基于加速失效时间模型生存性状遗传构架的Bayes定位分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生存分析领域,除比例风险回归模型外,还有一类模型与之并列,叫做加速失效时间模型(accelerated failure time model,简称为AFT模型)。AFT模型研究协变量与对数生存时间之间的回归关系,模型的形式与对回归系数的解释与一般的线性回归方程相似,而对分析结果的解释则较比例风险回归模型简单、直观,更易于理解。
     生存时间是一种特殊的数量性状,它不服从于正态分布,在以往的研究中,有许多专门的统计方法对其进行分析,如参数,半参数模型等,都适用于对生存性状的孟德尔遗传学的QTL进行作图分析,但是这些方法总是包含着非线性因素的解决办法,因此不适于对生存性状多个互作QTL的遗传构架分析。而AFT模型适用的特殊性就在于它的线性。
     本文对生存分析及QTL定位相关概念方法进行了详细介绍,并将生存分析中的加速失效时间模型应用于生物遗传领域的QTL定位分析中,与Bayes作图方法相结合,探讨了基于加速失效时间模型生存性状遗传结构的Bayes定位分析原理。模拟研究与实际数据分析证明了基于加速失效时间模型的Bayes QTL定位方法比直接分析生存数据具有更高的检测效率和参数估计精度。为以后研究生物生存性状遗传结构提供了新的方法依据,同时也具有重要的生物学意义。
In the field of survival analysis, there is a model besides proportional hazard function model, called the accelerated failure time model (AFT). This model can analyze the regression relation between covariate and log survival time, and its form and explanation of regression coefficient is close to the general linear regression equation, the explanation of analysis results is more simple, more direct and easier to understand than that of proportional hazard function model.
     Survival time is a special quantitative trait, which does not follow normal distribution. There are some specific statistical approaches, such as parametric and semi-parametric models, available to map QTL for survival traits. These approaches always involve the solution of nonlinear equations, therefore, they are not suitable to analyse genomic architecture of multiple epistatic QTLs of survival traits. However, accelerated failure time model is an exception due to its linearity.
     This paper introduces the related concepts and methods of survival analysis and QTL mapping in detail. This study uses accelerated failure time model for Bayesian QTL mapping, combining the survival analysis and biometrical genetics, and studies on the principle of Bayesian mapping analysis for Genomic Architecture of Survival Traits based on the accelerated failure time model. The simulation studies and real data analysis proves that this method is higher efficient in detection and more precise in estimate of parameters than analysing survival trait directly. This study provides a new method for analysis of genetic structure in biotic survival traits, and has important significance in the field of Biology.
引文
[1] Pieruschka, E. Relation between life time distribution and the stress level causing failures, LMSD-800400, Look head Missiles and Space Division, Suuyvale, California, 1961.
    [2] Kaplan E, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 1958(53): 457-481.
    [3] Cox D. Regression Models and life Table(with Discussion). Jouranal of the Royal Statistical Society B, 1972(34): 182-220.
    [4]李荣.基于删失实验的贝叶斯生存回归模型及其应用.湖南大学. 2006年.
    [5]马巧云.应用加速失效时间模型研究方形黄鼠蚤松江亚种的生存危险率,平顶山师专学报, 2000年, 15卷第4期.
    [6]师成虎,加速失效时间模型及其在医学研究中的应用,山西医科大学, 2004年.
    [7] Escobar M, West M. Bayesian Density Estimation and Inference Using Mixtures. Journal of the American Association, 1991(84): 398-409.
    [8] Dellaports P, Smith A. Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling. Applied Statistics, 1993(42): 443-459.
    [9] Escobar M. Estimating normal means with a Dirichlet process prior. Journal of the American Association, 1994(89): 268-277.
    [10] Berliner L, Hill B. Bayesian nonparametric survival analysis. Journal of the American Association, 1998(83): 772-779.
    [11] Ibrahim J G, Chen M H, Sinha D. Bayesian Survival Analysis. [M]. New York: Berlin Heidelberg, 2001.
