辽宁新品系绒山羊11条染色体经济性状的QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽宁新品系绒山羊产绒量高,羊绒品质好,经济效益显著,通过对新品系绒山羊遗传图谱的构建和绒细度、绒产量、体重3个经济性状QTL的准确定位,为选育新品系绒山羊,建立育种核心群以及该品系的进一步开发和利用提供准确可靠的遗传信息。
     本研究利用辽宁新品系绒山羊的5个父系半同胞参考家系,共220个个体,构建了辽宁新品系绒山羊第9、10、11、12、13、14、15、16、18、19、20号染色体的遗传图谱,在此基础上,对影响辽宁新品系绒山羊的3个经济性状绒细度、绒产量、体重的数量性状位点(Quantitative trait loci,QTL)进行了定位研究。
     利用popgene软件对53个微卫星位点及其在辽宁新品系绒山羊资源家族中群体遗传学特性进行了分析,对这些位点的等位基因数进行检测,平均检测到9个等位基因,最多13个,最少4个。其信息多态性检测得知平均多态信息含量为0.6901 ,最高为RM096(0.7986),最低为BM6121(0.4617),群体杂合度平均值为0.9297,最高为HUJ625(1.000),最低为BMS0745(0.7583)。53个微卫星位点除6个单态外,其余均表现为高度或中度多态性,46个高度多态性,1个中度多态性,为该资源家系从分子水平上的研究提供了可靠的依据。
     构建的辽宁新品系绒山羊第9、10、11、12、13、14、15、16、18、19、20号染色体遗传图谱,标记间的平均间距为24.6cM。图中的微卫星标记位点的顺序与与美国USDA-MARC、澳大利亚作图组织公布的Versoin4.3和英国罗斯林研究所公布的SM4.2的绵羊遗传连锁图谱基本相一致,但标记间距大部分较后三者短。
     用QTL Express软件对绒产量、绒细度、体重3个经济性状进行QTL定位分析,结果表明:在辽宁新品系绒山羊第9号染色体的28cM处检测到影响绒山羊体重的QTL位点,位于标记BM2504~TGLA073之间,第10号染色体的28cM处检测到影响绒山羊绒产量的QTL位点,位于标记McM185~TGLA272之间,第13号染色体的8cM处检测到影响绒山羊绒细度的QTL位点,位于标记BMC1222~ILZRA之间,第20号染色体的32cM处检测到影响绒山羊绒细度的QTL位点,位于标记NPR3~BMS1719之间,第20号染色体的32cM处检测到影响绒山羊体重的QTL位点,位于标记NPR3~BMS1719之间。在位点BM2504~TGLA073,McM185~TGLA272,BMC1222~ILZRA,NPR3~BMS1719的附近区域分别存在影响绒山羊3个经济性状的QTL位点。
Liaoning new breed of cashmere goats have a significant economic benefit because of the high yield of cashmere and good cashmere fineness, so we pay special attention to improve the fineness and weight of cashmere goat. The constructing of Liaoning new breed of cashmere goat genetic maps and accurate positioning of economic traits QTL could provide accurate and reliable genetic information for breeding, establishment of the core group and further development and use of this breed.
     A referencing flock having 5 paternal half-sib families totaling 220 individuals from Liaoning new breed of cashmere goat was utilised to construct the genetic maps of 9th, 10th , 11th , 12th , 13th , 14th , 15th , 16th , 18th , 19th and 20th chromosomes in Liaoning new breed of cashmere goats, and made the QTL mapping analysis for 3 economic traits (weight, cashmere yield and fineness).
     Analyzed the 53 microsatellite loci using popgene software and their population genetics characteristic in Liaoning new breed of cashmere goat, detected the alleles which had an average of 9 alleles (4-13). The average PIC was 0.6901 (0.4617-0.7986) and the average H was 0.9297 (0.7583-1.0000). Those microsatellite loci had 46 high polymorphic and 1 middle polymorphic except 6 single state, which provided a reliable basis for this resources family on the molecular level.
     The genetic maps of 9th, 10th , 11th , 12th , 13th , 14th , 15th , 16th , 18th , 19th and 20th chromosomes in Liaoning new breed of cashmere goats had an average of 24.6cM spacing between markers, and the order of microsatellite markers were consistent with the sheep genetic linkage map of Versoin 4.3 announced in Australia and USDA-MARC, and SM 4.2 announced in the U.K. Roslin Institute but a little shorter.
