水稻BC_2F_3选择导入系产量及耐盐QTL定位与遗传重叠的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻产量性状由于遗传率低、环境互作和生物学基础复杂,育种中存在较大困难。利用高代回交选择导入系群体剖析复杂数量性状和目标性状定向改良,在我国的作物分子育种中已得到广泛应用。本实验选用生产上大面积推广应用的当家品种作轮回亲本构建高代回交群体并进行产量选择,对水稻产量相关的结实率、千粒重、穗长、穗实粒、穗总粒、有效穗、单株产量和株高进行QTL定位及主要位点效应分析;同时对产量选择导入系进行耐盐性鉴定和耐盐QTL定位,阐述如何在生产实践中应用定位的结果,培育高产耐盐水稻新品种;并分析了不同背景下的应用前景,分析产量及耐盐指标的重叠QTL的效应。
     1.对水稻结实率、千粒重、穗长、穗实粒、穗总粒、有效穗、单株产量和株高进行QTL定位分析,在蜀恢527/ZDZ057群体中8个目标性状共检测到了49个QTL,分别定位了9个、12个、4个、5个、5个、2个、2个和10个QTL,分布在除了第8染色体之外的11条染色体上;在明恢86/ZDZ057群体中8个目标性状共检测到了61个QTL,分别定位了15个、11个、8个、9个、3个、2个、5个和8个QTL,分布在除了第8染色体之外的11条染色体上;在蜀恢527/特青群体中8个目标性状共检测到了54个QTL,分别定位了9个、10个、11个、5个、7个、1个和11个QTL,分布在12条染色体上;在明恢86/特青群体中8个目标性状共检测到了31个QTL,分别定位了2个、9个、5个、4个、4个、5个和2个QTL,分布在除了第8、第9和第12染色体之外的9条染色体上。
     2.针对产量指标结实率、千粒重、穗长、穗实粒、穗总粒、有效穗、单株产量和株高进行位点间互作分析,在P<0.0001极显著水平下,群体蜀恢527/ZDZ057分别检测到:122、161、2、5、1、1、1和4对互作的QTL位点;群体明恢86/ZDZ057分别检测到:58、123、4、68、53、12、2和15对互作的QTL位点;群体蜀恢527/特青分别检测到:263、59、72、12、6、0、0和93对互作的QTL位点;群体明恢86/特青分别检测到:1、9、4、6、20、0、0和3对互作的QTL位点。
     3.研究水稻产量相关性状的遗传基础,第1、3、7染色体上值得重点关注的。本实验蜀恢527/ZDZ057、明恢86/ZDZ057、蜀恢527/特青和明恢86/特青4个群体的QTL定位中位于第1染色体上的共有30个,位于第3染色体上共有45个,位于第7染色体上共有18个。
     4.本实验在明恢86/ZDZ057群体中该区域检测到的第3染色体QSf3c位点(131.5 cM),是一个影响结实率、千粒重和穗实粒的主效QTL,贡献率分别是15.91%、15.64%和15.18%,对结实率、千粒重和穗实粒均表现了较大的加性效应,QSf3c在穗实粒的定位中表现出较大的正向超显性。该位点又同时与多个其他随机位点通过显著的互作进一步调控其它性状。
     5.本实验在蜀恢527/特青群体中定位到的QPh7b位于第7染色体的54.2cM附近,对株高的贡献率高达34.04%。除了在蜀恢527/特青群体中检测到的QPh7b和Ghd7位于同一区域,在明恢86/ZDZ057群体中检测到的QSf3c和GS3位于同一区域外,蜀恢527/ZDZ057群体中控制株高的QPh7a、蜀恢527/特青群体中控制千粒重和株高的QTgwt3f、明恢86/特青群体中控制穗总粒、有效穗的QTnsp1c和明恢86/特青群体中控制穗长的QPL3d,这4个QTL位点将是未来多环境检测及近等基因系突破的重点。
     6.通过对四个BC2F3群体的幼苗耐盐等级和幼苗存活天数两个性状进行了QTL定位。在群体蜀恢527/ZDZ057、明恢86/ZDZ057、蜀恢527/特青和明恢86/特青中分别检测到了11、15、11和6个控制幼苗耐盐等级和幼苗存活天数的QTL,其中群体明恢86/ZDZ057检测到的15个QTL中有3个QTL具有多效性。其中有2个QTL能在蜀恢527/ZDZ057和明恢86/ZDZ057群体分别检测到,1个QTL可以在蜀恢527/ZDZ057和蜀恢527/特青群体分别检测到,1个QTL在明恢86/ ZDZ057和明恢86/特青群体中分别检测到。QSst2c、QSst10b、QSst12、QSds1b、QSst4b、QSst2d、QSst2e、QSds10、QSst1b、QSst10c、QSst10d和QSds4b能解释的表型变异分别为20.36%、24.06%、22.50%、28.45%、21.39%、23.31%、34.92%、42.18%、20.29%、20.50%、21.31%和26.27%,QSst12表现为负向超显性,QSst4b和QSds10表现为正向超显性,QSst10b和QSst2d分别表现为负向和正向部分显性。
