短小芽孢杆菌fadD基因的除及其对ω_(-1)-羟基脂肪酸产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C18长碳链羟基脂肪酸中的ω_(-1)、ω_(-2)、ω_(-3)-羟基脂肪酸(ω_(-1)、ω_(-2)、ω_(-3)-HFA)可应用于机械工业、食品工业;而作为单体合成高分子聚合物时可提供最长的单体分子碳链,使得聚合物材料无单分子侧链,性能更优越,是当今绿色聚合物材料研究开发中最理想的单体成分之一。短小芽孢杆菌(Bacillus pumilus)M-F641是一株经过诱变后获得的ω_(-1)-羟基脂肪酸高产菌株,该菌株易于培养,且ω_(-1)-羟基脂肪酸转化率高(16.8%),为了能够进一步提高羟基脂肪酸的转化率(羟基脂肪酸与脂肪酸加入总量之比)和羟基脂肪酸产率(羟基脂肪酸与脂肪酸消耗量之比),本文对脂肪酸β-氧化代谢过程中参与长链脂肪酸活化、跨膜转运和编码脂酰CoA合成酶(Fatty acyl coenzyme A synthetases,FACS)的关键酶基因fadD进行了研究,主要研究内容如下:
     首先,根据已发表的短小芽孢杆菌以及芽孢杆菌属的其它菌株的fadD基因设计了特异性引物,PCR扩增获得了B. pumilus M-F641的fadD基因序列,长度为1720bp,并利用MEGA 3.1、DNAStar软件对该基因序列进行了分析。
     其次,构建重组表达质粒pET32M- fadD,转化到大肠杆菌BL21(DE3)中进行原核表达,IPTG诱导后表达产物经SDS-PAGE电泳分析表明重组质粒在约65 kDa处有明显的表达,并利用试剂盒测定了表达产物脂酰CoA合成酶的活性,酶活达到79.2U/mg。
     最后,确定基因除策略,成功构建了自杀载体pMD18-T-fadD::Tetr,通过插入失活的方法对B. pumilus M-F641的fadD基因进行除,获得其fadD基因缺陷菌株B. pumilus M-F641A,经24h简单发酵验证,缺陷菌株B. pumilus M-F641A的ω-1羟基脂肪酸的产率为16.95%,但并不能证明产率有所提高,需经进一步发酵验证。
ω_(-1),ω_(-2),ω_(-3)-hydroxy fatty acids of C18 long-chain hydroxy fatty acids due to its hydroxyl group close to the first C-terminal and reaction nature live, can be applied to the surface-active agent, cosmetic ingredients, lubricants and anti-rust agent in machinery industry,and anti-bacterial agents in the food industry. They also work as a monomer in the synthesis of polymers to provide a maximum carbon chain which is no single-molecule side-chain and make the polymers’performance superior.ω-1-hydroxy fatty acid is one of the best monomers in research and development of green polymers. Bacillus pumilus M-F641 is a high-yielding strain forω-1-hydroxy fatty acids production obtained by mutagenesis, and it is easy to incubate. In order to improve the conversion rate of hydroxy fatty acids (the ratio of hydroxy fatty acids and total adding fatty acids) and the hydroxy fatty acid production rate (the ratio of hydroxy fatty acids and fatty acid consumption), in this paper, a key enzyme gene of fadD involved in long-chain fatty acid activation, transmembrane transport and encoding acyl-CoA synthetase in fatty acidβ-oxidation metabolic process was studied. The main research contents are as follows:
     Firstly, B. pumilus M-F641's fadD gene was amplified by PCR method and the primer was designed according to published fadD genes of Bacillus pumilus and other Bacillus strains. Full-length sequences of fadD gene about 1720 bp were obtained. The sequences waere analyzed by using the MEGA 3.1 and DNAStar software;
     Secondly, the recombinant expression plasmid pET32M-fadD was transformed into E. coli BL21 (DE3).after IPTG inducing , SDS-PAGE electrophoresis analysis showed a clear expression of pET32M-fadD. The recombinant expression acyl-CoA synthetase activity recached to 79.2U/mg;
     Finally, the suicide vector pMD18-T-fadD::Tetr was succeessfully constructed,adopted deletion-insertion to disrupt fadD gene of B.pumilus M-F641 and got fadD knockout mutant B. pumilus M-F641A.After 24h simple fermentation validation, theω-1 hydroxy fatty acid production rate of B. pumilus M-F641A was 16.95%, but it can not prove that the yield has increased an subject to further fermentation to verify.
