高能重离子碰撞中整体喷注的次领头阶产额
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代物理认为,物质的基本成分是夸克和胶子,他们之间以强相互作用的形式组成了强子。量子色动力学表明,强相互作用具有渐进自由和夸克禁闭的特性。渐进自由指的是大横动量转移下,夸克和胶子间强耦合强度很弱,这使得我们可以对相关物理量做微扰展开计算。夸克禁闭暗示了自然界中无法存在自由的夸克和胶子。物理学家们提出通过极端高能重离子碰撞手段,碰撞中心沉积能量密度极高的巨大能量,从而激发出退禁闭的夸克胶子等离子体——Quark-Gluon-Plasma(QGP)。由于QGP物质只存在于重离子发生碰撞后的很短时期内,如何根据末态碎裂的强子信息来判断QGP物质的产生和性质,是高能物理中很重要的一个课题。美国布鲁克海汶国家实验室(BNL)的相对论重离子对撞机(RHIC),自2000年运行以来,进行了大量的实验,尤其是所进行的质心系能量为√s200GeV的Au+Au碰撞实验,已经有数据结果表明找到了QGP物质。欧洲核子中心(CERN)的大型强子对撞机(LHC)的运行,为我们探索QGP物质的性质以及基本物理,提供了更好的平台。
     重离子碰撞初期会产生高能部分子,这些高能部分子喷注在穿越QGP介质时,与介质中的靶粒子发生多重散射并韧致辐射出胶子,损失掉部分能量,这种现象即喷注淬火。喷注淬火是重离子碰撞中用来探测夸克胶子等离子体的强有力探针,它不仅会导致末态领头粒子产额明显压低,还会影响整体喷注末态产额。整体喷注指的是末态能量很高,出射在一个方向的粒子束。整体喷注物理作为研究QCD物质性质的新方向,已经受到了实验学家和理论学家们的广泛关注,它能更精细的反映喷注的内在物理,更好的检验量子色动力学理论预言以及标准模型外的新物理。
     本文在微扰QCD的理论框架下,研究了重离子碰撞中单整体喷注和双整体喷注的次领头阶产额。我们从强子-强子碰撞中次领头阶的整体喷注产额出发,将其作为输入,联合核物质效应得到核碰撞中整体喷注产额,我们不仅研究了初态冷核物质(CNM)效应影响下整体喷注产额,还研究了末态热核物质效应影响下整体喷注产额。
     我们利用不同的核中部分子分布函数(nPDFs)参数化形式,计算了冷核物质效应对单整体喷注横能谱,双整体喷注角分布,双整体喷注不变质量谱,双整体喷注横能谱,双整体喷注横能不对称度分布的修正。结果发现双整体喷注的角分布和横能不对称度分布对冷核物质效应不敏感,因此这两个物理量可以作为用来探测末态热核物质效应的杰出候选者。另一方面,由于冷核物质效应的影响,单整体喷注横能谱,双整体喷注不变质量谱和双整体喷注横能谱在广泛区域内被提高,这一特征和末态部分子能量损失影响下的压低现象相反。同时,这三个物理量在不同的nPDFs设定下,核修正彼此之间有偏差。
     热核物质效应采用GLV喷注淬火理论机制来描述,喷注在穿越QGP物质时,受介质诱导辐射胶子,与传统的单粒子喷注不同的是,整体喷注所辐射的胶子会有一部分携带着能量又落入喷注锥角中。喷注与介质问的非弹性相互作用使得末态喷注产额向小能量区域偏移,造成介质修正后整体喷注末态的一些有趣现象。我们重点研究了单整体喷注和双整体喷注散射截面在热核效应下的压低,我们的理论分析不仅包含了部分子间的非弹性相互作用,还包含了非微扰强子化修正。从这些物理图像,我们得到了重离子碰撞中双整体喷注横能不对称度的抬高分布,其中LHC能区下Pb+Pb对心碰撞中的结果与最近ATLAS和CMS实验组所公布的测量值符合的很好。我们的数值结果表明部分抬高与整体喷注重建的背景模糊区分或者部分子束间碰撞能量耗散有关。
Quantum Chromodynamics (QCD), a fundamental theory describing the strong force inside nucleus in terms of interactions of quarks and gluons, has two important proper-ties:asymptotic freedom and quark confinement. Asymptotic freedom tells that at large momentum transfer the strong coupling constant of quark and gluon interactions becomes weaker, which makes perturbative expansion according to the strong coupling constant applicably. Quark confinement suggests that there are no free quarks or gluons in nature and usually quarks and gluons are bounded inside of hadrons. However, scientists expected that there would be huge energy deposited with great energy density in the center of the extremely high-energy heavy ion collisions and the confined quarks and gluons may be liberated to form a new kind of matter, the Quark-Gluon-Plasma(QGP). The QGP only exists for a very short time in the heavy ion collisions. How to estimate the formation of the QGP and investigate its properties with the information of the final hadrons has been a very challenging and an extremely important research frontier in high-energy nu-clear physics. Since the run of the Relativistic Heavy Ion Collider (RHIC) of Brookhaven National Laboratory(BNL) in USA in2000, they have carried out a large number of ex-periments, especially the Au+Au collisions at center-of-mass energy1/2s=200GeV, and obtained many results manifesting they have found the QGP. The operation of heavy-ion programs at the Large Hadron Collider(LHC) of CERN has provided another excellent platform for us to explore the properties and intrinsic physics of the QGP.
