非线性Boussinesq流的长时间形态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分为两个部分,第一部分研究了在Boussinesq近似下的热对流
    方程。主要讨论了时间周期解,指数吸引子和吸引子的上半连续性。
    第二部分主要讨论了NLS-Boussinesq耦合组的时间周期解和吸引子的正
    则性。
     全文共分六章,第一章为绪言,简要介绍了Boussinesq近似下的热
    对流方程和NLS-Boussinesq耦合组的物理背景,研究状况以及本文所讨
    论的基本内容。第二章研究Boussinesq近似下的热对流方程的时间周
    期解。首先利用Larey-Sauchder不动点定理证明近似解的存在性,然后
    对方程的近似解作高阶导数(关于空间变量和时间变量)估计,最后利
    用紧致性方法证明了在R~d(d=3或4)的有界区域上,当外力较小时,方
    程存在时间周期解。同时补充一定条件后,给出了一个唯一性结果。
    第三章研究了指数吸引子的存在性。首先证明解算子S(t)是Lipschitz连
    续的,其次证明离散的解算子S_*=S(t_*)具有挤压性质,利用A.Eden和
    C.Foias等人构造的理论得到Boussinesq近似下的热对流方程的指数吸引
    子的存在性。第四章研究了吸引子的上半连续性。考虑带扰动项的
    方程,利用算子分解技术证明其紧吸引子Α(ε)的存在性,然后在证明
    lim_ε→0+dist(Α(ε),Α(0))=0,从而得到Boussinesq近似下热对流方程的吸引
    子的上半连续性。
     第五,第六章为该文的第二部分,对NLS-Boussinesq耦合组的时间
    周期解和吸引子的正则性进行了研究。在第五章中用类似于第二章中
    的方法证明了该耦合组的时间周期解的存在性,且指出在小外力的情
    况下其周期解是唯一的。第六章研究了NLS-Bousinesq耦合的吸引子的
    正则性。对解算子进行分解,构造渐进紧的不变集,得到吸引子Α_0在
    空间Ε_0中的存在性,进而证明Α_0也是Ε_1中的吸引子,即Α_0=Α_1。
This dissertation consists of two parts. In one part we consider the ex-
     istence of the time periodic solutions, exponential attractors and the upper
     semi-continuity of the global attractors for the coupled system of equations
     of fluid and temperature in the Boussinesq approximation. In the other part,
     we consider the existence of the time periodic solutions and regularity of the
     global attractors for the coupled system NLS-Boussinesq.
    
     This dissertation consists of six chapters. In chapter 1, we briefly in-
     troduce background in physics and the developments in mathematics for the
     coupled system of equations of fluid and temperature in the Boussinesq ap-
     proximation and the coupled system NLS-Boussinesq. in which the main work
     of the dissertation is also described. In chapter 2, we discuss the time peri-
     odic solution of the coupled system of equations of fluid and temperature in
     Boussinesq approximation. First, we apply the fixed theorem of the Larey-
     Schauder to prove the existence of the approximate solution. Next, we get
     the estimates of the higher order derivatives (with respect to spatial variable
     and time variable) of the approximate solutions. Finally, we use the method
     of standard compactness arguments to get the existence of this system in a
     bounded domain ~l (€ Rd, d 3,4), whenever the external force are small.
     At the same time, after supplementing some conditions we get the result of
     uniqueness. In chapter 3, we study the existence of the exponential attractors
     for the coupled system of equations of fluid and temperature in Boussinesq
     approximation. We first show that the solution operator S(t) is Lipschitz con-
     tinuous, then the discrete solution operator S~ (t*) satisfy the squeezing
     property, use the theory given by A. Eden and C. Foias, we get the existence
     of the exponential attractors M whose fractal dimension is finite. In chapter 4,
     we study the upper semi-continuity of global attractors for the coupled system
    
    
    
    
    
    
    
    
    
     of equations fluid and temperature in Boussinesq approximation. Considering
     the equations with the singularly pertubed term, and decomposing the solu-
     tion operator, we first prove the existence of the global attractors .4(&), then
     prove that
    