     7.针对耐盐指标幼苗耐盐等级和幼苗存活天数进行位点间互作分析,在P<0.005极显著水平下,群体蜀恢527/ZDZ057分别检测到:40和5对互作QTL位点;群体明恢86/ZDZ057分别检测到:31和19对互作QTL位点;群体蜀恢527/特青分别检测到:40和5对互作QTL位点;群体明恢86/特青分别检测到:31和19对互作QTL位点。
     8. QSst2d、QSst10b、QSst12、QSds1b、QSst9a、QSst4b、QSst2e、QSst2f和QSds10这九个主效基因在常规育种中要充分利用其加性效应,利用来自ZDZ057的QSst2d、QSst10b和QSst12等位基因和来自特青的QSst2e、QSst2f来降低耐盐等级进而提高品种耐盐性,利用来自明恢86的QSds1b和QSds10等位基因来延长幼苗存活天数进而提高耐盐性,同时利用来自蜀恢527的QSst9a和QSst4b等位基因来降低耐盐等级进而提高品种耐盐性。
     9. ZDZ057在蜀恢527及明恢86背景下12个遗传重叠的位点,其中ZDZ057在蜀恢527及明恢86背景下重叠位点数最小的是3个,最多的达到6个。特青在蜀恢527及明恢86背景下5个遗传重叠的位点,其中特青在蜀恢527及明恢86背景下重叠位点数最小的是3个,最多的高达7个,四个群体中定位到的这17个重叠频率异常的区域将是未来近等基因系的工作方向,重叠的位点在相应的群体中都具有较大的贡献率。
It’s quite difficult to manipulate the yield traits of rice due to the low inheritance,interaction with environment and the complex biology elements.Using the advance selective backcross introgression lines to take apart complex quantity traits and improvement of goal character is abroad applied in crop molecule breeding in our country.The experiment selects basic varieties whice is popularized widely as current parents to construct advanced backcross lines and go along with yield selection.To proceed the QTL and main points effect analysis is about the spikelet fertility, thousand grains weitht, panicle length, the number of filled grains per panicle, total number of spikelets per panicle, the number of panicles per acre, grain yield per plant and plant height of rice yield traits.At the same time,to proceed the salt-tolerance traits identify and QTL orientation of score of salt toxicity and survival days of seedlings with the selected introgression lines it to set forth how to apply the output of the QTL orientation in the manufacture practice and to cultivate high-yield with salt-tolerance new varieties.It’s to applied the foreground of different background,the effect of the overlap of the yield with salt-tolerance traits and the integration foreground using of the every point of overlap.