引文
[1]. Schneider S, Wubbolts M G, Sanglard D, et al. Production of chiral hydroxy long chain fatty acids bywhole cell biocatalysis of pentadecanoic acid with an E.coli recombinant containing cytochrome P450BM-3 monooxygenase [J].Tetrahedron: Asymmetry, 1998, 9: 2833-2844
    [2].张信刚,王大璞.二羟基脂肪酸的极压抗磨性能[J].摩擦学学报,1998,18(2): 175-178
    [3]. Hou C T, LLL R J F.Growth inhibition of plant patho-genic fungi by hydroxy fatty acids[ J]. Journal of Industrial Microbiology& Biotechnology, 2000, 24: 275-276
    [4]. Jorgen S., JesperM., Anders B., et a.l Antifungal 3-hydroxyfatty acids from Lactobacillus plantarum MiLAB 14[J]. Appliedand EnvironmentalMicrobiology, 2003,69(12):7554-7557
    [5]. Herrington R., Hock K. Flexible polyurethane foams[M].Edited by the Dow Chemical Company, USA. 1997
    [6].应宗荣.降解性高分子材料的研究开发进展[J].现代塑料加工应用,2000,12(1): 40-43
    [7].吴祖芳,翁佩芳,Rakesh K. Bajpai.羟基脂肪酸生产菌Bacillus pumilus对油酸的代谢特性和产物分析[J],中国粮油学报, 2007,22(1):87-90
    [8].翁佩芳,吴祖芳.脂肪酸微生物转化生产羟基脂肪酸的研究进展[J].中国粮油学报, 2008.23(1):203-206
    [9]. Wu Zufang, Wei Y, Bajpai R K. Screening forω-1-hydroxy fatty acid over-producing mutants for bioconversion of oleic acid by combing general mutagensis and specific selection[J]. Bicatalysis and Biotransformation, 2008,26(5):444-449
    [10].Guengerieh F P.Common and Uncommon cytochrome P450 Reactions Related to Metabolism and Chemieal Toxicity .Chem.Res.Toxieol.2001,14:611-650
    [11].李志生译.羟基脂肪酸的制法与应用[J].湖南化工,1993,1:58-59
    [12].Kuo T M,GardnerH W. Microbiological conversions of fatty acids to value-added products[J]. Lipid Biotechnology, 2002, 31: 605-627
    [13].张利平,程克棣,朱平.紫杉烷类化合物的生物转化[J].药学学报,2004,39(2):153
    [14].徐诗伟.微生物转化在药物合成中的应用前景[J].中国医药工业杂志, 1996, 27(9): 422
    [15].Kaneshiro T, Huang J K, Weisleder D, et al.10(R)-hydroxystearic acid production by a novelmicrobe, NRRLB-14797, isolated from compost[J]. Journal of Industrial Microbiology and Biotechnology, 1994, 13(6): 351-355
    [16].Green K D, Turner M K, Woodley J M. Candida cloacae oxidation of long- chain fatty acids to dioic acids[ J].Enzyme andMicrobialTechnology, 2000, 27: 205-211
    [17].Wallen L L, BenedictR G, JacksonRW. Themicrobiological production of 10-hydroxystearic acid from oleic acid[J].Arch Biochem Biophys, 1962, 99: 249-253
    [18].TullochA. P, SpencerF. T. , Gorin P. A. The fermentation of long chain compounds by Torulopsis magnoliae.Structures of the hydroxy fatty acids obtained by the fermentation of fatty acids and hydrocarbons[J]. Can. J. Chem.,1962, 40: 1326-1338
    [19].柴伟航,李祖义.诺卡氏菌对油酸的羟基化作用[J].生物工程学报, 1995,11(4) : 356-360
    [20].沈珈琦.应用霉菌单加氧酶羟基化齐墩果酸的研究:[南京工业大学硕士论文]:南京,南京工业大学,2006
    [21].Kuo T M, Nakamura L K, Lanser A C. Conversion of fatty acidsby Bacillus sphaericus-like organisms[J]. Current Microbiology, 2002,45:265-271
    [22]. Yamane M, Abe A.ω-hydroxylation activity toward Leukotriene B4 and polyunsaturated fatty acids in the human hepatoblastoma cell line, hepG2, and human lung adeno-carcinoma cell line, A549 [ J]. J Biochem., 2000, 128:827-835
    [23].Coon M J. Omega Oxygenases: Nonheme- iron enzyme and P450cytochromes[ J]. Biochemical Biophysical Re- search Communications, 2005, 338: 378-385