     lim dist(A(5),A(O)) = 0.
     ?0+
    
     In chapter 5, using the same arguments in chapter 2 for the coupled
     system of NLS-Boussinesq, we prove the existence of the time periodic solution
     and point out that the time periodic solution is unique when the external force
     are small. In chapter 6, using the technology of decomposing solution operator
     and constructing the asymptotic compact invariant set, we get the existence
     of the global attractor ..4~ in the space E0. Furthermore, A0 is the global
     attractor in the space E0, that is A0 = A0.
引文
[1] Count Rumford, Of the Propagation of Heat in Fluids, Complete Works, 1, 239, American Academy of Arts and Sciences, Boston, (1870) .
    [2] J. Thomson, On A Structure in Certain Liquids, Proc, Phli. Soc. Glasgrow, 13, 464-468, (1882) .
    [3] H. Benard, Les Tourbilons Cellulaires Dans Une Nappe Liquide,Revue Generale des Sciences Pures et appliquees, 11, 1261-1271 and 1309-1328,(1900) .
    [4] R. A. Adams, "Sobolev Space", Academic Press. New York, 1975.
    [5] Hiso. Kato, Existence of Periodic Solutions of the Navier_Stokes Equations, J. Math. Appl., 208(1997) 141-157.
    [6] Guo B. L., The Global Solution of Initial Value Problem for Nonlinear Schrodinger-Boussinesq Equation in 3-Dimensions, Acta Math. Sini.6(1990) 223-233.
    [7] Guo B. L., The Global Solution of the System of Equations for Complex Schrodinger-Field Coupled with Boussinesq Type Self-consistent field,Acta Math. Sini. 26(1983) 297-306.
    [8] P. Constantin, C. Foias, B. Nicolaenko and R. Teman, Integral and Iner-tial Manifolds for Dissipative differential Equations, Springer-Verlag, New York, 1989.
    [9] A. Eden and A. Libin, Explicit Dimension Estimates of Attractors for the MHD Equations in Three-Dimensional Space, Physica D 40 (1989) 338-352.
    [10] C.Foias G. Sell and E. S. Titi, Exponential Tracking and Approximation of Inertial Manifolds for Dissipative Nonlinear Equations, J. of Dynamics and Diff. Equations, vol. 1, No. 2, (1989) .
    [11] J. M. Ghidaglia and B. Heron, Dimension of the Attractor Associated to
    
    the Ginzburg-Landau Equation, Physica D 28 (1987) 282-304.
    [12] J. M. Ghidaglia and R. Teman, Attractors for Damped Nonlinear Hyper-boloc Equations, J. Math. Pures Appl. 66 (1987) 273-319.
    [13] J. M. Ghidaglia and R. Teman, Long-time Behavior for Partly Dissipa-tive Equations: the Slightly Compressible Two-Dimensional Navier-Stokes Equations, Attractor and Their Dimension, Asymptotic Analysis, 1, (1988) 23-49.
    [14] J. K. Hale, Xia-biao Lin and G. Raugel, Upper semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations, Mathemtics of Computation 50, No. 181 (1988) 89-123.
    [15] O. A. Ladyzhenskaya, On the Finiteness of the Dimension of Bounded Invariant Sets for the Navier-Stokes Equations and Other Related dissipa-tive Systems, in the Boundary Value Problems of Mathematical Physics and Related Questions in Functional Analysis, J. Soviet. Math. 28, NO. 5 (1985) 714-725.
    [16] J. Mallet Paret, Negatively Invariant Sets of Compact Maps and Extension of a Theorem of Cartwright, J. Differential Equations, 22 (1976) 331.
    [17] J. Mallet Paret and G. Sell, Inertial Manifold for Reaction-Diffusion Equations in Higher Space dimensions, J. Amer. Math. Soc., 1 (1988) , 805-866.
    [18] M. Marion, Attractors for Reaction-Diffusion Equations, existence and Estimate of Their Dimension, Appl. Anal., 25 (1987) , 101-147.
    [19] B. Nicolaenko, B. Scheurer and R. Teman, Some global Dynamical Properties of the Kuramoto-Sivashinsky Equations, Nonlinear Stability and Attractors, Physica, 16D (1985) , 155-183.
    [20] M. Sermange and R. Teman, Some Mathematical Equationa Related to the MHD Equations, Comm. Pure Appl. Math. 36 (1983) 635-664.
    [21] M. Mohan and B. buti, Effects of Collisional and vicous Dissipations on the ion-acoustic-Langmuir Interactions, J. Plasma Physics, (1982) , vol. 27
    