     Energetic parton produced in the early time of heavy ion collisions, is scattered by particles in the QGP and radiates gluons in the propagation. That causes energy loss of parton jets, which is called as the jet quenching. Jet quenching is an optimal probe to study the quark-gluon-plasma in heavy ion collisions and will leave its fingerprint not only in leading particles production but also reconstructed jet transverse energy distribution. Reconstructed jet, the collimated showers of energetic particles in the final state, can reflect the intrinsic physics of parton interactions more accurately, test the predictions of QCD and new physics beyond Standard Model better. Jet observables as new tools to explore the properties of the QGP have recently attracted intensive attentions from both experimentalists and theorists.
     This thesis investigates the inclusive jet and dijet productions at next-to-leading or- der(NLO) in heavy ion collisions within the framework of perturbative QCD. We start from the jet productions at NLO in hadron-hadron collisions as the inputs, and then in-corporate with nuclear matter effects to study jet productions in heavy ion collisions. Our investigations are involving not only the initial-state cold nuclear matter(CNM) effects, but also the final-state hot nuclear matter effects.
     The nuclear modifications for inclusive jet transverse momentum spectra, dijet an-gular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by employing different parametrization sets of nuclear parton distribution functions(nPDFs). It is found that di-jet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects. On the other hand, inclusive jet transverse momentum spectra, dijet invariant mass spectra and dijet transverse momentum spectra are generally enhanced in a wide region due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The deviation between different parametrization sets of nPDFs is appreciable for these three observables.
     The hot and dense nuclear effects are evolved with the GLV theory mechanism for jet quenching. When jet is propagating in the QGP medium, it radiates gluons induced by medium. However, parts of the radiative gluons carrying energy would fall in the jet cone. The inelastic interactions between jet and medium make the final jet yields shift towards smaller energy regime, which leads some interesting phenomena about the medium-modified jet productions. We focus on the suppression for the inclusive jet and dijet cross sections. Our analysis includes not only inelastic parton interactions, but also an estimate of the non-perturbative hadronization corrections. We demonstrate how an enhanced di-jet asymmetry in central Pb+Pb reactions at the LHC, recently measured by the ATLAS and CMS collaborations, can be derived from these results. We show quantitatively that a fraction of this enhancement may be related to the ambiguity in the separation between the jet and the soft background medium and/or the diffusion of the parton shower energy away from the jet axis through collisional processes.
引文
[1]C. Quigg, Gauge Theoties of the Strong. Weak and Electromagnetic Interactions, the Benjamin/Cummings Publishing Company (1983).
    [2]F. Wilczek,Quantum Chromodynamics (qcd):The Modern Theory Of The Strong Interaction. Ann. Rev. Nucl. Part. Sci.32 (1982) 177.
    [3]D. J. Gross and F. Wilczek, Phys. Rev. Lett.30 (1973) 1343.
    [4]H. D. Politzer, Phys. Rev. Lett.30 (1973) 1346.
    [5]J. C. Collins and M. Perry, Physics. Lett.34 (1975) 1353; G. Baym and S.A. Chin, Phys. Left, B62 (1986) 241; B. Friedman and L. McLerran, Phys. Rev. D17 (1978) 1109.