    [24].Lentz O, Urlacher V, Schmid R.Substrate specificity ofnative and mutated cytochrome P450(CYP102A3) from Bacillus subtilis[J]. Journal ofBiotechnology, 2004,108:41-49
    [25].Miura Y., Fulco A. J. (ω-2)Hydroxylation of fatty acids by a soluble system from Bacillus megaterium[J].The Journal ofBiologicalChemistry, 1974, 249(6): 1880- 1888
    [26]. Asperger O,Kleber H P.Distribution and diversity of bacterial cytochromes P-450[J].Taylor and franis,1991,1-53
    [27].高舜晔.细胞色素P450BM3突变体催化羟基化的研究:[浙江大学硕士论文]:浙江,浙江大学,2006
    [28]. Asperger O,Kleber H P.Distribution and Diversity of Bacterial Cytochromes P-450[A]. In:Ruckpaul,K.et al. eds.Microbial Plant Cytochrome,1991
    [29].李梅,曾凡荣.链霉菌细胞色素P450研究进展[J].微生物学通报,2008,35(7):1107-1112
    [30].邱星辉,冷欣夫.细胞色素P-450的多样性[J].生命的化学,1997,17(6):13-16
    [31]. Ogliaro F, Harris N, Cohen S, et al.A Model“Rebound”Mechanism of Hydroxylation by Cytochrome P450:Stepwise and Effectively Concerted Pathways,and Their Reactivity Patterns[J].J.Am.Chem.Soc.2000,122,8977–8989.
    [32]. PorterT D,Coon M J.CytochromeP450:Multiplicity of Isoforms,Substartes,and catalytic and Regulatory mechanisms[J].J.Biol.Chem.1991,266(21):13459-13472
    [33].许华夏,李培军,刘宛等.生物细胞色素P-450的研究进展[J].农业环境保护2002,21 (2):188-191
    [34]. Narih L O,Fuleo A J.CharacteriZationofaCatalytieallySe-lfsuffieient119,000-Dalton Cytoch- rome P450 Monooxygenase Induced by Barblturates in Bacillus Megaterium[J].J.Biol.Chem.1986,261:7160-7169
    [35]. Narih L O,Fuleo A J.Identifieation and Charaeterization of Two Functional Domains in Cytochorme P-450BM-3,a Catalytieally Selfsufficient Monooxygenase Indueed by Barbituartes in Baeillus Megaterium[J].J.Biol.Chem.1987,262:6683一6690
    [36].Schneider S, Wubbolts M G, Oesterhelt G, et al. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monoo- xygenase under varied dissolved oxygen concentrations[J].Biotechnolo-gy and Bioengineering, 1999, 64(3): 333-341
    [37].Coon M J. Cytochrome P450: nature’smostversatile biological catalyst[J].Annu. Rev. Pharmaco. Toxico,l 2005,45:1-25
    [38].Huang J K, KeudellK C, Seong S J, et al. Conversion of 12-hydroxyoctadecanoic acid to 12, 15-12, 16-and 12, 17-dihydroxyoctadecanoic acids with Bacillus sp. U88[J].Biotechnology Letters, 1996, 18(2): 193-198
    [39].Lanser A C, Plattner R D, Bagby M O. Production of 15-, 16-and 17-hydroxy-9-octadecenoic acid by bio-conversion of oleic acid with Bacillus pumilus[J]. JAOCS,1992, 69(4): 363-366
    [40].Sallus L,Haselbeck R J, Nunn W D.Regulation of fatty acid transport in Escherichia coli:analysis by operon fusion i[J]. J Bacteriol,1983,155:1450-1454
    [41].解用虹.不饱和脂肪酸的β氧化[J].生命化学,1994,2:25-27
    [42].王镜岩,朱圣庚,徐长法.生物化学[M].高等教育出版社,2002
    [43]. Nunn W D,Giffin K,Clark D, et al.Role for FadR in unsaturated fatty acid biosynthesis in Escherichia coli[J]. J Bacteriol ,1983,154:554-560
    [44].严莉,张永庆,焦劲松等.脂肪酸氧化代谢障碍研究进展[J].中日友好医院学报,2006,20, (4):239-241
    [45]. Capecchi M R.Gene targeting[J].Scientific American,1994,270(3):34
    [46]. Capecchi MR.Altering the genome by homologous recombination [J]. Science,1989,244: 1288-1292
    [47].朱玉贤,李毅.现代分子生物学[M].高等教育出版社,2002
    [48]. SmithGR.Homologus recomb ination in E.coli:multiple pathways for multiple reasons[J].Cell,1989,58(5):807