     1. To proceed the QTL and main points effect analysis is about the spikelet fertility, thousand grains weitht, panicle length, the number of filled grains per panicle, total number of spikelets per panicle, the number of panicles per acre, grain yield per plant and plant height of rice yield traits.Forty nine QTLs of eight goal traits are detected in the line of Shuhui527/ZDZ057.The eight traits QTLs are nine,twelve,four,five,five,two,two and ten separately.It’s distributed in the eleven chromosomes except for the eighth chromosome. Sixty one QTLs of eight goal traits are detected in the line of Minghui86/ZDZ057.The eight traits QTLs are fifteen,eleven,eight,nine,three,two,five and eight separately.It’s distributed in the eleven chromosomes except for the eighth chromosome. Fifty four QTLs of eight goal traits are detected in the line of Shuhui527/Teqing.The eight traits QTLs are nine,ten,eleven,five,seven,one and eleven separately.It’s distributed in the twelve chromosomes. Thirty one QTLs of eight goal traits are detected in the line of Minghui86/Teqing.The eight traits QTLs are two,nine,five,four,four,five and two separately.It’s distributed in the nine chromosomes except for the eighth,ninth and twelfth chromosomes.
     2. To analyse the interaction with QTLs and main points effect are about the spikelet fertility, thousand grains weitht, panicle length, the number of filled grains per panicle, total number of spikelets per panicle, the number of panicles per acre, grain yield per plant and plant height of rice yield traits.In the level of P<0.0001,there are 122,161,2,5,1,1,1 and 4 pairs interact points in the line of Shuhui527/ZDZ057. And there are 58,123,4,68,53,12,2 and 15 pairs interact points in the line of Minghui86/ZDZ057. There are 263,59,72,12,6,0,0 and 93 pairs interact points in the line of Shuhui527/Teqing.And there are 1,9,4,6,20,0,0 and 3 pairs interact points in the line of Minghui86/Teqing.
     3. The first,third and seventh chromosomes are worth attendance to research genetic base of rice yield traits.There are 30 QTLs in the first chromosome,45 QTLs in the third chromosome and 18 QTLs detected in the seventh chromosome of the four lines of Shuhui527/ZDZ057, Minghui86/ZDZ057, Shuhui527/Teqing and Minghui86/Teqing.
     4. The QSf3c(131.5 cM) in the third chromosome detected in the line of Minghui86/ZDZ057 is a main QTL impacting the spikelet fertility, thousand grain weitht and the number of filled grains per panicle.The contributions are 15.91%,15.64% and 15.18%.The point presents great add effect to the spikelet fertility, thousand grain weitht and the number of filled grains per panicle.The QSf3c presents great positive dominance in the trait of number of filled grains per panicle and controls other traits via the interact with few random points.
     5. The Contribution to the plant height of QPh7b(54.2cM) in the seventh chromosome detected in the line of Shuhui527/Teqing abtains 34.04%.Besides the same district of QPh7b and Ghd7 in the line of Shuhui527/Teqing and the same district of QSf3c and GS3 in the line of Minghui86/ZDZ057,the four QTLs which are QPh7a of plant height detected in the line of Shuhui527/ZDZ057, QTgwt3f of thousand grain weitht with plant height in the line of Shuhui527/Teqing, QTnsp1c of total number of spikelets per panicle with the number of panicles per acre in the line of Minghui86/Teqing and QPL3d of panicle length in the line of Minghui86/Teqing are the keystone of the future more settings detecting and near- isogenic lines research.
     6. A total of 11,15,11 and 6 QTL were detected in Shuhui 527/ZDZ 057, Minghui 86/ZDZ 057, Shuhui 527/Teqing and Minghui 86/Teqing respectively. Three pleiotropic QTL were found in the population of Minghui 86/ZDZ 057. There were 2 QTLs could be detected simultaneously in Shuhui 527/ZDZ057 and Minghui 86/ZDZ 057, 1 QTL in Shuhui 527/ZDZ057 and Shuhui 527/Teqing, and 1 QTL in Minghui 86/ZDZ057 and Minghui 86/Teqing. QSst2c、QSst10b、QSst12、QSds1b、QSst4b、QSst2d、QSst2e、QSds10、QSst1b、QSst10c、QSst10d and QSds4b explained 20.36%、24.06%、22.50%、28.45%、 21.39%、23.31%、34.92%、42.18%、20.29%、20.50%、21.31% and 26.27% of phenotypic variation respectively. The QSst12 showed negative overdominant effect, QSst4b and QSds10 showed positive overdominant effects, and QSst10b and QSst2d showed negative and positive partial dominant effects respectively.