    [6]S. Shuryak, Phys. Rep.61 (1980) 71; D. Gross, R. Pisarski and L. Yaffe, Rev. Mod. Phys.53 (1981) 43; H. Satz, Ann. Rev. Nucl. Part. Sci,35 (1985) 245:L. McLer-ran, Rev. Mod. Phys.58 (1986) 1021.
    [7]J. R. Euis, J. I. Kapusta, and K. A. Olive, Nucl. Phys. B348,345(1991).
    [8]N. K. Glendenning, Phys. Rev. Lett.63,2629(1989).
    [9]F. Karsch, Nucl. Phys. A698,199-208 (2002).
    [10]T. D. Lee and G. C. Wick, Phys. Rev., D9:2291,(1974).
    [11]T. D. Lee.1974. Bear Mountain Workshop. New York.
    [12]New Discoveries at RHIC-A Case for the Strongly Interactive Quark-Gluon Plasma, a collection of presentations at the RIKEN BNL Research Center. May 14-15,2004, D. Riselike and G. Levin, ed, Nuclear Physics A750, issue 1 (2005).
    [13]Wong C-Y. Introduction to High-Energy Heavy-Ion Collisions, pp.251-263. Singapore: World Scientific.516 pp. (1994).
    [14]J. Y. Ollitrault, Pbys. Rev. D46,1(1992); Nucl. Phys. A638, (1998)195-206.
    [15]X.-N. Wang, M. Gyulassy. Phys. Rev. Lett.68 (1992) 1480-1483.
    [16]M. Gyulassy, X.-N. Wang, Nucl. Phys. B420 (1994) 583.
    [17]M. Gyulassy, I. Vitev, X. N. Wang and B. W. Zhang, arⅩⅳ:nucl-th/0302077.
    [18]Xin-Nian Wang, Phys. Rev. C 58:2321,1998.
    [19]STAR Collaboration. J. Adams et al., Phys. Rev. Lett.91 072304; 91 172302.
    [20]PHENIX Collaboration,S.S. Adler et al., Phys. Rev. Lett.91 072301.
    [21]C. Adler et al. [STAR Collaboration], Phys. Rev. Lett.90,082302 (2003).
    [22]J. M. Campbell, J. W. Huston and W. J. Stirling, Rept, Prog. Phys.70 (2007) 89.
    [23]S. D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Prog. Part. Nucl. Phys.60,484 (2008).
    [24]F. I. Olness and D. E. Soper, arⅩⅳ:0907.5052 [hep-ph].
    [25]J. D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma:Possible Extinction of High p(t) Jets in Hadron-Hadron Collisions,1982. FERMILAB-PUB-82-059-THY.
    [26]R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B484 (1997) 265-282.
    [27]R. Baier, Y. L. Dokshitzer, A. H. Mueller and D. Schiff, Nucl. Phys. B 531 (1998) 403.
    [28]R. Baier, Y. L. Dokshitzer, A. H. Mueller and D. Schiff, Phys. Rev. C 60 (1999) 064902.
    [29]B. G. Zakharov, JETP Lett.73 (2001) 49-52.
    [30]N. Armesto, C. A. Salgado, U. A. Wiedemarm, Phys. Rev. D69 (2004) 114003.
    [31]M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. Lett.85 (2000) 5535-5538.
    [32]M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594 (2001) 371.
    [33]I. Vitev, Phys. Rev. C75 (2007) 064906.
    [34]X. N. Wang and X. F. Guo, Nucl. Phys. A 696,788 (2001).
    [35]E. Wang and X.-N. Wang, Phys. Rev. Lett.87 (2001) 142301.
    [36]B. W. Zhang and X. N. Wang, Nucl. Phys. A 720,429 (2003).
    [37]B.-W. Zhang, E. Wang and X.-N. Wang, Phys. Rev. Lett.93 (2004) 072301.
    [38]B. W. Zhang, E. k. Wang and X. N. Wang, Nucl. Phys. A 757,493 (2005).
    [39]M. H. Thoma and M. Gyulassy, Nucl. Phys. B 351 (1991) 491.
    [40]X.-N. Wang, M. Gyulassy and M. Plumer, Phys. Rev. D 51 (1995) 3436 [hep-ph/9408344].
