利用三亲本杂交群体定位陆地棉纤维品质性状QTLs
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上重要的纤维作物。棉属约50种,包括四个栽培种:亚洲棉、非洲棉、陆地棉、海岛棉,其中陆地棉占世界原棉产量的95%以上。我国是世界上最大的棉花生产国和消费国,也是最大的纺织品生产国和出口国,但目前国产棉花的质量却难以满足纺织工业的多种需求。提高我国棉花的质量既可满足国内纺织工业多元化用棉的需要,稳定和发展棉花生产,又可以提高我国原棉在国际市场上的竞争力。因此很有必要进一步了解我国棉花纤维品质的现状。
     棉花产量和品质表现型是基因型与环境共同作用的结果,致使常规育种依据表型选择的效率受到限制。通过分子标记辅助选择可显著提高育种效率,分子标记辅助选择需要构建遗传连锁图谱,并定位数量性状基因座(quantitative trait locus,QTL).本研究采用三个遗传基础差异较大且生产上广泛应用的陆地棉构建群体,利用分子标记技术构建棉花的遗传连锁图谱,结合纤维品质性状的分析,定位控制棉花纤维品质的QTL。研究结果如下所示:
     1.亲本及三亲杂交群体的品质性状的表现
     纤维品质性状马克隆值、纤维比强度、纤维长度性状在三个亲本中有较大的差异。7235的纤维长度显著高于中棉所35和渝棉1号。渝棉1号和中棉所35的马克隆值显著高于7235。渝棉1号和7235的纤维比强度显著比中棉所35高。整齐度和伸长率差异不显著。
     三亲杂交群体的纤维长度范围为28.40-34.83mm,平均为32.20mm:整齐度范围为81.60-87.50%,平均85.35%;马克隆值范围为3.20-5.20之间,平均4.11;伸长率6.30%-6.80%,平均值6.57%;比强度范围为28.9-39.3cN/tex之间,平均34.02 cN/tex.群体的纤维品质性状连续分布,表现超亲优势。
     2.引物多态性分析
     在4612对SSR引物中,238对在三个亲本间(渝棉1号、中棉所35、7235)表现有效多态性,多态比例为5.2%,其中BNL为11.1%.NAU9.0%、JESPR为6.1%.CIR为4.1%.MUCS为4.0%.MUSS为3.2%.MGHES为2.3%.MUSB为1.7%。
     3.三亲杂交群体标记基因型检测
     利用238对多态性引物检测三亲杂交群体172个单株,共获得244个多态性位点,6对引物产生两个位点。244个位点中有1m类型位点68个,占27.87%; np类型位点98个,占40.16%; hk类型位点65个,占26.63%;ef-eg类型位点13个,占5.33%。
     4.遗传连锁图谱构建
     对244个标记位点利用遗传图谱进行遗传连锁分析,所构建的遗传连锁图谱有171个位点和42个连锁群,84个位点未定位到遗传连锁图谱上。39个连锁群对应22个染色体,3个连锁群未定位染色体。连锁群的长度为2.7-100cM,每个连锁群含2-40个分子标记,标记平均间隔8.45cM,总长1445.5 cM,基因组的覆盖率为32.5%。
     5.品质性状QTL定位
     利用复合区间作图法分析该三亲本杂交群体纤维品质性状,共得到10个纤维品质QTLs,其中3个与纤维长度相关,分布在Chr.3.Chr.12、Chr.15可解释表型变异的11.2%-45.3%;2个与整齐度相关,分布在Chr.19.Chr.21上,可解释表型变异的6.5%、34.9%;3个与马克隆值相关,分布在Chr17、Chr23.Chr24上,可解释表型变异的8.8%-29.2%: 2个与比强度相关,分布在Chr15、Chr25上,可解释表型变异的6.9%、6.2%。
Cotton is the most important fiber crop in the world. Cotton genus comprises of about 50 species, and cultivated species include Asian cotton, African cotton, upland cotton and Sea Island cotton. Upland cotton accounted for 95% of the total production. China is the world's largest cotton producer and consumer, and also the largest textile producer and exporter. However, the fiber quality of domestic cotton cannot meet the needs of textile industry. The development of fiber quality can enhance the competitiveness of our raw cotton in the international market.