     7. To analyse the interaction with QTLs and main points effect are about the score of salt toxicity and survival days of seedlings.In the level of P<0.005,there are 40 and 5 pairs interact points in the line of Shuhui527/ZDZ057. And there are 31 and 19 pairs interact points in the line of Minghui86/ZDZ057. There are 40 and 5 pairs interact points in the line of Shuhui527/Teqing.And there are 31 and 19 pairs interact points in the line of Minghui86/Teqing.
     8. The add effect of the nine main genes in the general breeding which are QSst2d,QSst10b,QSst12,QSds1b,QSst9a,QSst4b,QSst2e,QSst2f and QSds10 should be fully used . The alleles of QSst2d,QSst10b and QSst12 which are from the donor of ZDZ057 and the alleles of QSds1b and QSds10 which are from the donor of Teqing can be used to reduce the score of salt toxicity so as to heighten variety salt-tolerance. The alleles of QSds1b and QSds10 which are from the Minghui86 can be used to prolong the survival days of seedlings so as to heighten variety salt-tolerance.and the alleles of QSst9a and QSst4b which are from the Shuhui527 can be used to reduce the score of salt toxicity so as to heighten variety salt-tolerance.
     9. There are 12 overlaps detected from the background of ZDZ057 and Minghui86.The least overlaps are 3 locus and the most overlaps are 6 locus in the background of Shuhui527 and Minghui86 for ZDZ057. There are 5 overlaps detected from the background of Shuhui527 and Minghui86 for Teqing. The least overlaps are 3 locus and the most overlaps are 7 locus in the background of Shuhui527 and Minghui86 for Teqing.The exceptional frequency overlaps district of 17 locus detected in the four lines are the future research direction of near- isogenic lines.The contributions of the overlaps are greatly high in the corresponding lines.
引文
[1] Li ZK, Fu BY, Gao YM.Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.).Plant Molecular Biology, 2005, 59: 33-52
    [2]邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础. [博士学位论文].武汉:华中农业大学,1999
    [3] Allard RW. Plant breeding .John Wiley and sons, New York:1960
    [4]徐云碧,朱立煌.分子数量遗传学,北京:中国农业出版社,1994
    [5] Bostein DR, White RL ,Skolnick M.Construction of a genetic linkage map in man using restriction fragment length polymorphism.A J Hum Genet,1980, 2: 314-331
    [6]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002
    [7] Soller, Beckman. Marker based mapping of quantitative trait loci using replicated progenies. Theoretical and applied genetics.1990, 2:205-208
    [8]高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22 (3):175-179
    [9] Keightley P, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection.Genetical Research, 1993, 62: 195-203
    [10] Tanksley S D, McCouch S R. Seed bank and molecular maps: Unlocking genetic potential from the wild.Science, 1997, 277: 1063-1066
    [11] Xiao JH, Li JM, Yuan LP,et al.Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross.Theoretical and applied genetics, 1996, 92: 230-244
    [12] Tanksley SD,NelsonJC.Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breedinglines.Theoretical and applied genetics, 1996, 92: 191-203
    [13]何光华,裴,炎,杨光伟等.我国中籼杂交稻亲本的DNA变异性研究.作物学报,2000,26:449-454
    [14] Steele KA, AH Price, HE Shashidhar,et al. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety.Theoretical and applied genetics, 2005, 112: 208-221
    [15] Ali J, Xu JL, Ismail AM, et al. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Research, 2006, 97: 66-76
    [16] Lafitte HR, Vijayakumar CH, Gao YM.Improvement of rice drought tolerancethrough backcross breeding: evaluation of donors and results from drought nurseries.Field Crops Research, 2006, 97: 77-86
    [17]余四斌,穆俊祥,赵胜杰等.以珍汕97B和9311为背景的导入系构建及其筛选鉴定.分子植物育种,2005,3(5):629-636