    [12] Congdon P. Bayesian Statistical Modelling. [M]. England:John Wiley and Sons. 2001.
    [13] Congdon P. Applied Bayesian Modelling. [M]. England: John Wiley and Sons. 2003.
    [14] Berry DA, Stang1 DK. In: Bayesian Biostatistics, 2nd ed. New York: Marcel Dekker Inc, 2000, 1?696.
    [15] Dey DK, Ghosh SK, Mallick BK. In: Generalized Linear Models: A Bayesian Perspective. New York: Marcel Dek-ker Inc, 2000, 1?440.
    [16] Stang1 DK, Berry DA. In: Meta-analysis in Medicine and Health Policy. New York: Marcel Dekker Inc, 2000, 1 ?414.
    [17] Weir BS. In: Genetic Data Analysis II. Massachusetts: Sinauer Associates Inc, Publisher, 1996, 1?445.
    [18] Tai JJ. Application of Bayesian decision procedure to the inference of genetic linkage. J Am Statist Assoc, 1989, 84(407): 669?673.
    [19] Thomas DC, Cortessis V. A Gibbs sampling approach to linkage analysis. Hum Hered, 1992, 42(1): 63?76.
    [20] Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. J Roy Statist Soc Ser B, 1993, 55(1): 3?23.
    [21] Hoeschele I, Vanraden PM. Bayesian analysis of linkage between genetic markers and quantitative trait loci. I. Prior knowledge. Theor Appl Genet, 1993, 85(8): 953 ?960.
    [22] Stephens DA, Smith AF. Bayesian inference in multipoint gene mapping. Ann Human Genet,1993, 57(1): 65?82.
    [23] Thaller G, Hoeschele I. A Monte Carlo method for Bayes-ian analysis of linkage between single markers and quantitative trait loci. I. Methodology. Theor Appl Genet, 1996, 93(7): 1161?1166.
    [24] Thaller G, Hoeschele I. A Monte Carlo method for Bayes-ian analysis of linkage between single markers and quan-titative trait loci. II. A simulation study. Theor Appl Genet, 1996, 93(7): 1167?1174.
    [25] Knott SA, Haley CS. Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet Res Camb, 1992, 60(2): 139?151.
    [26] Uimari P, Thaller G, Hoeschele I. The use of multiple markers in a Bayesian method for apping quantitative trait loci. Genetics, 1996, 143(4): 1831?1842.
    [27] Uimari P, Hoeschele I. Mapping-linked quantitative trait loci using bayesian analysis andmarkov chain monte carlo algorithms [J]. Genetics, 1997, 146(2): 735-743.
    [28] Satagopan J M, Yandell B S. Estimating the number of quantitative trait loci via bayesian model determination [M]. Chicago: 1996.
    [29] Piepho HP, Gauch HG Jr. Marker pair selection for mapping quantitative trait loci. Genetics, 2001, 157(1): 433 ?444.
    [30] Broman KW, Speed TP. A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc B, 2002, 64(4): 641?656.
    [31] Sillanp?? MJ, Corander J. Model choice in gene mapping: what and why. Trends Genet, 2002, 18(6): 301?307.
    [32] Xu S Z. Estimating polygenic effects using markers of the entire genome. Genetics, 2003, 163(2): 789?801.
    [33] Satagopan JM, Yandell BS, Newton MA, Osborn TC.A bayesian approach to detect quantitative trait loci using markov chain monte carlo. Genetics, 1996, 144(2): 805 ?816.
    [34] Sillanpaa MA, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data, Genetics, 1998, 148(3): 1373?1388.
    [35] Stephens DA, Fisch RD. Bayesian analysis of quantitative trait locus data using reservible jump Markov chain Monte Carlo. Biometrics, 1998, 54(4): 1334?1347.
    [36] Sen S, Churchill G. A statistical framework for quantitative trait mapping. Genetics, 2001, 159(1): 371?387.
    [37] Yi N, George V, Allison DB. Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics, 2003, 164(3): 1129?1138.
