vasc.Biol,2002, 22(10): 1686-1691.
    [83] Brockmann G., Timtchenko D., Das P., et al. Detection of QTL for body weight and body fat content in mice using genetic markers [J]. Animal Breed Genetics, 1996, 113: 373-379.
    [84]罗桂芬,陈继兰,文杰,等.鸡A-FABP基因多态性分析及其与脂肪性状的相关研究[J].遗传, 2006, 28(1): 39-42.
    [85]叶满红,文杰,曹红鹤,等.脂肪型脂肪酸结合蛋白基因多态性与鸡肉品质性状的关系研究[J].畜牧兽医学报, 2007, 38(6): 526-532.
    [86] Gentili C., Cermelli S., Tacchelli C. Expression of the extracellular fatty binding protein during muscle fiber formation in vivo and vitro [J]. Exp Cell Res, 1998, 242(2): 410-418.
    [87] Giannoni P., Zambotti A., Pagano A., et al. Differentiation-dependent activation of the extracellular fatty acid binding protein (Ex-FABP) gene during chondrogenesis [J]. J. Cell. Physiol, 2004, 198(1): 144-154.
    [88] Wang Qigui., Li Ning., Deng Xuemei., et al. Single nucleotide polymorphism analysis on chicken extracellular fatty acid binding protein gene and its association with fattiness trait [J]. Sci China, 2001, 44: 429-434.
    [89]仇雪梅,李宁,邓学梅,等. Ex-FABP作为鸡腹脂性状主要侯选基因的研究[J].生物化学与生物物理进展, 2005, 32(5): 429-434.
    [90]黄治国,谢庄.畜禽脂肪性状相关基因研究进展[J].畜牧与兽医, 2004, 36(4): 41-43.
    [91] Kem P.A. Potential role of TNFa and lipoprotein lipase as candidate genes for obesity [J]. J Nutr, 1997, 127: 1917-1922.
    [92]潘爱銮,皮劲松,梁正振华,等. 6个品种LPL基因的PCR-RFLP分析[J].中国家禽, 2004, 8(1): 152-154.
    [93]牟彦双,王宇祥,王启贵,等.鸡脂蛋白脂酶(LPL)基因单核苷酸多态性与体脂性状的相关研究[C].中国动物遗传育种研究进展,哈尔滨, 2005.
    [94] Taoism M. Dridi S., Cassy S., et al. Chicken leptinproperties and actions [J]. Domestic Animal Endocrnology, 2001, 21(4): 319-327.
    [95] Guy Horev., Paz Einat., Tomer Aharoni., et al. Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene [J]. Molecular and Cellular Endocrnology, 2000, 162: 95-106.
    [96] Dunn I.C., Boswell T., Friedman-Einat M., et al. Mapping of the leptin receptor gene (lepr) to chicken chromosome 8 [J]. Animal Genetics, 2000, 31: 290.
    [97]顾志良,赵建国,李辉,等.鸡瘦蛋白受体(OBR)基因外显子9单核苷酸多态性分析[J].遗传, 2002, 24(3): 259-262.
    [98]李慧锋,李俊英,曲鲁江,等.鸡OBR基因第20外显子多态性与脂肪性状的相关研究[J].畜牧兽医学报, 2005, 36(5): 422-425.
    [99]王颖,李辉,顾志良,等.鸡瘦蛋白受体( OBR)基因内含子8单核苷酸多态性与体脂性状的相关研究[J].遗传学报, 2004, 31(3): 265-269.
    [100] Sami Dridi., Okanlawon Onagbesan., Quirine Swennen., et al. Gene expression, tissue distribution and potential physiologicalrole of uncoupling protein in avian species [J]. Comparative Biochemistry and Physiology, 2004, 139: 273-283.
    [101] Anne Collin., Sandrine Cassy., Johan Buyse., et al. Potentialinvolvementof mammalian and avian uncoupling proteins in the thermogenic effect of thyroid hormones [J]. Domestic Animal Endocrinology, 2005, 29: 78-87.
    [102]赵建国,李辉,孟和,等.解偶联蛋白基因(UCP)作为影响鸡脂肪性状候选基因的研究[J].遗传学报, 2002, 29(6): 481-486. [103徐日福,李奎,陈国宏,等.鸡MHC B-LBⅡ新等位基因检测及多态性研究[J].畜牧兽医学报, 2005, 36(12): 1247-1255.