    [18]余新桥,梅捍卫,李明寿等.节水抗旱杂交稻的选育和应用前景.分子植物育种,2005,3(5):637-641
    [19]罗彦长,李泽福,吴敬德等.以早籼14、紫恢100和M3122为背景的导入系构建及其筛选鉴定.分子植物育种,2005,3(5):642-648
    [20]梅捍卫,罗利军,徐小艳等.以高产恢复系“中413”为背景的导入系群体粒型和耐旱性筛选鉴定.分子植物育种,2005,3(5):642-648
    [21]徐建龙,高用明,傅彬英.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种,2005,3(5):619-628
    [22] Pearson G A,Ayers A D,Eberhard D L.Relative salt tolerance of rice during germination and early seedling development.Soil Sci, 1996,102:151-156
    [23]徐云碧.分子标记在数量基因定位中的应用.遗传,1992,14(2):45-48
    [24] Stuber CW, Lincoln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers.Genetics, 1992, 132: 823-839
    [25] Jung M, Weldekidan T, Schaff D, et al. Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theoretical and applied genetics, 1994, 89: 413-418
    [26] Laurie D A, Pratchett N, Bezant J H, et al.RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross.1995, 38: 575-585
    [27] Moncada P, Martinez C P, Borrero J,et al.Quantitative trait loci for yield and yield components in an Oryza sativa X Oryza rufipogon BC2F2 population evaluated in an upland environment.Theoretical and applied genetics, 2001, 102 (1): 41-42
    [28]黎裕,戴法超,景蕊莲等.玉米弯孢菌叶斑病抗性的QTL分析.中国农业科学.2002,35 (10):1221 -1227
    [29] Li XH, Liu XD, Li MS, et al. Identification of Quantitative Trait Loci for Anthesis-Silking Interval and Yield Components Under Drought Stress in Maize. Acta Botanica Sinica,2003, 7: 99-104
    [30] Gao LF, Jing RL ,Huo NX, et al.One hundred and one new microsatellite loci derivedfrom ESTs (EST-SSRs) in bread wheat. Theoretical and applied genetics,2004, 108: 1392-1400
    [31] Konishi S, Izawa T, Lin S Y,et al. An SNP Caused Loss of Seed Shattering During Rice Domestication Sasaki-T, Yano M.Science,2006,312(5778): 1392-139
    [32] Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theoretical and applied genetics, 2006, 113: 467-475
    [33]郭咏梅,穆平,刘家富等.水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位.作物学报,2007,33 (1): 50-56
    [34] Svistoonoff S, Creff A, Reymond M, et al, Desnos T. Root tip contact with low-phosphate media reprograms plant root architecture. Nature genetics, 2007, 39: 792-796
    [35] Huang N, Parco A, Mew T, et al. RFLP mapping of isozymes, RAPD, and QTL for grain shape, brown planthopper resistance in a doubled-haploid rice population. Molecular Breeding, 1997, 3: 105-113
    [36] Yu SB, Li JX, Xu CG, et al.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad, Sci,USA, 1997, 94: 9226-9231
    [37] Li J, Xiao J, Grandillo S, et al .QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivatedAsian (O. sativa L.) and African (O. glaberrima S.) rice.Genome, 2004, 47: 697-704
    [38] Song WY, Wang GL, Chen LL. A receptor Kinase-like protein encoded by the rice disease resistance gene , Xa21 .Science, 1995, 270: 1084-1086
    [39] Weiya Xue, Yongzhong Xing, Xiaoyu Weng, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 2008, 39(5): 623-630
    [40] Drenth Jpte.Sub1A an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature ,2006,442:70-78
    [41] Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484
    [42] AshikariM.Cytokinin oxidase regulates rice grain production.Science ,2005,309: 741-745
    [43] Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and applied genetics, 2006, 112: 1164-1171
    [44] Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING–type E3 ubiquitin ligase. Nature genetics, 2007, 39(5): 623-630
    [45]徐云碧,申宗坦,陈英等.利用最大似然法进行水稻产量性状基因的分子作图.遗传学报,1995 ,22(1) :46-52
    [46] Yagi T ,Nagata K,Fukuta Y,et al. QTL mapping of spikelet number in rice ( Oryza sativa L1) .Breeding Science ,2001 ,51(1) :53-56
    [47]徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析.中国水稻科学,2002 ,16 (1) : 6-10