    [38] Stephens DA, Fisch RD. Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo. Technical report. (available at http: //www. ma. ic. ac. uk/ statistics/techrep. html) 1996.
    [39] Sillanp?? MA, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics, 1999, 151(4): 1605?1619.
    [40] Vogl C, Xu S. QTL analysis in arbitrary pedigrees with incomplete marker information. Heredity, 2002, 89(5): 339?345.
    [41] Yi N, Xu S. Linkage analysis of quantitative trait loci in multiple line crosses. Genetica, 2002, 114(3): 217?230.
    [42] Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-widedense marker maps. Genetics, 2001, 157(4): 1819?1829.
    [43] Zhang Y-M, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny[J]. Genetics, 2004, 166(4): 1981-1993. DOI: 10. 1534/genetics. 166. 4. 1981.
    [44] Zhang Y M, Xu S Z. Advanced statistical methods for detecting multiple quantitative trait loci [J]. Recent Res Dev Genet Breed, 2005, 2: 1-23.
    [45] Wu R L, Li M. Functional mapping:How to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet, 2006, 7: 229—237.
    [46] Sen S, Churchill G. A statistical framework for quantitative trait mapping. Genetics, 2001, 159(1): 371?387.
    [47] Yi N, Xu S. Mapping quantitative trait loci with epistatic effects. Genet Res, 2002, 79(2): 185?198.
    [48] Yi N, Diament A, Chiu S, Fisler J, Warden C. Characterization of epistasis influencing complex spontaneous obesity in the BSB model. Genetics, 2004, 167(1): 399?409.
    [49] Yi N, Diament A, Chiu S, Fisler J, Warden C. Epistatic interaction between chromosomes 7 and 3 influences hepatic lipase activity in BSB mice. J Lipid Res, 2004, 45(11): 2063?2070.
    [50] Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D. Bayesian model selection for genome-wide epistatic QTL analysis. Genetics, 2005, 170(3): 1333 ?1344.
    [51] Kalb?eish, J. D., R. L. Prentice, 2002 The Statistica Analysis of FailureTime Data, Ed. 2. Wiley, Hoboken, NJ.
    [52]蒋知俭.医学统计学.人民卫生出版社. 1997.
    [53] Bagdonavicius, V., Nikulin, M. Accelerated Life Models: Modeling and Statistical Analysis, Chapman & Hall 2001.
    [54]莫惠栋.数量性状遗传基础研究的回顾与思考-后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版), 2003, 24(2): 24?31.
    [55] Zhang M, Montooth KL, Wells MT, Clark AG, Zhang D. Mapping multiple quantitative trait loci by Bayesian classification. Genetics, 2005, 169(4): 2305?2318. Zeng ZB, Kao CH, Basten CJ. Estimating the genetic architecture of quantitative traits. Genet Res, 2000, 74(3): 279?289.
    [56] Sugiyama F, Churchill GA, Higgins DC, Johns C, Makaritsis KP, Gavras H, Paigen B. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics, 2001, 71(1): 70?77.
    [57] Sax K. The association of size differences with seed-coat pattern and pigmentation in phaseolus vulgaris [J]. Genetics, 1923, 8(6): 552-560.
    [58] Thoday J M. Location of polygenes [J]. Nature, 1961, 191: 368-370.
    [59] Wright S. Evolution in mendelian population[J]. Genetics, 1931, 16: 91-159.
    [60] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121(1): 185-199.
    [61]惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报, 1997, 23 (2): 129-136.
    [62] Jensen J. Estimation of recombination parameters between a quantitative trait locus(QTL) and two marker gene loci [J]. Theoretical and Applied Genetics, 1989, 78(5): 613-618.
    [63] Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps [J]. Theoretical and Applied Genetics, 1990, 79(5): 583-592.
    [64] Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci [J]. PNAS, 1993, 90(23): 10972-10976.
    [65] Martínez O, Curnow R N. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theoretical and Applied Genetics, 1992, 85(4): 480-488.