    [41]L. D. Landau and I. J. Pomeranchuk, Dolk. Akad. Nauk. SSSR 92,92(1953); A. B. Migdal, Phys. Rev.103,1811 (1956); E. L. Feinberg and I. J. Pomeranchuk, Suppl. Nuovo. Cimento 3,652 (1956); Phys. JETP 23,132 (1966).
    [42]A. I. Akhiezer and N. F. Shulga, Sov. Phys. Usp.30,197 (1987).
    [43]M. H. Seymour, In *La Thuile 1997, Results and perspectives in particle physics* 475-491 [hep-ph/9707349].
    [44]M. H. Seymour, Nucl. Phys. B 513 (1998) 269.
    [45]S. Salur, Nucl. Phys. A 830 (2009) 139C.
    [46]G. F. Sterman and S. Weinberg, Phys. Rev. Lett.39 (1977) 1436.
    [47]R. P. Feynman, R. D. Field and G. C. Fox, Phys. Rev. D 18 (1978) 3320.
    [48]E. Eichten, K. D. Lane and M. E. Peskin, Phys. Rev. Lett.50,811 (1983).
    [49]E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Rev. Mod. Phys.56,579 (1984) [Addendum-ibid.58,1065 (1986)].
    [50]K. D. Lane, arⅩⅳ:hep-ph/9605257.
    [51]N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429,263 (1998).
    [52]D. Atwood, S. Bar-Shalom and A. Soni, Phys. Rev. D 62,056008 (2000).
    [53]K. R. Dienes, E. Dudas and T. Gherghetta, Nucl. Phys. B 537,47 (1999).
    [54]A. Pomarol and M. Quiros, Phys. Lett, B 438,255 (1998).
    [55]K. m. Cheung and G. L. Landsberg, Phys. Rev. D 65,076003 (2002).
    [56]M. M. Nojiri and J. Shu, JHEP 1106 (2011) 047.
    [57]T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett.106 (2011) 171801.
    [58]Z. Sullivan and A. Menon. Phys. Rev. D 83 (2011) 091504.
    [59]S. Chang, K. Y. Lee and J. Song, J. Korean Phys. Soc.59 (2011) 2219.
    [60]H. B. Nielsen, arXiv:1104.4642 [hep-ph].
    [61]L. M. Carpenter and S. Mantry, Phys. Lett. B 703 (2011) 479.
    [62]G. C. Blazey, J. R. Dittmann, S. D. Ellis, V. D. Elvira, K. Frame, S. Grinstein, R. Hirosky and R. Piegaia et al., "Run Ⅱ jet physics," hep-ex/0005012.
    [63]S. D. Ellis and D. E. Soper, Phys. Rev. D 48 (1993) 3160.
    [64]M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804 (2008) 063.
    [65]Zachary L. Marshall, "A Measurement of Jet Shapes in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider" , CERN-THESIS-2010-142.
    [66]G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 172 (1986) 461.
    [67]J. A. Appel et al. [UA2 Collaboration], Phys. Lett. B 160 (1985) 349.
    [68]F. Abe et al. [CDF Collaboration], Phys. Rev. Lett.62 (1989) 613.
    [69]P. Bagnaia and S. D. Ellis, Annu. Rev. Nucl. Part. Sci.38,659(1988).
    [70]M. Ploskon [STAR Collaboration], Nucl. Phys. A 830 (2009) 255C.
    [71]S. Salur, arXiv:0910.2081 [hep-ex].
    [72]J. Putschke [STAR Collaboration], Eur. Phys. J. C 61 (2009)629.
    [73]S. Salur [STAR Collaboration], Eur. Phys. J. C 61 (2009)761.
    [74]E. Bruna [STAR Collaboration], Nucl. Phys. A 830 (2009) 267C.
    [75]A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett.101 (2008) 162301.
    [76]Y.-S. Lai [PHENIX Collaboration], arXiv:0911.3399 [nucl-ex].
    [77]J. F. Owens, Rev. Mod. Phys.59 (1987) 465.
    [78]R. K. Ellis and J. C. Sexton, Nucl. Phys. B 269 (1986) 445.
    [79]S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. D 40 (1989) 2188.