    [48]李泽福,夏加发,苏泽胜等.水稻产量及其相关性状的数量性状基因座分析.南京农业大学学报,2002 ,25(2) :1-6
    [49]李建雄,余四斌,徐才国等.“汕优63”的产量及其构成因子的数量性状基因位点分析.作物学报,2000 ,26(6) :892-898
    [50]徐建龙,薛庆中,罗利军等.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001 ,28(8) : 752-759
    [51] Li Z K,Pinson S R M,Park W D ,et al.Epistasis for three grain yield components in rice ( Oryza sativa L1) .Genetics ,1997 ,145 (2) :453-465
    [52]崔克辉,彭少兵,邢永忠等.水稻产量库相关穗部性状的遗传分析.遗传学报,2002 ,29(2) : 144-152
    [53] Liao C Y,Wu P ,Hu B ,et al.Effects of genetic bac kground and environment on QTLs and epistasis for rice ( Oryza sativa L1) panicle number. Theor Appl Genet ,2001 ,103 (1) :1041-11
    [54] Lin H X,Qian H R ,Zhuang J Y,et al.RFLP mapping of QTLs for yield and related characters in rice ( Oryza sativa L1) .Thero Appl Genet ,1996 ,92 (8) :920-927
    [55] Koyama M L,Levesley A,Koebner R M D, et al.Quantitative trait loci for component physiological traits determining salt tolerance in rice .Plant Physilo,2001,125:406-422
    [56] Qian Q,Yansgihara S,Teng S, et al.Isolation,expression characteristics and chromosomal locations of three cDNA fragments uner salt stress in rice.Acta Bot Sin(植物学报),2003,45(9):1090-1095
    [57] Gong J-M(龚继明),He P(何平),Qian Q(钱前), et al.Identification of QTL for salt tolerance in rice.Chin Sci Bull(科学通报),1998,43(17):1847-1850(in Chinese)
    [58] Lin H X,Zhu M Z,Yano M, et al.QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance.Theor Appl Genet,2004, 108:253-260
    [59] Takehisa H,Shimodate T,Fukuta Y, et al.Identification of quantitative trait loci for plant growth of rice in paddy field folded with salt water.Field Crops Res,2004,89:85-95
    [60] Lin H-X(林鸿宣),Yanagihars S(柳原城司),Zhuang J-Y(庄杰云), et al.Identification of QTL for salt tolerance in rice via molecular markers.Chin J Rice Sci,1998,12(2):72-78(in Chinese with Englishi abstract)
    [61] Lang N T,Masood S,Yanagihara S, et al.Mapping QTLs for salt tolerance in rice.In:khush G S,Brar D S,Hardy B eds.Advances in Rice Genetics.Supplement to Rice Genetics IV.Proceedings of the Fourth International Rice Genetics Symposium,22-27 October2000.Los Banos,Philippines:IRRI,2003,PP294-298
    [62] Prassd S R,Bagali P G,Hittalmani S, et al.Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice(Oryza sativa L).Curr Sci,2000,78:162-164
    [63] Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theoretical and applied genetics, 2006, 113: 467-475
    [64] Zhang G Y,Guo Y,Chen S L, et al.RFLP tagging of a salt tolerance gene.Plant Sci,1995,110:227-234
    [65] Lin H X,Zhu M Z,Yano M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance,Theor Appl Genet, 2004,108:253-260
    [66] Ren Z H,Gao Jp,li L G, et al.A Rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet, 2005,37:1141-1146
    [67] Lin H-X,Yanagihars S,Zhuang J-Y, et al.Identification of QTL for salt tolerance in rice via molecular markers.Chin J Rice Sci, 1998,12(2):72-78
    [68] Gong J-M,He P,Qian Q, et al.Identification of QTL for salt tolerance in rice.Chin Sci Bull, 1998,43(17):1847-1850
    [69] Gu X-Y,Mei M-T,Yan X-L, et al.Preliminary detection of quantitative trait loci for salt tolerance in rice.Chin J Rice Sci, 2000,14(2):65-70
    [70] Prassd S R,Bagali P G,Hittalmani S, et al.Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice(Oryza sativa L).Curr Sci, 2000,78:162-164
    [71] Koyama M L,Levesley A,Koebner R M D, et al.Quantitative trait loci for component physiological traits determining salt tolerance in rice.Plant Physilo, 2001,125:406-422
    [72] Lang N T,Masood S,Yanagihara S, et al.Mapping QTLs for salt tolerance in rice.Los Banos,Philippines:IRRI, 2003,PP294-298
    [73]郑天清.水稻高代回交导入系选择群体的选择响应与遗传重叠研究: [博士学位论文].南京:南京农业大学,2006
    [74]徐云碧,朱立煌.分子数量遗传学,北京:中国农业出版社,1996.