    part 1, pp 1-11.
    [22] V. G. Makhankov, On Stationary Solutions of Schrodinger Equyations with Boussinesq Equations, Phys, Lett. A 50(1974) , 42-44.
    [23] V. G. Makhankov, Dynamics of Classical Solutions (in Nonintegrable System), Phys. Rep. phy. Lett. C 35(1978) , no. 1.
    [24] K.Nishikawa, H. Hijo, K.Mima, and H. Ikezi, Coupled Nonlinear Electron-Plasma and ion-aco ustic waves, Phys. Lett. 33(1974) , 148-150.
    [25] V. E. Zakharov and A. B. Shabat, Integrable System of Nonlinear Equations in Mathematical Physics, Funct. Anal. Apple. 83 (1974) , 43-53.
    [26] P. Constantin, C. Foias, and R. Teman, Attractors Representing Turbulent flows, Memoirs Amer. Math. Soc. 53 No. 314 (1985) .
    [27] I.Flahant, attractors for the Dissipative Zakharov System, Nonlinear Anal. 16 (1991) 599-633.
    [28] J. M. Ghidaglia, and R. Teman, Attractors for Damped Nonlinear Hyperbolic Equations, J. Math, pures Appl. 66 (1987) , 273-319.
    [29] Guo B. L. and Chen F. X., Finite Dimensional Behavior of Global Attractors for Weakly Damped Nonlinear Schrodinger-Boussinesq Equation, Phy. D 93 (1996) , 101-118.
    [30] W. Rudin, Functional Analysis, McGraw-Hill, Book co., New York Dusselderf Johannesburg, 1973.
    [31] O.Goubet and I. moise, Attractor for Dissipative Zakharov System, Nonlinear Anal. 7 (1998) 823-847.
    [32] J.M. Ghidaglia, Finite-dimensional Behavior for Weakly Dirven Schrodinger Equation, Ann. inst. H. Poincare, Anal Nonlinear, 5 (1988) , 365-405.
    [33] R. Teman, Infinite Dimansional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Second, 1997.
    [34] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, claren-
    
    don Press. Oxford, 1981.
    [35] Guo B. L. and Yuan G. W., The Initial-Boundary Value Problem for the Boussinesq Equation with Data in Lp , Chin Ann. of Math. 17B (1996) 595-606.
    [36] Guo B. L. and Wang B. X., Gevery Class Regularity and Approximate Inertial manifolds for the newton-Boussinesq Equations, Chin. Ann. of Math. 19B 2(1998) , 179-188.
    [37] Guo B. L., Spectral Method for Solving two-Dimensional Newton-Boussinesq Equations, Acta Math. Appl. sinica No. 3 (1989) 208-218.
    [38] Guo B. L., Nonlinear Galerkin Methods for Solving two Dimansional Newton-Boussinesq Equations, Chin. Ann. of Math. 16B 3(1995) 379-390.
    [39] C. Foias, Omanly and R. Teman, Attractors for the Benard Problem: Existence and physical Bounds on Their fractal Dimensional, Nonlinear Analysis, TMA, vol 11, No. 8(1987) , 939-967.
    [40] A. Eden, A. Milani B. Nicolaenko, Finite Dimensional Exponential Attractors for Semilinear wave Equations with Damping, J. Math. Anal. Appl.169, No. 2, (1992) 408-419.
    [41] A. Eden, J. M. Rakotoson, Exiponential Attractors and Their Relevance to Fluid Mechanics System, Phys. D 63 No.3-4, (1993) , 350-360.
    [42] Dai Z. D., the Initial Fractal Sets for Weakly Damped Forced Korteweg-devries Equations, Appl. Math & Mech., 16(1) , (1995) , 37-45.
    [43] R. Teman, Navier-Stokes Equations, Theiry and Numerical Analysis, 3rd ed, North-Hollsnd, Amsterdam, 1983.
    [44] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdm 1992.
    [45] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv. Mono. 25, AMS Providence 1988.
    [46] J. M. Ball Continuity Property and Global Attractors of Generalized Semi-
    
    flows and the Navior-Stokes Equations J. Nonlinear Sci. vol 7, (1997) 475-502
    [47] J. Arrieta, A. Carvalho and J. K. Hale, A Damped Hyperbolic Equation with Critical Exponent, Comm. Partial Differential Equs. 17 (1992) 841-866.
    [48] S. Song, Solution and global Attractor of a Class of Model Equation of Long wave, J. of Math. Res. and Exp., 13 (1993) , 557-562.
    [49] E. S. Titi, On Approximate Inertial Maniflods to the navier-Stokes Equations, J. Math. Anal. 149 (1990) , 540-557.
    [50] V. Babin and M. I. Vishik, Regular attractor of Semigroups and Evolution Equation, J. Math. Pures Appl., 62 (1983) , 441-491.
    [51] Blanchart and G. francfort, Study of a Doubly Nonlinear Heat Equation with No growth Assumptions on the Parabolic Term, SIMAM J. Num.Anal., 19 (1988) , 1032-1056.
    [52] N. Chow and K. Lu, Invariant Manifolds for Flows in Banach Spaces, J. Differdntial Equations, 74 No. 2 (1988)
    [53] P. constantin and C. Foias, Global Lyapunov Exponents, Kaplan-Yorke Formulas and Dimensiom of the Attractors for Two-Dimensional Navier-Stokes Equations, Comm. Pure Appl. Math., 38 (1985) 1-27.
    [54] J. K. Hale and G. Raugel, Upper Semicontinuity of the Attractors for a Singularly Perturbed Hyperbolic Equation, J. Differential Equs 73 (1988) 197-214.
    [55] C. Dupaix, D. Hilhorst and I. N. Kostin, The Viscous Cahn-Holliard Equations as a Limit of the Phase Field Model, J. Dyn. and Differential Equs, 11. 2 (1999) 333-353.
    [56] I. Witt, Existence and Continuity of the Attractor for a Singularly Perturbed Hyperbolic Equation, J. Dyn. and Differential Equs. 8(1995) 591-639.
    