     The yield and quality traits result from the interaction between genotype and environment, so limted the efficiency of conventional breeding which based on phenotypic selection. Molecular marker-assisted selection technology can significantly improve the efficiency of breeding constructing. The molecular marker-assisted selection technology need construct linage map and locate quantitative trait locus (QTL). The present study uses three upland cotton cultivars to establish mapping population and construct genetic map with SSR marker. The fiber quality traits of three parent cross population (Yumian 1×Zhong 35)×(Yumian 1×7235) F1 were used to map QTLs affecting fiber quality. The mainly results were as following:
     1. Fiber quality of mapping parents and composite population
     Fiber quanlity traits including Micronaire, fiber strength and fiber length traits were quite different in three parents whereas fiber uniformity and elongation are not significantly different. The fiber length of 7235 was better than that of Zhong 35 and Ynmian 1. The mironaire of 7235 was lower than that of Zhong 35 and Ynmian 1. The fiber strength of Ynmian 1 was lower than that of Zhong 35 and 7235.
     For three parent cross population, fiber length ranges from 28.40 to 34.83 mm, with a mean of 32.20 mm. Length uniformity ranges from 81.60% to 87.50%, with a mean of 85.35%. Mironaire ranges from 3.20 to 5.20, with a mean of 4.11. Fiber elongation ranges from 6.30% to 6.80%, with a mean of 6.57%. Fiber strength ranges from 228.9 to 39.3cN/tex, with a mean of 34.02 cN/tex. Five fiber quality traits show continuous distribution and segregation beyond three parents.
     2. Primer pair polymorphism between three parents
     Out of 4612 cotton SSR primer pairs, a total of 238 show polymorphism among three mapping parents, Yumian 1, Zhong 35 and 7235, the polymorphic markers acconted for 5.2% of the total primer pairs.
     3. Genotyping tree parent cross population
     The 238 polymorphic primer pairs were used to genotype the 172 individual plants from (Yumian 1×Zhong 35)×(Yumian 1×7235) F1 population and 244 loci were obtained.
     4. Construction of upland cotton genetic linkage map
     A total of 244 loci were comducted linkage analysis, and a map including 175 markers and 42 linkage groups was constructed whereas 84 markers were not located on any linakeage group. Thirty-nine linkage groups were located on 22 chromosomes. The map covered 1445.5cM. accounting for 32.5% of the cotton genome, with an average distance of 8.45 cM between two markers. The length of linkage groups ranged from 2.7 to 100 cM and the markers on the groups ranged from 2 to 40.
     5. QTL mapping of fiber quality
     Based on composite interval mapping, ten QTLs for fiber quality was located on nine chromosomes. Three QTLs identified for fiber length distributed on Chr3. Chrl2, Chr15,and explained the fiber length variance from 10.2 to 35.8%. Two QTLs identified for length uniformity distributed on Chrl9 and Chr21, and explained the fiber length uniformity from 6.5% to 34.9%. Three QTLs for Micro were located on chrl 7, chr 23 and chr 24, and explained phenotypic variance from 8.8% to 29.2%. Two QTL for fiber strength were located on chr 15 and chr25, and explained 6.9% and 6.2% of phenotypic variance.
引文
[1]易成新,潘泽义,刘文秀.棉花纤维品质指标及其提高问题.安徽农学通报,2001,7(4):36-38.
    [2]王延琴,杨伟华,许红霞,周大云,冯新爱,匡猛.中国棉花生产中存在的主要问题及建议.中国农业学通报.2009,25(14):86-90
    [3]赵辉.棉花纤维品质有关指标分析.湖北农业科学.1994(2):20~23.
    [4]唐淑荣,孟俊婷,褚平,侯爱玲,冯翠萍.我国棉花纤维品质现状分析.江西农业学报,2007,19(7):8-10.