    [75]辛业芸.水稻产量性状QTL定位研究进展.湖南农大学报,2008,33(4):1007-1032
    [76] Paterson A H,Lander E S,Hewitt J D,et al.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms.Nature,1988,335:721-726
    [77] Tanksley S D.Mapping polygenes[J].Annu Rev Genet,1993,27:205-233
    [78]王珍,方宣钧. Plant DNA Isolation.分子植物育种,2003,1(2):281-288
    [79] Temnykh S, Declerck G, Lukashova A, et al. Computational and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker Potential.2001, 11:1441-1452
    [80]郑景生,吕蓓. PCR Technique and its Practical Methods.分子植物育种,2003,1 (3):381-394
    [81] SAS Institute Inc. SAS/STAT Software: Changes and Enhancements through Release 6.12. Cary, North Carolina: SAS Institute Inc,1997
    [82]张帆,郝宪彬,高用明等.利用籼稻资源中的“隐蔽有利基因”提高粳稻苗期耐冷性.作物学报,2007,33 (10):1618-1624
    [83] Pearson G A,Ayers A D,Eberhard D L.Relative salt tolerance of rice during germination and early seedling development.Soil Sci,1996,102:151-156
    [84] Fang X-W(方先文),Tang L-H(汤陵华),Wang y-p(王艳平).Selection on rice germplasm tolerant to salt stress.J Plant Genet Resour(植物遗传资源学报),2004, 5(3):295-298(in Chinese with English abstract)
    [85] Ikehashi H,Ponnamperuma F N.Varietal tolerance of rice for adverse soils.In:Soils and Rice,LosBanos, Philippines: IRRI, 1978, PP801-823
    [86] Gregorio G B,Senadhira D,Mendoza R D, et al.Progress in breeding for sailinity tolerance and associated abiotic stresses in rice.Field Crops Res,202,76:91-101
    [87] IRRI. Standard Evaluation System for Rice.IRRI,Manila,Philippines,1996
    [88] Wang Z(王珍), Fang X-(J方宣钧). Plant DNA Isolation. Molecular Plant Breeding (分子植物育种), 2003, 1(2) :281– 288 (in Chinese with English abstract)
    [89] Xu J L,Lafitte H R,Gao Y M, et al.QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet,2005,111:1642-1650
    [90] Voorips R E. Mapchart Version 2. 0 : windows sofrware for the graphical presentation of the linkage maps and QTLs. Plant Research Intertional Wageningen , the Netherlands, 2001
    [91] Kruata N,Nagamura Y,Yamamoto K, et al.A 300 kilobase interval genetic map of rice including 883 epressed sequences.Nat genet,1994,8:365-372
    [92] Ware D,Jaiswal P,Ni J, et al.Gramene:a resource for comparavive grass genomics.Nucl Acid Res ,2002,30:103-105
    [93] Moncada P, Martinez C P, Borrero J, et al .Quantitative trait loci for yield and yield components in an Oryza sativa X Oryza rufipogon BC2F2 population evaluated in an upland environment.Theoretical and applied genetics, 2001, 102 (1): 41-42
    [94]陈冰嬬.水稻BC2F2及其衍生BC2F2:3群体遗传组成和目标性状选择导入系群体QTL定位精度与效率比较研究:[硕士学位论文].北京:中国农业科学院,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700