    
    [57] I. Moise R. Rosa and X. Wang, Attractors for Non-compact Semigroups via Energy Equations, Nonlinearty 11 (1998) 1369-1393.
    [58] J. L. Lions, Quelgues Methodes de Resolution des Problems aux Limites Non Lineaires, Dunod, Paris, 1969.
    [59] E. Feireisl, Global Attractors for Semilinear Damped Wave Equations with Supercritical Exiponent, J. Diff. Equs. 116 (1995) 431-447.
    [60] P. Constantin, C. Foias, O. Manley and R. Teman, Determining Modes and Fractal Dimension of Turbulent flows, J. Fluid Mech. 150, (1985) 427-440.
    [61] J. R. Cannon and E. Dibenedetto The Initial Problem for the Boussinesq Equation with Data in Lp, Lecture Notes in Math, vol 771, 129-144, Springer, Berlin (1980) .
    [62] L Caffarelli, R. Kohn and L.Nirenberg, Partial Regularity of Suitable Weak Solutions of the Navier-Stokes Equations, Communs Pure Appl. Math. (1982) 35, 771-831.
    [63] Beorao da Veiga H., On the Suitable Weak Solution to the Navier-Stokes Equations in the Whole Space, J. math. Pures. Appl. 64 (1985) 77-86.
    [64] Beorao da Veiga H., Existence and Asymptotic Behavior for Strong Solutions of the Navier-Stokes Equations on the Whole Space, Indiana Univ. Math. J. 36 (1987) 149-166.
    [65] Guo B. L. and Yuan G. W., On the Suitable Weak Solutions for the Cauchy problem of the Boussinesq Equations, Nonlinear Anal. TMA, vol. 26 No. 8, (1996) 1367-1387.
    [66] J. M. Ghidaglia, On the Fractal Dimension of Attractors for Viscous in Compressible Fluid Flows, SIAM J. Math. Anal. vol. 17 No. 5 (1986) 1139-1157.
    [67] Y. Giga and T.Miyakawa, Solutions in Lr of the Navier-Stokes Initial Value Problem, Arc. Rat. Mech. Anal. vol 89 No. 1-4, (1985) 267-281.
    
    
    [68] Beorao da Veiga H., On the Construction of Suitable Weak Solutions to the Navier-Stokes Equations via a General Approximation Theorem, J. Math. Pures et Appl. 64 (1985) 321-334.
    [69] Guo B. L. and Li Y. S. The Global Solution for the System of Schrodinger-Boussinesq Type Equations in Three Dinemaions, Acta Math. Appl. Sinica. 6 No. 1 (1990) .
    [70] Guo B. L., Initial Boundary Value Problem for one Class of System of multidimensional Nonlinear Schrodinger-Boussinesq Type Equations, J. Math. Res. Eaxposition 8, No. 1. (1988) 61-71.
    [71] Maria E. Schonber, Uniform Decay Rates for Parabolic Conservation Laws, Nonlinear Anal. TMA, 10 No. 9 (1986) 943-956.
    [72] C. Foias, G. Sell and R. Teman Inertial Manifolds for Nonlinear Ecolu-tionary Equations, J. Diff. equ. 73 (1988) 309-353.
    [73] B. Nicolaenko, B. Scheurer and R. Teman, Some Global Dynamical Properties of the Kuramoto-Sivashinsky Equations, Nonlinear Stability and Attractors, Physica D 16 (1985) 155-183.
    [74] A. Eden B. Michaux and J.M. Rakotoson, Some Results on Doubly Nonlinear Parabolic Equations as Dynamical System, Appl. Math. Lett. 3 No. 1 (1990) 5-8.
    [75] I. Moise and R. Rosa, On the Regularity of the Global Attractor of a Weakly Damped forced korteweg-de vries Equation , Advances in Differential Equations, vol. 2 (1997) 257-296.
    [76] F. Abergel, Existence and finite Dimensionality of the Global Attractor for Evolution Equations on Unbounded Domains, J. diff. Equs., 83 (1990) 85-108.
    [77] J. M. Ghidaglia, A Note on the Strong Convergence Towards Attractors of Damped Forced KdV Equations, J. Diff. Eqs., 110 (1994) 356-359.
    [78] O. Goubet, Regularity of the Attractor for a Weakly Damped Nonlinear
    