     The QTL analysis of cashmere goat weight, cashmere yield and fineness was performed by using QTL Express. It showed that: on the 9th chromosome, there was a QTL effecting weight in 28 cM between BM2504 and TGLA073; on the 10th chromosome, there was a QTL effecting cashmere yield in 28 cM between McM185 and TGLA272; on 13th chromosome, there was a QTL effecting fineness in 8 cM between BMC1222 to ILZRA; on 20th chromosome, there was a QTL effecting fineness and weight in 32 cM between NPR3 to BMS1719. There were 3 QTL position effecting 3 economic traits between BM2504 and TGLA073, McM185 and TGLA272, BMC1222 to ILZRA and NPR3 to BMS1719.
引文
[1]马宁。中国绒山羊发展的阶段性特征、现状及对今后发展的思考[J]。吉林农业大学学报,2008,30(4):580~585。
    [2]邹喻苹,葛颂,王晓东。系统与进化植物学的分子标记[M]。北京:科学出版社,2001。
    [3] Jefreys A J,Royle N J,Wilson V , et al.Spentaneous mutation rates to new length alleles at tandom-repetitivehypervariable loci in human DNA[J].Nature,1988,322:278-281.
    [4]金梅,胡景慧.辽宁绒山羊育种研究现状及发展方向[J],中国畜牧杂志,2005,41(3): 51-57
    [5] Marion S Roder,Victor Korzun,Katja Wendehake et al.A Microsatellite Map of Wheat Genetics,1998,149:2007~2023.
    [6]黄秦军,苏晓华,张香华。SSR分子标记与林木遗传育种[J]。世界林业研究,2002,15(3):14~21。
    [7] Marcotte E M ,PellegriniM ,Yeates T O,et al.A census of protein repeats [J].Journal Molecular Biology,1999,293(1):151-160.
    [8] Li Cheng-yun,LiJin-bin,Zhou Xiao-gang,et al.Frequency and distribution of microsatellites in open reading frame of rice blast fungus,Magnaporthe grisea [J].Chinese Rice Science,2005,19(2):167-173(In Chinese).
    [9] Kim T S,Booth J G ,Gauch H G ,et al.Simple sequence repeats in Neurospora crassa: distribution, polym orphism and evolutionary inference[D].BMC Genomics,2008,9:31.
    [10] Morgante M ,Hanafey M ,PowellW .Microsatellites are preferentially associated with nonrepetitive DNA in plantgenomes[J].Nature Genetics,2002,30(2):194-200.
    [11] Lawson M J,Zhang L.Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes[J].Genome Biology,2006,7(2):R14.
    [12]张琳琳。功能基因中的微卫星序列[J]。现代生物医学进展,2008,8(9):1783~1785。
    [13] You-Chun Li,Abraham B.Korol,Tzion Fahima,et al.Microsatellite Within Genes:Structure,Function,and Evolution[J].Molecular Biology and Evolution,2004,21(6):991~1007.
    [14]刘臻,鲁双庆,张建社等。黄颡鱼微卫星标记筛选记及特征分析[J]。农业生物技术学报,2008,16(4):604~609.
    [15] Wolf R,Nakamura Y,Odellberg S et al.Generation of variability at VNTR loci in human DNA,In DNA fingerprinting:Approaches and application,Edited by T Burke,G Doff,J Jeffreys,R Wolf,Birkhauser Verleg,Base/Switzerland,1991.}{ Nandas I,Zscher H,Epplen C et al.Chromosomal organization of simple repeated DNA sequences used for DNA sequences[J],Electrophoresis,1991,12:193-203.
    [16] Primmer C R, Ellegren H. Patterns of molecular evolution in avian microsatellites[J]. Molecular Biology and Evolution, 1998,15:997~1008.
    [17] Jordana J, Folch P, Sanchez A. Genetic variation(protein markers and microsatellites) in endangered Catalonian donkeys[J]. Biochemical Systematics and Ecology, 1999,27:791~798.
    [18]曾庆国,陈艺燕。微卫星位点筛选方法综述[J]。生态科学,2005,24(4):368~372.
    [19] Tatsuda K,Fujinaka K.Genetic mapping of the QTL affecting body weight in chickens using a F2 family[J].British Poultry Sci,2001,42:333~337.