    [104]习欠云,袁立,唐玉新,等.丝羽乌骨鸡MHC-B-LⅡβ(β1外元)序列多态性分析[J].农业生物技术学报, 2000, 8(2): 138-142.
    [105]习欠云,李宁,唐玉新,等.中国部分地方鸡种B-LⅡβ(β1外显子)基因分子遗传多态性研究[J].遗传学报, 2001, 28(1): 7-14.
    [106] Jeffreys A.J. Wilson V., Thein S.L. Individual-specifiic 'fingerprints' of human DNA [J]. Nature Structural Biology, 1985, 316: 76-79.
    [107]盛浩伟,王金玉,戴国俊,等.新扬州鸡DNA指纹J带与生产性能的关性研究[J].生物技术, 2004, 14(3): 18-19.
    [108] Williams J.G.K. Kubelik A.R., Livak J.L., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18: 6531-6535.
    [109] Sharma D., Appa Rao K.B., Singh R.V., et al. Genetic diversity among chicken breeds estimated through randomLy amplified polymorphic DNA [J]. Animal Biotechnology, 2001, 12(2): 111-120.
    [110]白秀娟,李辉.肉鸡肥度性状RAPD标记的研究-RAPD标记与肉鸡肥度性状关联的检测分析[J].东北农业大学学报, 2004, 35(4): 432-436.
    [111]任军,高军,黄路生,等.江西省主要地方鸡种的RAPD分析信其群体遗传关系的研究[J].遗传, 2001, 23(4): 301-305.
    [112] Wilke K., Jung M., Chen Y., et al. Porcine (GT)n sequences:structure and association with disperased and tandem repeats [J]. Genomics, 1994, 21: 63-70.
    [113] Buzas Z., Varga L. Rapid method for separation of microsatellite allele by the phast-system [J]. PCR Methods and Applications, 1995, 4: 380-381.
    [114] Doris Bachtrog., Martin Agis., Marianne Imhof., et al. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster [J]. Molecular Biology Evolution, 2000, 12(9): 1277-1285.
    [115] Barker J.S.F., A global protocol for determining genetic distance among domestic livestock breeds [C]. Proceeding of 5th World Congress on Genetic Application of livestock Production, 1994.
    [116] Teale A.J., Tan S.G., Tan J. Application of molecular genetic and reproductive technologies in the conservation of domestic animal diversity [C]. Proc. 5th World Congr. Genet. Appl. Livest. Prod, 1994.
    [117]陈红菊,岳永生,樊新忠,等.利用微卫星标记分析山东地方鸡品种的遗传多样性[J].遗传学报, 2003, 30(9): 855-860.
    [118] Hillel J., Martien A.M., Groenen Michèle Tixier Boichard., et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools [J]. Genetics. Seletion. Evolution, 2003, 35: 533-557.
    [119]吴信生,陈国宏,王得前,等.利用微卫星技术分析中国部分地方鸡种的遗传结构[J].遗传学报, 2004, 31(1): 43-50.
    [120]包文斌,周群兰,吴信生,等.微卫星标记与仙居鸡体重的相关性[J].安徽农业科学, 2005, 33(4): 652-653.
    [121] Atzmon G., Ronin Y.I., Korol A., et al. QTLs associated with growth traits and abdominal fat weight and their interactions with gender and hatch in commercial meat-type chickens [J]. Animal Genetics, 2006, 37(4): 352-358.
    [122] Guohong Chen., Wenbin Bao., Jingting Shu., et al. Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers [J]. Asian-Aust. J. Anim. Sci., 2008, 21(3): 331-339.
    [123] Consortium International Chicken Polymorphism Map. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms [J]. Nature, 2004, 432: 717-732.
    [124] Rebholz-Schuhmann D., Marcel S., Albert S., et al. Automatic extraction of mutations from Medline and cross-validation with OMIM [J]. Nucleic Acids Research, 2004, 32(1): 135-142.
    [125]罗庆斌,郑凤珊,杜红丽,等.变性高效液相色谱法检测鸡HSP70基因单核苷酸多态性[J].四川农业大学学报, 2005, 23(1): 90-94.
    [126]王彦,苏毅,刘益平,等.鸡MC3R基因多态性及其与屠体和肉质性状的相关性[J].畜牧兽医学报, 2007, 38(10): 1027-1031.
    [127]朱智,徐宁迎,吴登俊,等.鸡IGF-Ⅰ基因SNPs及其对屠体性状的遗传效应分析[J].畜牧兽医学报, 2007, 38(10): 1021-1026.