    [49]. Kumar A,Snyder M.Emerging technologies in yeast gnomics[J].Nature Rev Genet,2001,2:302
    [50].谭晓红,程营,杨晓.微生物基因打靶系统的研究进展[J].生物技术通讯,2003,15 (3):263 -266
    [51]. Murphy K C ,Campellone K G , Poteete A R .PCR -mediated replacement in Escherichia coli[J],Gene,2000,246:321-330
    [52]. Herrero M,Lorenzo V ,Timmis K, Transposon vectors containing non-antibiotic resistanceselection markers for cloning and stable chromosomal insertion of foreigngenes in Gram- negative bacteria[J].J Bacteriol,1990,172(11):6557-6559
    [53].付小花,高益范,郝思敏等.大肠杆菌aroL基因除及其对莽草酸合成的影响[J].复旦学报,2007(46):366-370
    [54].韩聪,张惟材,游松.大肠杆菌基因除及其缺陷株生长特性研究[J].生物工程学报,2004,20:16-21
    [55]. Chatterjee R,Millard CS,Champion K,et al.Mutation of the ptsG Gene results in increased production of succinate in fermentation of glucose by Escherichia coli[J].Appl Environ Microbiol,2001,67:148-154
    [56].王庆昭.高产琥珀酸大肠杆菌的代谢工程:[天津大学博士论文]:天津,天津大学,2006
    [57].高弘,黄英明,刘铭等.CAT基因除对热带假丝酵母产DCA13代网络的影响[J]化学工业报,2006(57):2157-2161
    [58].周建中,王德良,王忠民等.采用基因除手段降啤酒酵母蛋白A表达的研究[J].酿酒,2006(33):61-63
    [59].刘波.工业酿酒酵母菌株met10基因除及其用于工业生产可行性的研究:[山东大学硕士论文]:山东,山东大学,2005
    [60].应明,班睿.枯草芽孢杆菌ccpA基因除及对其核黄素产量的影响[J].微生物学报,2006(46):23-27
    [61].张帆,宋辉. hrprK基因除对枯草芽孢杆菌核黄素发酵的影响[J].生物工程学报,2006(22):534-539
    [62]. Black P N, Faergeman N J and DiRusso C C. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals. J. Nutr, 2000, 130: 305S-309S
    [63]. Zhang H X, Wang Peng & Qi, Q S. Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli. FEMS Microbiology Letters. 2006, 259 (2), 249–253
    [64]. Weimar J D, DiRusso C C, Delio R and Black P N. Functional role of fatty Acyl coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids: amino acid residues within the ATP/AMP signature motif of FadD of Escherichia coli are required for enzyme activity and fatty acid transport. J. Biol. Chem. 2002, 277(33): 29369-29376
    [65]. Mangroo D and Gerber G E. Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane. Biochem. Cell Biol. 1993,71:51-56
    [66]. Wu Zufang, Yan wei, R K Bajpai. Effects of culture conditions on bioconversion of fatty acidsby Bacillus pumplius. Journal of Food Technology and Biotechnology, 2008.08, Submitted
    [67]. Azizan A, Sherin D, DiRusso C C, et al. Energetics Underlying the Process of Long-Chain Fatty Acid Transport[J].Archives of Biochemistry and Biophysics, 1999, 365(2):299-306
    [68]. Black P N, DiRusso C C. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol[J].Mol.Biol.Rev,2003, 67(3):454-472
    [69]. Murray A W,Thompson W F. Rapid isolation of high-molecular-weight plant DNA[J]. Nucl Acids Res, 1980, 8: 4321-4325
    [70].陈文新.细菌系统发育[J].微生物学报,1998,38:240-243
    [71]. Vandamme P,Pot B,Gillis M, et al.Polyphasic taxonomy,a consensus approach to bacterial systematics[J]. Microbiol Rev,1996,60:407-438
    [72]. Pfanner N, Glick B S, Arden S R, et al. Fatty acylation promotes fusion of transport vesicles with Golgi cisternae[J]. The Journal of Cell Biology.1990, 110: 955-961
    [73]. Lai J C, Liang B B, Jarvi E J, et al. Differential effects of fatty acyl coenzyme A derivatives on citrate synthase and glutamate dehydrogenase[J]. Res Commun Chem Pathol Pharmacol. 1993, 82(3):331 -338