    [20] A . M . Crawfod , et al .An Autosomal Genetic Linkage Map of the Sheep Genome , Genetics 140:703~724,1995(6).
    [21] Maddox,J.F.,K.P.Davies,A.M.Crawford,D.J.Hulme,D.Vaiman,E.P.Cribiu,B.A.Freking, K.J.van Stjin,S.H.Phua,D.L.Adelson,H.R.Burkin,J.E.Borom,J.BuitkamP,L.Cambridge,W.T.Cushwa,E.Gearrd,S.M.Gallowya,B.Harrison,R.J.Hawken,S.Hiendleder,H.M.Henyr,J.F.Medrano,K.A.Paterson,L.Sehibler,R.T.Stone,and B.VanHest.2001.An enhaneed Iinkage map Of the sheep genome comprising more than1000 loci.Genome Res.11:1275~1289.
    [22] Allian D., Lantier l., Elsen J.M., Francois D., BrunelJ, C., Weisbecker J. L., Schibler L., Vaiman D.Cribiu E., Gautier A., BerthonP, and Lantier F.A design aiming at detecting QTL controlling wool traits and other traits in the INRA401 sheep line.Proc.6th WCGALP.52~54.
    [23] G.A.Walling,et.al.Confirmed linkage for QTLs aeffecting muscling inTexel sheep on Chromosomes 2 and 18,52nd Annual Meeting of the Euorpean Assoeiation for Animal Production Budapest,Hungary,26th~29th Auguet 2001
    [24]耿社民,常洪,秦国庆,等.绒山羊结构基因标记座位与经济性状关系的研究[J].畜牧兽医学报,2003,(1):242-247
    [25] Tanksley S D,Medina-Filho H,Rick C M,et al.Use of naturally-occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomatoa.Heredity,1982,49:11~25} {Weller J I.Maximum likelihood techniques for the mapping and analysisi of quantitative traits loci with the aid of genetics.Sinauer,Sunderland,MA,1988.
    [26] Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185~199.
    [27]鲁绍雄,吴常信.动物育种方法的回顾与展望[J],国外畜牧科技,2000,27(1):24-28
    [28] Martinez-ML.Random model approach for QTL mapping in half-sib families.Genetics Selection Evolution,1999,31(4):319~340.
    [29] Haley C S,Knott S A.A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.Heredity,1994,69:315~324}{Knott S A,J-M Elsen,C S Haley.Methods for multiple-marker mapping of quantitative trait loci in half-sib populations.Theor.Appl.Genet,1996,93:71~80.
    [30] Xu Y.Quantitative trait loci:separating,pyramiding,and cloning.Plant Breeding Review,1997,15:85~139.
    [31] Zeng Z B.Precision of quantitative trait loci of sheep.Genetics,1994,136:1442~1451.
    [32] Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205~211.
    [33] Kao C H,Zeng Z B,Teasdele R D.Multiple Interval mapping for quantitative trait loci.Genetics,1999,21:158~159.
    [34] Jiang C,Zeng Z B.Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics,1995,140:1111~1127.
    [35] Moser G,Mueller E,Beckmann P,Yue G,et al.Mapping of QTL in F2 generations of Wild Boar,Pietrain and Meishan pig.Proceeding of the 6th World Congress on Genetics Applied to Livestock Production Genetics,1998,26:47~48.
    [36] Lincoln S E,Daly M J,Lander E S.Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0:A Tutorial and Reference Manual.A Whitehead Institute for Biomedical Research Technical Report,Third Edition,Jan,1993.
    [37] Diez-Tascon C and Bayon Y.Mapping quantitative trait loci for milk production traits on ovine chromosome 6.Dairy Res,2001,68(3):389~397.
    [38] Smith, B.R., Herbinger, C.M., Merry, H.R., et al. Accurate partition of individuals into full-sib families from genetic data without parental information.Genetics, 2001, 158: 1329~1338
    [39]高爱保,吴登俊.利用微卫星标记进行凉山半细毛羊亲权鉴定的研究.遗传HEREDITAS( Beijing),2005, 27 (1) :085~090 .
    [40]管峰,杨利国,贾名威,程瑞禾,茆达干.微卫星的构成及其检测技术.生物学杂志,2004,21(2):1-3.
    [41]张明亚,吴登俊。凉山半细毛羊1号染色体微卫星遗传连锁图谱的构建[J]。遗传,2005,27(4):575~578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700