    [128] Shimanuki S. A single nucleotide polymorphism in the porcine androgen receptor gene [J]. Animal Genetics, 2001, 32: 165-166.
    [129]姜运良,李宁,吴常信,等.不同品种猪肌肉生长抑制素基因单核苷酸多态性分析[J].遗传学报, 2001, 28(9): 840-845.
    [130]黄艳群,杜晓惠,邓学梅,等.鸡lmbr1基因单核苷酸多态与生长及屠体性状的关联性[J].中国科学C辑生命科学, 2006, 36(3): 232-239.
    [131]孙文浩,朱庆,将小松,等.鸡MYF6基因遗传多态性及其遗传效应研究[J].遗传, 2008, 30(1): 71-76.
    [132]蓝贤勇,陈宏,张永德,等.一种新的分子标记方法-随机微卫星扩增多态DNA(RMAPD)[J].遗传, 2006, 28(1): 78-84.
    [133]关强,张月学,徐香玲,等. DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学, 2008, 1: 102-104.
    [134]徐宁迎.候选基因法检测家畜数量性状基因位点的研究与应用[J].浙江农业学报, 1999, 11(5): 266-270.
    [135] Haunerland N.H., Spener F. Fatty acid-binding proteins insights from genetic manipulations [J]. Prog Lipid Res, 2004, 43: 328-349.
    [136]包俊英,余新炳,吴忠道.比较基因的表达分析[J].热带医学杂志, 2001, 2(1): 172.
    [137]李长龙.猪ADD1基因的克隆及其与肉质性状关系的研究: [学位论文][D].黑龙江:东北农业大学, 2004.
    [138] Sambrook J., Fritsch E.F., Maniatis T.; et al. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts [J]. Biophys. Chem, 1989, 26: 235-246.
    [139] Corey E. Detection of disseminated prostate cells by reverse transcription - polymerase chain reaction (RT-PCR): Technical and clinical aspects [J]. International Journal of Cancer, 1998, 77: 655-673.
    [140] Freeman W.M., Vrana K.E. Quantitative RT-PCR: pitfalls and potential [J]. Biotechniques, 1999, 26: 112-125.
    [141] Marone M., Giannitelli C., Giannitelli C. Cyclin E and cdk2 alterations in ovarian cancer: amplification and overexpression [J]. International Journal of Cancer, 1997, 74: 390-395.
    [142] Razin E.K., Leslie B., Schrader J.W. Connective tissue mast cell in contact with fibroblasts express IL-3 mRNA: Analysis of single cells by polymerase chain reaction [J]. J. Immunol, 1991, 146: 981-987.
    [143] Becher-Andre M., Hahlbrock K. Absolute mRNA quantification using the polymerise chain reaction (PCR). A novel approach by a PCR aided transcripttitration assay (PATTY) [J]. Nucleic Acids Research, 1989, 17: 9437-9446.
    [144] Murphy L.D., Herzog C.E., Rudick J.BA., et al. Use of the polymerise chain reaction in the quantitation of mdr-1 gene expression [J]. Biochemistry, 1990, 29: 10351-10356.
    [145] Kinoshita T., Imamura J., Nagai H., et al. Quantification of gene expression over a wide range by the polymerise chain reaction [J]. Anal Bichem, 1992, 206: 231-235.
    [146] Pannetier C., Delassus S., Darche S., et al. Construction of recombinant RNA templates for use as internal standards in quantitative RT-PCR [J]. Bio Techniques, 1993, 14: 70-80.
    [147] Li B., Swhajpal P.K., Khanna A., et al. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: Demonstration by usage of novel competitor DNA constructs in the quantitative polymerise chain reaction [J]. J. Exp. Med, 1991, 174: 1259-1262.
    [148] Uberla K., Platzer C., Diamantstein T., et al. Generation of competitor DNA fragments for quantitative PCR [J]. PCR Methods Appl, 1991, 1: 136-139.
    [149]姜俊芳.脂肪细胞分化相关因子基因表达在猪生长过程中的变化规律研究: [学位论文][D].杭州:浙江大学, 2006.
    [150]王刚,曾勇庆,武英,等.猪肌肉组织LPL基因表达的发育性变化及其与肌内脂肪沉积关系的研究[J].畜牧兽医学报, 2007, 38(3): 253-257.