    [5]万少安,任琪.中外棉花纤维品质比较分析.http://www.cqvip.com
    [6]崔秀珍.我国棉花纤维品质存在的问题及解决途径.安徽农业科学,2006,34(11):2360-2361
    [7]刘华,贾继增.指纹图谱在作物品种鉴定中的应用.作物品种资源,1997(2):45-48
    [8]BOTSTEI N D. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet,1980,32:314-331
    [9]王晓辉,刘桂林.DNA分子标记技术.畜禽业,2003(6):50-51.
    [10]张轲,张正圣,陈利等,棉花分子标记与遗传连锁图谱构建技术概述.北京农业职业学院学报,2007,21(4):33-37
    [11]滕兆岩.星星草RAPD2PCR反应体系建立与优化.生物技术,2007,17(1):48-49.
    [12]白玉DNA分子标记技术及其应用.安徽农业科学,2007,35(24):7422-7424
    [13]陈学辉,陈雅琴.DNA分子标记的主要技术及其在基因定位分析中的应用.
    [14]郑学项,冯素萍,李维国.DNA分子标记研究进展.安徽农业科学,2009,37(26)12420-12422
    [15]LI G, QUI ROS C F. Sequence-related amplified polymorphism (SRAP).a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in ssica. Theor Appl Genet,2001,103:455-461.
    [16]丁锦平,高国庆,周瑞阳等.花生SRAP反应体系的建立与优化.安徽农业科学,2008,36(10):4009-4010.
    [17]REINISCH A J, Dong J M,Wendel J F, et al. A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense chromosome organization and evolution in a disomicpolyploid genome. Genetics,1994,138:829-847.
    [18]ALTAF M K,Steward J M,Wajahatullah M K et al. Molecular and morphological genetics of a trispecies F2 population of cotton. Proceedings of 1997 Beltwide cotton conferences. Memphis: National Cotton Council of America,1997,448-452.
    [19]ZHANG J, Guo Wang-zhen, Zhang Tian-zhen. Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet,2002,105:1166-1173.
    [20]RONG J K, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics,2004,166:389-417.
    [21]SONG X L, Wang K,Guo W Z, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome.2005,48:375-389.
    [22]HE D H.lin Z X.Zhang X L, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotto. Euphytica,2005,144:141-149.
    [23]Guo W Z. Cai C P, Wang C B. et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics,2007,176:527-541
    [24]JIANG C X,Wright R J, E1-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci,1998,95:4419-4424.
    [25]KOHEL RJ. John Yu, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica,2001.121:163-172.
    [26]LACAPE J M, Nguyen T B.Thibivilliers S. et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome,2003,46:612-626.
    [27]NGUYEN T B, Giband M, rottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet,2004,109:167-175.
    [28]MEI M,Syed N H.Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits. Theor Appl Genet.2004,108:280-291.
    [29]HAN Z G, Guo W Z. Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid[J]. Mol Gen Genomics,2004,272:308-325.
    [30]PARK Y H.Alabady M S.Ulloa M,et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genomics,2005,274:428-441.
    [31]WAGHMARE V N, Rong J K.Paterson A H, et al. Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet, 2005,111:665-676.
    [32]HAN Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet,2006,112: 430-439.
    [33]HE D H, Lin Z X, Zhang X L. et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica,2007,153:181-197.
    [34]GUO W Z. Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics,2007,176:527-541
    [35]SHAPPLEY ZW, Jenkins J N,Meredith W R. et al. An RFLP linkage map of Upland cotton, Gossypium hirsutum. Theor Appl Genet,1998,97:756-761.
    [36]ULLOA M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Science,2000,4:161-170.
    [37]ULLOA M,Meredith W R,Shappley Z W, et al. RFLP genetic linkage maps from four F2:3 populations populations and a joinmap of Gossypium hirsutum. Theor Appl Genet,2002,104: 200-208.
    [38]SHAPPLEY ZW, Jenkins J N, Meredith W R, et al. An RFLP linkage map of Upland cotton,Gossypium hirsutum. Theor Appl Genet,1998,97:756-761.