    [66] Zeng Z B. Precision mapping of quantitative trait loci[J]. Genetics, 1994, 136 (4): 1457-1468.
    [67] Jansen R C. Controlling the type i and type II errors in mapping quantitative trait loci [J]. Genetics, 1994, 138(3): 871-881.
    [68] Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping [J]. Genetics, 1994, 136(4): 1447-1455.
    [69] Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999, 152(3): 1203-1216.
    [70] Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics, 1997, 53(2): 653-665.
    [71] Zeng Z B, Kao C H, Basten C J. Estimating the genetic architecture of quantitative traits [J]. Genetical Research, 1999, 74(3): 279-89.
    [72] Wang H, Zhang Y, Li X, Masinde G L, Mohan S, Baylink D J, Xu S. Bayesian shrinkage estimation of quantitative trait loci parameters [J]. Genetics, 2005, 170 (1): 465-480.
    [73] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys, 1953, 21(6): 1087?1092.
    [74] Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97?109.
    [75] Geman S, Geman D. Stochastic relaxation, Gibbs distribu- tion, and the Bayesian restoration of images. IEEE Trans Pattn Anal Mach Intell, 1984, PAMI(6): 721?741.
    [76] Thompson EA. Monte Carlo likelihood in genetic mapping. Statist Sci, 1994, 9(3): 355?366.
    [77] Thomas DC, Gauderman WJ. Gibbs sampling methods in genetics, in Markov Chain Monte Carlo in Practice, edited by Gilks WR, Richardson S and Spiegelhalter DJ. London: Chapman & Hall, 1995, 419?440.
    [78] Hoeschele I. Mapping quantitative trait loci in outbred pedigrees [M]. Wiley: 2001, 599-644.
    [79] Uimari P, Thaller G, Hoeschele I. The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics, 1996, 143(4): 1831?1842.
    [80] Satagopan JM, Yandell BS, Newton MA, Osborn TC. A bayesian approach to detect quantitative trait loci using markov chain monte carlo. Genetics, 1996, 144(2): 805 ?816.
    [81] Stephens DA, Smith AF. Bayesian inference in multipoint gene mapping. Ann Human Genet, 1993, 57(1): 65?82.
    [82] Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 1995, 82(4): 711?732.
    [83] Bink M, Uimari P, Sillanp?? M, Janss L, Jansen R. Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet, 2002, 104(5): 751?762.
    [84] Hurme P, Sillanp?? M J, Arjas E, Repo T, Savolainen O. Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics, 2000, 156(3): 1309?1322.
    [85] Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF. Single-locus heterotic effectsand dominance by dominance interactions can adequate explain the genetic basis of heterosis in a elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100(5): 2574?2579.
    [86] Carlborg O, Haley CS. Epistasis: too often neglected in complex trait studies?Nat Rev Genet, 2004, 5(8): 618 ?625.
    [87] Segre D, Deluna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat Genet, 2005, 37(1): 77 ?83.
    [88] Zhang YM, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Genetics, 2004, 166(4): 1981?1993.
    [89] Zhang YM, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Dev Genet Breed, 2005, 2(1): 1?23.
    [90] Carlin B P, Louis T A. Bayes and empirical bayes methods for data analysis [M]. London, UK: Chapman&Hall, 2000.
    [91] Gelman A, Carlin J B, Stern H S, Rubin D B. Bayesian data analysis [M]. London, UK: Chapman&Hall, 1995.
    [92] Rogers, W. H. and Tukey, J. W. Understanding some long-tailed distributions. Statistica Neerlandica, 1972, 26, 211–226.
    [93] Lange, K. and Sinsheimer, J. S. Normal/independent distributions and their applications in robust regression. J. Am. Stat. Assoc., 1993, 2, 175–198.
    [94] Wang, H. et al. Bayesian Shrinkage Estimation of Quantitative Trait Loci Parameters. Genetics, 2005, 170, 465–480.
    [95] Plummer, M. N. et al. (2004) Output Analysis and Diagnostics for MCMC, v. 0. 9–5. (http://www-fis. iarc. fr/coda/).