    [80]Z. Kunszt and D. E. Soper, Phys. Rev. D 46 (1992) 192.
    [81]S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. Lett.64 (1990) 2121.
    [82]S. D. Ellis, Z. Kunszt and D. E. Soper, Phys. Rev. Lett.69 (1992) 1496.
    [83]S. D. Ellis and D. E. Soper, Phys. Rev. Lett.74 (1995) 5182.
    [84]HE Yun-Cun, ZHANG Ben-Wei, WANG En-Ke. CPC(HEP & NP),2012,36(11): 1077-1081.
    [85]Y. He, B.-W. Zhang and E. Wang, Eur. Phys. J. C 72 (2012) 1904.
    [86]B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett.97 (2006) 252001.
    [87]R.K. Ellis, W.J. Stirling, and B.R. Webber, QCD and Collider Physics (Cambridge University Press, Cambridge, England,1996), p.435, and references therein.
    [88]V. M. Abazov et al. [DO Collaboration], Phys. Rev. Lett,103 (2009) 191803.
    [89]V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett.106 (2011) 201804.
    [90]B. Abbott et al. [DO Collaboration], Phys. Rev. D 64,032003(2001).
    [91]V. M. Abazov et al. [DO Collaboration], Phys. Lett. B 693 (2010) 531.
    [92]G. Aad et al. [Atlas Collaboration], Eur. Phys. J. C 71 (2011) 1512.
    [93]G. Aad et al. [Atlas Collaboration], Phys. Rev. Lett.105,252303 (2010).
    [94]S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84 (2011) 024906.
    [95]Glauber R J 1959 Lectures in Theoretical Physics ed W E Brittin and L G Dunham (New York:Interscience),p 315.
    [96]Glauber R J 1967 High Energy Physics and Nuclear Structure ed G Alexander (Am-sterdam:North-Holland),p 311.
    [97]Glauber R J 1970 High Energy Physics and Nuclear Structure ed S Devons (New York:Plenum), p 207.
    [98]M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205.
    [99]Miller M 2003 PhD Thesis Yale University.
    [100]J. Adams et al. [STAR Collaboration], Phys. Rev. C 72 (2005) 014904.
    [101]N. Schwierz, I. Wiedenhover and A. Volya, arⅩⅳ:0709.3525 [nucl-th].
    [102]Collard HR, Elton LRB, Hodstadter R. In Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, Volume 2:Nuclear Radii. Berlin:Springer-Verlag (1967).
    [103]De Jager CW, De Vries H, De Vries C. Atom. Data Nucl. Data Tabl.36:495 (1987).
    [104]Hulthen L, Sagawara M. Handbuch der Physik 39:1 (1957).
    [105]Hodgson PE. Nuclear Reactions and Nuclear Structure p453. Clarendon Press. Ox-ford, (1971).
    [106]Adler SS, et al. Phys. Rev. Lett.91:072303 (2003).
    [107]R. Vogt, nucl-th/9903051.
    [108]Chauvin J, Bebrun D, Lounis A, Buenerd M. Phys. Rev. C.83:1970(1983).
    [109]Wibig T, Sobczynska D. J. Phys. G 24:2037 (1998).
    [110]R. L. Ray and M. Daugherity, J. Phys. G 35 (2008) 125106.
    [111]M. Rybczynski, W. Broniowski and P. Bozek, Acta Phys. Polon. B 39 (2008) 1725.
    [112]B. Alver, M. Baker, C. Loizides and P. Steinberg, arⅩⅳ:0805.4411 [nucl-ex].
    [113]Bia las A, Bleszynski M, Czyz W. Nucl. Phys. B 111:461 (1976).
    [114]Kharzeev D, Lourenco C, Nardi M, Satz H. Z. Phys. C 74:307 (1997).
    [115]D. G. d' Enterria, nucl-ex/0302016.
    [116]EM Collaboration, M. Arneodo et al., Nucl. Phys. B 333 (1999) 1.
    [117]NM collaboration, P.Amaudruz et al, Z. Phys. C 51 (1991) 387.
    [118]E665 Collaboration, M. R. Adams et al.. Phys.Rev. Lett 68 (1992) 3266; Phys. Lett. B 287 (1992) 375.
    [119]K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0904 (2009) 065.