    [39]SHAPPLEY Z W, Jenkins J N, Watson C E, Jr, et al. Establishment of molecular markers and linkage groups in two F2 population of upland cotton. Theor Appl Genet,1996,92:915-919.
    [40]ULLOA M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Science,2000,4:161-170.
    [41]ULLOA M, Meredith W R,Shappley Z W, et al. RFLP genetic linkage maps from four F2:3 populations populations and a joinmap of Gossypium hirsutum. Theor Appl Genet,2002,104: 200-208.
    [42]ULLOA M,Shaha S, Jenkins J N, et al. chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. Journal of Heredity,2005:96(2):132-144
    [43]ZHANG Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related. Euphytica,2005,144:91-97.
    [44]SHEN X L, Zhang T Z,Guo W Z, et al. Mapping fiber and yield QTLs with main,epistatic,and QTL-environment interaction effects in recombinant inbred lines of upland cotton. Crop Science,2005,46:61-66.
    [45]SHEN X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica,2007,155:371-380.
    [47]张培培,王夏青,余杨,余渝,林忠旭,张献龙.首批海岛棉基因组来源的微卫星标记的分离、评价和定位.作物学报,2009,35(6):1013-1020
    [48]中国农业科学院棉花研究所.中国棉花遗传育种学.济南:山东科学技术出版社,2003.pp68-75.
    [49]王国印.陆地棉数量性状遗传研究与进展.中国棉花,1994,21(3):5-7.
    [50]Paterson A H, Lander E SM, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors by using a complete linage map of restriction fragment length polymorphisms. Nature,1988,335:721-726
    [51]JIANG C,Wright R J, Woo S S, et al. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet,2000,100(3/4):409-418.
    [52]CHEE P, Draye X,Jiang C X, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:I. Fiber elongation [J]. Theor Appl Genet,2005,111:757-763.
    [53]DRAYE X, Chee P,Jiang C X,et al. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach:Ⅱ. Fiber fineness. Theor Appl Genet,2005,111(4):764-771.
    [54]FRELICHOWSKI JR J E, Palmer M B, Main D. et al. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends. Mol Genet Genomics,2006,275(5):479-491.
    [55]RONG J, Pierce G J, Waghmare V N, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet,2005,111(6): 1137-1146.
    [56]BOLEK Y, El-Zik K M, Pepper A E, et al. Mapping of verticillium wilt resistance genes in cotton. Plant Science,2005,168:1581-1590.
    [57]REN L H, Guo W Z, Zhang T Z. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Botanica Sinica, 2002,44(7):815-820.
    [58]SAHA S, Jenkins J N, Wu J, et al. Effects of chromosomespecific introgression in upland cotton on fiber and agronomic traits. Genetics,2006.172(3):1927-1938.
    [59]LACAPE J M,Nguyen T B.Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum x Gossypium barbadense backcross generations. Crop Science,2005. 45(1):123-140.
    [60]WANG C, Ulloa M, Roberts P A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rknl) in Acala NemX cotton (Gossypium hirsutum L.). Theor Appl Genet.2006.112(4):770-777.
    [61]WRIGHT R J. Thaxton P M, El-Zik K M, et al. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics,1998.149(4):1987-1996.
    [62]RUNGIS D. Llewellyn D. Dennis E S, et al. Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.) cultivar. Australian J Agricultural Research,2002,53(5):551-560.
    [63]SHAPPLEY Z W, Jenkins J N, Zhu J. et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton [J]. The Journal of Cotton Science,1998,2:153-163.
    [64]ZHANG T, Yuan Y, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet,2003,106(2):262-268.
    [65]LIU L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L.. Theor Appl Genet,2003,106(3):461-469.
    [66]SARANGA Y, Jiang C X, Wright R J, et al. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environment, 2004.27(3):263-277.
    [67]WRIGHT R J. Thaxton P M, EI-Zik K M. et al. Molecular mapping of genes affecting pubescence of cotton. J Heredity.1999.90(1):215-219.
    [68]WANG C, Roberts P A. Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton. Euphytica,2006,152(2):185-196.