    [151]梅盈洁,李加琪,陈瑶生,等.猪CTSD全长cDNA的克隆和表达分析[J].畜牧兽医学报, 2007, 38(5): 432-436.
    [152]李发弟,夏东,陈杰,等.二花脸猪和大白猪睾丸IGF-Ⅰ和IGF-ⅠR基因表达发育变化的研究[J].畜牧兽医学报, 2007, 38(5): 437-441.
    [153]陈杰,杨晓静,佟辉,等. FAS和HSL mRNA在猪背最长肌的表达及其与肌内脂肪含量的关系[J].农业生物技术学报, 2004, 12(4): 422-426.
    [154]李慧峰.鸡脂肪代谢相关基因的表达与网络分析: [学位论文][D].北京:中国农业大学, 2005.
    [155]吴桂琴,郑江霞,杨宁.伴性矮小型鸡GH、GHR和IGF-1基因的表达变化[J].遗传, 2007, 29(8): 989-994.
    [156]刘国华,蔡辉益,郑爱娟,等.半定量RT-PCR法评定鸡小肠肽转运载体cPepT1基因的表达[J].农业生物技术学报, 2006, 14(4): 489-492.
    [157] Grommen S.V., Arckens L., Theuwissen T., et al. Thyroid hormone receptor beta2 is strongly up-regulated at all levels of the hypothalamo-pituitary-thyroidal axis during late embryogenesis in chicken [J]. J. Endocrinol., 2008, 196(3): 519-528.
    [158]李冬立,文杰,赵桂苹,等.鸡肌内脂肪双向选择对脂肪性状及相关基因mRNA表达的影响[J].畜牧兽医学报, 2008, 39(1): 24-28.
    [159]吴常信.关于优质鸡[J].河南畜牧兽医, 2000, 21(4): 18.
    [160]吴常信.优质鸡生产中杂种优势的利用[C].第五届优质鸡的改良、生产及发展研讨会论文集,福建武夷山, 1998.
    [161]陈启荣,卢锡添.石歧鸡的等级区分与优质鸡一词来因[J].养禽与禽病防治, 1996, 5: 12-14.
    [162]陈宽维,孙永进.优质肉鸡配套的现状及其展望[C].第三届优质肉鸡的改良、生产及发展研讨会论文集,台湾, 1994.
    [163]吴常信.优质鸡育种和生产中若干问题的讨论[C].第九次全国家禽学术讨论会论文集,上海, 1999.
    [164]倪大虎,易成新,李莉,等.分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J].作物学报, 2008, 34(1): 100-105.
    [165]陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性[J].中国水稻科学, 2008, 22(1): 23-27.
    [166]刘俊. ESR、RYR1基因多态对猪产活仔数影响的研究及四个基因SNP位点的检测: [学位论文][D].武汉:华中农业大学, 2006.
    [167]陈克飞,黄路生,李宁,等.猪FSHβ及ESR合并基因型对猪产仔数性状的影响[J].科学通报, 2000, 45(18): 1963-1966.
    [168]施启顺,柳小春,刘志伟,等. 5个与猪产仔数相关基因的效应分析[J].遗传, 2006, 28(6): 652-658.
    [169]李艳华,郦汉杰,赵兴波,等.猪UCP2基因5'调控区和外显子1的遗传变异研究[J].生物化学与生物物理进展, 2006, 33(3): 262-266.
    [170]欧阳建华,谢亮,刘杰,等.鸡FASN基因2个位点的多样性及其与体重、脂肪沉积性状的相关性[J].畜牧兽医学报, 2007, 38(1): 25-30.
    [171]束婧婷,吉文林,包文斌,等.鸡ADSL基因和GARS-AIRS-GART基因对鸡肉肌苷酸(IMP)含量的影响[J].畜牧兽医学报, 2007, 38(8): 786-791.
    [172] Brayton K.A. Chen Z., Zhou G., et al. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed [J]. Journal of Biological Chemistry, 1994, 269(7): 5313-5321.
    [173] Gavalas A., Zalkin H. Analysis of the chicken GPAT/AIRC bidirectional promoter for de novo purine nucleotide synthesis [J]. Journal of Biological Chemistry, 1995, 270(5): 2403-2410.
    [174] Zhou G.C., Dixon J.E., Zalkin H. Cloning and expression of avian glutamine phosphoribosyl pyrophosphate amidotransferase. Conservation of a bacterial propeptide sequence supports a role for posttranslational processing [J]. Journal of Biological Chemistry, 1990, 265(34): 21152-21159.