    Schrodinger Equation in R2, Advances in Differential Equations vol. 3 No. 3 (1998) 337-360.
    [79] D. Ruelle, Characteristic Exponente for a Viscous Fluid Subjected to Time Dependent Forces, Comm. Math. Phys., 93 (1984) , 285-300.
    [80] M. Sermange and R. Teman, Some Mathematical Questions Related to the MHD Equations, Comm. Pure. Appl. Math., 36 (1983) 634-664.
    [81] A. Roychowdhury, B. Dasgupta and N. N. Rao, Painleve Analysis and B'acklund Transformations for Coupled Generalized Schrodinger-Boussinesq System, Chaos, Solitons & Fractals 9(10) , (1998) 1747-1753.
    [82] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy Problem for the Zakharov System, J. Funct. Anal. 151 (2) , (1997) , 384-463.
    [83] Wang X., An Energy Equation for the Weakly Damped Driven Nonlinear Schrodinger Equations and It Applications to Their Attractors , Physica D, (to appear).
    [84] J. Ball, P.Holmes, R. James, R. Pego, and P. Swart, On the Dynamics of Finite Structure, Jour. Nonlinear Science, 1: (1990) 17-70,
    [85] A. R. Bishop, R. Flesh, M. G. Forest, D. W. Mclaughlin, and E. A. Overman, Correlations Between Chaos in a Perturbed Sine-Gordon Equations and a Truncated Model System, SIMA J. Math. Anal., 21: (1990) 1511-1536.
    [86] R. Glassey, On the Blowing-up of solutions to the Cauchy Problem for Nonlinear Schrodinger Equations J. Math. Phys. 18 (1977) 1794-1797.
    [87] A. V. Bsabin and B. Nicolacnko, Exponential Attractors of Reaction-Diffusion Systems in an Unbounded Domain, J. Dyn. Diff. Equ., 7: 4 (1995) 567-590.
    [88] A. V. Babin and M. I. Vishik, Properties of Global differential Equations, American Mathematical Society, 1992.
    [89] Dai Z. D. and Guo B. L., Inertial Fractal Sets for Dissipative Zakharov
    
    System, Acta Math. Appl. Sinica, 13: 3 (1997) 279-288.
    [90] A. Eden, C. Foias, B. Nicalaneko, et al, Exponential Attractors for Dissi-pative Evolution Equations, New York, 1994.
    [91] C. Foias B. Nicolaenko, G. R. Sell and R. Teman, Inertial Manifolds for the Kuramoto-Sivashnsky Equation and an Estimate of Their Lowest Dimension, J.Math. Pures et Appl. 67 (1988) 197-226.
    [92] C. Foias and G. R. Sell, Inertial Manilolds for Nonlinear Evolutionary equations, J. Diff. Equ., 73 (1988) 309-353.
    [93] Gu c.h., et al, Soliton Theory and Its Applications, Zhejiang Science and Technology Publishing House, Springer. 1991.
    [94] Gao H. J. and Duan J. O., On the Initial Value Problem for the generalized Two-Dimensional Ginzburg-Landau Equation, J. Math. Anal. Appl. 216 (1997) 536-548.
    [95] Guo B. L. and Wang B. X., Approximate Inertial Manifolds to the Newton-Boussinesq Equations, J. Partial Diff Equ., (1996) 237-250.
    [96] Guo B. L., Nonlinear Evolution Equations, Shanghai Scientific and Technological Education Publishing House, 1995.
    [97] D. Henry, Geometric Theory of Semilinear Parabolic Equations Spronger Verlag, 1981.
    [98] Li Y. S. and Guo B. L., Attractor for Dissipative Zakharov Equations in an Unbounded Domain, Rev. Math. phys. 9:6 (1997) 675-687.
    [99] A. Pazy, Semigroups of Linear Operators and applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
    [100] N. R. Pereira, Soliton in the Damped Nonlinear Schrodinger Equation, Phys. Fluids, 20 : 10 (1977) 1735-1743.
    [101] N. R. Pereira and L. Stenflo, Nonlinear Schr'odinger Equation Including Growth and Damping, Phys, Fluids, 20: 10 (1977) 1733-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700