    [69]LACAPE J M, Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Heredity,2005,96(4):441-444.
    [70]SONG X L,Guo W Z, Han Z G, et al. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integrative Plant Biology,2005, 47(11):1382-1390.
    [71]PATERSON A H, Saranga Y, Menz M, et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality. Theor Appl Genet,2003,106(3):384-396.
    [72]Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding, 2005,124(2):180-187.
    [73]He D H, Lin Z X, Zhang X L et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum x Gossypium barbadense. Euphytica,2007,153(1-2):181-197.
    [74]SHEN X, Guo W Z, Zhu X, et al. Molecularmapping of QTLs for fiber qualities in three diverse lines inUpland cotton using SSR markers.Molecular Breeding,2005,15(2):169-181.
    [75]YIN J, Guo W, Yang L, et al. Physical mapping of the Rfl fertility-restoring gene to a 100 kb region in cotton. Theo Appl Genet,2006,112(7):1318-1325.
    [76]JIANG C X,Wright R J,E1-Zik K M,et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proceedings of the National Academy of Sciences of the United States of America,1998,95(8):4419-4424.
    [77]YNTURI P, Jenkins J N,McCarty J C, et al. Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Science,2006, 46(6):2670-2674.
    [78]SHEN X, Becelaere G V, Kumar P, et al. QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet,2006,113(8):1539-1549.
    [78]GUO W Z, Ma G J, Zhu Y C, et al. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton. J Integrative Plant Biology, 2006,48(3):320-326.
    [80]SARANGA Y, Menz M, Jiang C X, et al. Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Research,2001,11(12): 1988-1995. [81] Thanksley S D, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomato-are-examination. Theor Appl Genet,1998,75:811-823.[82]张天真.植物育种学总论.北京:中国农业出版社,2003.59-79.
    [83]张军,武耀廷,郭旺珍等.棉花微卫星标记的PAGE、银染快速检测.棉花学报.2000,12(5):267-269
    [84]Van Ooijen J W, Voorrips R E. JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps. Wageningen. the Netherlands:Plant Research International.2001
    [85]Nguyen T B, Giband M, Brottier P. et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. TheorAppl Genet,2004,109:167-175
    [86]Lacape J M, Nguyen T B, Thibivilliers S et al.. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome,2003.46:612-626
    [87]Frelichowski J E, Palmer M B, Dorrie M, et al.. Cotton genome mapping with new microsatellites from Acala'Maxxa' BAC-ends. Mol Genet Genom,2006,275:479-491
    [88]Shen X L.Guo W Z, Molecular mapping of QTLs for Fiber qualities in three diverse lines in Upland Cotton using SSR marker.Mol breed,2005,15(2):169-181
    [89]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer2.5 user manual. North Carolina State University,2005
    [90]杨鑫雷,王志伟,张桂寅,潘玉欣,吴立强,李志坤,王省芬,马峙英.棉花分子遗传图谱构建和纤维品质性状QTL分析.作物学报.2009,35(12):2159-2166
    [91]王沛政,秦利,苏丽,胡保民.张天真.新疆陆地棉主栽品种部分产量性状QTL的标记与定位.中国农业科学,2008,41(10):2947-2956
    [92]王沛政,秦利,苏丽,胡保民.张天真,新疆陆地棉主栽品种部分产量性状QTL的标记与定位,中国农业科学,2008,41(10):2947-2956
    [93]胡文静,张晓阻,张天真,郭旺珍.陆地棉优质纤维QTL的分子标记筛选及优质来源分析.作物学报.2008,34(4):578-586.
    [94]王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位.作物学报,2007,33(12):1915-1921
    [95]Shen X L, Guo W Z, Zhu X F. Yuan Y L. Yu J Z, Kohel R J, Zhang T Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR marker. Molecular Breeding,2005,15(2):169-181.
    [96]陈利,张正圣,胡美纯,王威,张建,刘大军.郑靓,郑风敏,马靖.陆地棉遗传图谱构建及产量和纤维品质性状QTL定位.作物学报,2008,34(7):1199-1205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700