    [74]. Li Z N, Hongo S, Sugawara K, et al. The sites for fatty acylation, phosphorylation and intermolecular disulphide bond formation of influenza C virus CM2 protein[J].J. Gen. Virol. 2001, 82: 1085-1093
    [75]. Murakami K, Nakazawa T, Okazaki T, et al. Fatty-acyl-CoA thioesters inhibit recruitment of steroid receptor co-activator 1 to alpha and gamma isoforms of peroxisome-proliferator -activated receptors by competing with agonists[J]. Biochem J. 2001,15(353): 231–238
    [76]. van Aalten D M, DiRusso C C, Knudsen J. The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR[J]. EMBO J. 2001, 20: 2041-2050
    [77].杨文敏,何敏. PCR扩增16S-23S rRNA区间序列在细菌检测与鉴定领域的应用[J] .广西预防医学, 2000 ,6 (6) :369
    [78]. Black P N., DiRusso C C., Metzger AK. Cloning, Sequencing, and Expression of the fudD Gene of Escherichia coli Encoding Acyl Coenzyme A Synthetase[J]. THE JOURNAL OF B IOLOGICAL CHEMISTRY,1992,267(35):25513-25520
    [79]. Theresa J G, Bruce D. S.Fatty acyl CoA synthetase from Antarctic notothenioid fishes may influence substrate specificity of fat oxidation[J]. Comparative Biochemistry and Physiology. 2004,139:53–63
    [80]. Yasunari M, Toshitsugu S,Tsunehiro A.Extracellular Secretion of Free Fatty Acids by Disruption of a Fatty Acyl-CoA Synthetase Gene in Saccharomyces cerevisiae [J]. JOURNALOF BIOSCIENCE AND BIOENGINEERING, 2003,95(5):435440.
    [81]. Hong L, Elaina M. M , Steven Q.Mechanistic studies of the long chain acyl-CoA synthetaseFaa1p from Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta , 2007, 1771:1246–1253
    [82]. Hanxing Zhang, Peng Wang , Qingsheng Qi.Molecular effect of fadD on the regulation and metabolismof fatty acid in Escherichia coli[J].FEMS Microbiol Lett , 2006,259:249–253
    [83].杨芳,张文,薛莉等.CGGBP1蛋白在大肠杆菌中的表达及其纯化[J].第四军医大学学报,2007, 28 (12):1119-1121
    [84].钮利喜.工程菌生物转化D-型氨基酸的研究-N-氨甲酰-D-氨基酰胺水解酶的基因克隆、表达及性能:[山西大学硕士论文]:山西,山西大学,2004
    [85]. Larionov V.Direct isolation of sepecific chromosomal regions and entire genes by TAR cloning[J].Genet Eng,1999,21(1):37-55
    [86]. Imam A M, Patrinos G P, Krom M,et al.Modification oa humanβ-globin locus PAC clones by homologous recombination in Escherichia coli[J].Nucleic Acids Research,2000, 28(2): 61-65
    [87].逄晓阳,刘国文,王哲.利用基因工程改造瘤胃微生物调控瘤胃发酵研究进展[J].动物医学进展,2005,26 (7) :15-18
    [88].李敏,蒋晓飞,关明.等同源重组构建表皮葡萄球菌附属基因调节子(agr)阴性突变株[J].中华微生物学和免疫学杂志,2004,24(9):728-732
    [89].张晗星.聚羟基脂肪酸产生菌筛选及其在E.coli工程菌中表达与代谢机理研究:[山东大学博士论文]:山东,山东大学,2006
    [90].史景江,马熙中.色谱分析方法[M].重庆大学出版社,2001
    [91].余方友,陈坚,王薇薇等.利用同源重组技术除金黄色葡萄球菌临床分离株sarA基因[J ].中国卫生检验杂志,2009, 19(1):17-20
    [92].孙凤军,夏培元.金黄色葡萄球菌sigB基因同源重组质粒构建的研究[J].中国药房,2006, 17(8):572-575
    [93]. Zhang X Z , Yan X , Cui Z L , et al . MazF , a Novele Counter2Selectable Marker for Unmarked Chromosomal Manipulation in B. subtilis [J] . N ucleic A ci ds Res ,2006 ,34 (9) :71.
    [94]. Young M. The Mechanism of Insertion of a Segment of Heterologous DNA into the Chromosome of B. subtil is[J] . J ournal of Genetic Microbiolog y ,1983 ,129 :1497- 1512.
    [95].马先勇,姚开泰.同源重组技术研究进展[J].生物工程进展,1996,16(3):16-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700