    [120]Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e- Annihilation by Perturbation Theory in Quantum Chromodynamics. (In Russian), Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz.73 (1977) 1216].
    [121]V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [Yad. Fiz.15 (1972) 781].
    [122]e+e- pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 675 [Sov. J. Nucl. Phys.15 (1972) 675].
    [123]G. Altarelli and G. Parisi,Asymptotic freedom, in part,on language, Nucl. Phys. B 126 (1977) 298.
    [124]K. J. Eskola, V. J. Kolhinen and C. A. Salgado, Eur. Phys. J. C 9 (1999) 61.
    [125]K. J. Eskola, V. J. Kolhinen and P. V. Ruuskanen, Nucl. Phys. B 535 (1998) 351.
    [126]K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0807 (2008) 102.
    [127]M. Hirai, S. Kumano and T. H. Nagai, Phys. Rev. C 76 (2007) 065207.
    [128]D. de Florian and R. Sassot, Phys. Rev. D 69 (2004) 074028.
    [129]D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Phys. Rev. D 85 (2012) 074028.
    [130]I. Schienbein, J. Y. Yu, K. Kovarik, C. Keppel, J. G. Morfin, F. Olness and J. F. Owens, Phys. Rev. D 80 (2009) 094004.
    [131]Xin-Nian Wang, Phys. Rep.280 (1997) 287.
    [132]N. Armesto, J. Phys. G 32 (2006) R367.
    [133]J.J. Aubert et al, Phys. Lett.123B,275 (1983).
    [134]J. W. Cronin, H.J. Frisch, M. J. Shochet, J. P. Boymond. R. Mermod, P. A. Piroue and R. L. Sumner, Phys. Rev. D 11 (1975) 3105.
    [135]I. Vitev, S. Wicks and B. W. Zhang, JHEP 0811 (2008) 093.
    [136]R. B. Neufeld, I. Vitev and B. W. Zhang, Phys. Rev. C 83 (2011) 034902.
    [137]I. Vitev and B. W. Zhang, Phys. Rev. Lett.104,132001 (2010).
    [138]S. Salur, J. Phys. Conf. Ser.230,012008 (2010).
    [139]J. Jia [PHENIX Collaboration], Nucl. Phys. A855,92-100 (2011).
    [140]J. Casalderrey-Solana, J. G. Milhano, U. A. Wiedemann, J. Phys. G G38,035006 (2011).
    [141]G.-Y. Qin and B. Muller, Phys. Rev. Lett.106 (2011) 162302 [Eiratum-ibid.108 (2012) 189904].
    [142]I. P. Lokhtin, A. V. Belyaev and A. M. Snigirev, Eur. Phys. J. C 71 (2011) 1650.
    [143]C. Young, B. Schenke, S. Jeon and C. Gale, Phys. Rev. C 84 (2011) 024907.
    [144]M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 71 (2011) 1692.
    [145]I. Vitev, Prog. Theor. Phys. Suppl.187,68 (2011).
    [146]F. I. Olness and D. E. Soper, Phys, Rev. D 81 (2010) 035018.
    [147]M. Dasgupta, L. Magnea and G. P. Salam, JHEP 0802 (2008) 055.
    [148]G. Soyez, Phys. Lett. B698,59-62 (2011).
    [149]T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 0605 (2006) 026.
    [150]M. Bahr, S. Gieseke, M. A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Platzer and P. Richardson et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639.
    [151]Y. He, I. Vitev and B.-W. Zhang, Phys. Lett. B 713 (2012) 224.
    [152]I. Vitev, Phys. Lett. B639,38-45 (2006).
    [153]G. Ovanesyan and I. Vitev, JHEP 1106 (2011) 080.
    [154]C. Markert, R. Bellwied and I. Vitev, Phys. Lett. B 669 (2008) 92.
    [155]BAbelev et al. [ALICE Collaboration], Phys. Rev. Lett.105 (2010) 252301.
    [156]K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 696,30 (2011).
    [157]P. Steinberg, QM2011 talk; B. Cole, QM2011 talk.
    [158]R. B. Neufeld, I. Vitev and B.-W. Zhang, Phys. Lett. B 704 (2011) 590.
    [159]S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett.106 (2011) 212301.
    [160]R. B. Neufeld and I. Vitev, Phys. Rev. C 86 (2012) 024905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700