    [96] Kass, R. E. , and A. E. Raftery. Bayes factors. J. Am. Stat. Assoc. 1995: 773–795.
    [97] Yandell, B. S. , T. Mehta, S. Banerjee, D. Shriner, R. Venkataraman, J. Y. Moon, W. W. Neely, H. Wu, R. von Smith & N. Yi, 2007. R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics 23: 641-634.
    [98] Charles. C, Mann Crop scientists seek a new revolution [J]. Science, 1999, 283: 310-314.
    [99]唐定中.水稻分子标记连锁图的构建与应用.福建农业大学博士学位论文, 1998.
    [100]龚继明,钱前.水稻耐盐性QTL的定位,科学通报, 1998, 43 (17 ): 1847-1850.
    [101]林鸿宣,柳原城司.应用分子标记检测水稻耐盐性的QTL.中国水稻科学, 1998, 12(2): 72~78.
    [102]顾光友,梅曼彤.水稻耐盐性数量性状位点的初步检测.中国水稻科学, 2000, 14(2): 65-70.
    [103] Saito K, Miura K, Nagano K, et al. Chromosome location of quantitative trait loci for cool tolerance at the booting stage in rice variety "Norin-PL8". Breed Sci, 1995, 45: 337 -340.
    [104]林鸿宜,闵绍楷,熊振民等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学, 1995, 28 (4 ): 1-7.
    [105] Huang N, Parco A, New J et al. RFLP mapping of isozymes, RAPD and QTLs grain shape, brown planthopper resistance in a double hapbid rice population. MoL Breed, 1997, 3: 105-113.
    [106] Champoux M C, Wang G, Sarkarurg S et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular marker Theor Annl Genet, 1995, 90: 969-981.
    [107] Yadav R, Courtvis B, Huang N et al. Mapping gene controlling root morphology and root distribution in a doubled haploid population of rice. Theor Appl Genet, 1997, 94: 619-632.
    [108]何平,李晶昭.朱立煌,影响水稻花药培养力的数量性状基因座位的互作.遗传学报, 1999, 26 ( 5 ): 524~528.
    [109]何平,沈利爽.水稻花药培养力的遗传分析及基因定位,遗传学报, 1998, 25 (4): 337~ 344.
    [110]何平,李仕贵.影响稻米品质几个性状的基因坐位的分析.科学通报, 1998, 43 (16 ):1747 -1750.
    [111]刘华清. ISSR标记在水稻分子遗传连锁图谱构建和稻米蒸煮品质QTL定位上的应用.福建农业大学硕士学位论文, 1999.
    [112]谭震波,沈利爽,袁柞廉等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析.作物学报. 1997, 23 (3): 289-295.
    [113]李平,周开达,陈英等, 1996.利用分子表记定位水稻野败型核质互作雄性不育恢复基因.遗传学报, 23 (5): 357-362.
    [114] Lin S Y, Sasaki T, Yano M. Mapping quantitative trait]oci controlling seed dormancy and heading date in rice using hackcross inbred lines. Theor Appl Genet, 1998, 96: 997-1003.
    [115]李丽春,郑康乐.应用RAPD标记检测与水稻株高和抽穗期有关的QTLs.遗传学报, 1998, 25(1): 34-39.
    [116] Li Z, Pinson S R M, Stansel J M et al. identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice. Theor Appl Genet, 1995, 91: 374 -381.
    [117] Yano M, Marushima Y, Nagamura Y et a1, 1997. Identification of quantitative trait loci controlling heading date of rice using a high density linkagemap. Theor Appl Genet, 95: 1025-1032.
    [118]刘贵富,卢永根,王国昌等.水稻产量、株高及其相关性状的QTLs定位.华南农业大学学报, 1998, 19 (3): 5-9.
    [119]李建雄,余四斌,徐才国等.“汕优63”的产量及其构成因子的数量性状基因位点分析.作物学报, 2000, 26 (6): 892-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700