    [175] Zengdao Chen., Jack E.D., Howard Z. Cloning of a chicken liver cDNA encoding 5-aminoimidazole ribonucleotide carboxylase and 5 - aminoimidazole - 4 - N - functional complementation of Escherichia coli pur mutants [J]. Proc. Natl. Acad. Sci, 1990, 87: 3097-3101.
    [176]萨姆布鲁克,拉塞尔.分子克隆实验指南[M].北京:科学出版社, 2002.
    [177] Le Bihan-Duval E., Mignon-Grasleau S., Millet N., et al. Genetic analysis of a selection experiment on increased bodyweight and breast muscle weight as well as on limited abdominal fat weight [J]. British Poultry Science, 1998, 39(3): 346-353.
    [178]陈继兰,文杰,赵桂苹,等.鸡肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计[J].遗传, 2005, 27(6): 898-902.
    [179] Gavalas A., Dixon J. E., Brayton K. A., et al. Coexpression of two closely linked avian genes for purine nucleotide synthesis from a bidirectional promoter [J]. Molecular and Cellular Biology, 1993, 13(8): 4784-4792.
    [180]张恩平,耿社民,刘林丽.利用SNP进行QTL分子标记的基本原理和统计方法[C].第八次全国畜禽遗传标记研讨会论文集, 2002.
    [181] Marie S., Race V., Nassogne M., et al. Mutation of a nuclear respiratory factor 2 binding site in the 5' untranslated region of the ADSL gene in three patients with adenylosuccinate lyase deficiency [J]. American Journal of Human Genetics, 2002, 71(1): 14-21.
    [182]刘长青.山东省地方鸡种风味特性候选基因ADSL与ATIC的研究: [学位论文][D].曲阜:曲阜师范大学, 2005.
    [183] Melton D.A., Krieg P.A., Rebagliati M.R., et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter [J]. Nuclear Acids Research, 1984, 12: 7035-7056.
    [184] Saiki R., Scharf S., Fallona F., et al. Enzymatic amplification of globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia [J]. Science, 1985, 230: 1350-1354.
    [185] SouazéF,. Ntodou-Thome A., Tran C.Y., et al. Quantitative RT-PCR: limits and accuracy [J]. Biotechniques, 1996, 21: 280-285.
    [186] Tabucchi A., Carlucci F., Rosi F., et al. 2001Determination, activity and biological role of adenylosuccinate lyase in blood cells [J]. Biorized Pharmacother, 55: 277-283.
    [187] Lowenstein J.M. The purine nucleotide cycle revised [J]. Int. J. Sports Med, 1990, 11: 37-46.
    [188] Wong L.J., O'Brien W.E. Characterization of the cDNA and the gene encoding murine adenylosuccinate lyase [J]. Genomics, 1995, 28(2): 341-343.
    [189] Jaeken J., Wadman S.K., Duran M., et al. Adenylosuccinase deficiency: an inborn error of purine nucleotide synthesis [J]. Eur. J. Pediatr, 1988, 148: 126-131.
    [190] Jaeken J., Van den Berghe G. An infantile autistic ayndrome characterized by the presence of succinylpurines in body fluids [J]. Lancet, 1984, 2: 1058-1061.
    [191] Henikoff S., Keene M.A., Sloan J.S., et al. Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila [J]. Proc. Natl. Acad. Sci, 1986, 83: 720-724.
    [192] Kan J.L.C., Jannatipour M., Taylor S.M., et al. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domainglycinamide ribonucleotide synthetase [J]. Gene, 1993, 137: 195-202.
    [193] Gary B., Tristan B., John B., et al. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome [J]. Human Molecular Genetics, 1997, 6(12): 2043-2050.
    [194]李建凡,黄梅南.不同品种鸡胸肌中肌苷酸含量的比较[C].优质黄羽肉鸡品系选育和配套研究论文集,北京, 1995.
    [195]徐琪,谢恺舟,王克华,等.仙居鸡和固始鸡胸肌肌苷酸含量的分析[J].扬州大学学报(农业与生命科学版), 2004, 25(1): 15-17.
    [196]洪坤月,汪峰,虞得兵,等.太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J].西北农业学报, 2007, 16(5): 11-14.
    [197]李婧.民猪产仔数候选基因研究: [学位论文][D].哈尔滨:东北农业大学, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700