连续与离散反应扩散方程组的行波解及整体吸引子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物理、化学和生物等领域中的许多模型都可归结为反应扩散方程组的初值问题或初边值问题。格微分方程(离散的反应扩散方程)在材料科学、图像处理、化学反应、生物学等学科领域中都有应用。行波解是连续的反应扩散方程和格微分方程的一类很重要的解。偏微分方程空间变量离散后解的形态研究近期已引起人们极大的兴趣,对相应离散模型的研究有助于数值计算和数值分析,并可以得到无穷维动力系统和相应的有限维离散模型的密切联系等等。本文研究了时滞反应扩散方程、时滞格微分方程(组)、扩散Predator-Prey模型等系统行波解的存在性和FitzHugh-Nagumo方程在不同边值条件下空间离散或时空离散后解的渐近行为。
     对于时滞反应扩散方程,我们先利用吴建宏和邹幸福[J. Dynam. Diff. Eqns 2001(3)]中的主要定理来研究时滞竞争扩散Lotka-Volterra系统波前解的存在性,给出了这个定理在非线性项满足弱拟单调条件(QM*)时在系统情况中的应用;并利用单调迭代方法和上、下解技术,对于具有部分零扩散系数的时滞反应扩散方程建立波前解的存在性定理,对于具有部分零扩散系数的时滞反应扩散方程建立波前解的存在性定理。从而使吴建宏和邹幸福[J. Dynam. Diff. Eqns, 2001(3)]的理论进一步完善。
     对于具有“弱拟单调”非线性项的时滞反应扩散系统(包括正扩散系数和部分零扩散系数两种情况),我们利用Schauder不动点定理,在适当构造的、赋予指数衰减范数的某个子空间上证明了波前解的存在性,使得上解不必一定是单调的,不必一定满足左极限条件,且上、下解的部分分量可取成常数,从而在构造上、下解时要容易些,并将所得的结论应用到带两个时滞的Belousov-Zhabotinskii模型上。
     对于部分解耦的时滞反应扩散方程(吴建宏和邹幸福[J.Dynam. Diff. Eqns, 2001(3)]的理论不能应用到该类模型上),我们根据其非线性项对变元的不同单调性,利用不同的上、下解的定义,引入交叉迭代格式,利用Schauder不动点定理证明其行波解的存在性,解决了一类时滞反应扩散方程组的行波解的存在性问题。
     对于时滞格微分方程,利用Schauder不动点定理证明了其波前解的存在性,减少了对上解的限制条件,给出了上、下解在有限个点不连续时,行波解存在的条件;并将时滞反应扩散方程的结论推广到相应的时滞格微分方程组上。
     对于反应项是Holling-Ⅱ型的扩散Predator-Prey模型,我们在月4中利用打
    
     F\博士学住论文
     ④DOCTOICh.--- DISS二RTATION
    靶法,结合Lasalle不变原理和Liop。m。函数的万法,证明了扩散P陀da切,一P陀y
    模型的行波解的存在性及小振幅行波链解的存在性。
     对于FitzH。lgl。析叱unl。万程,将其在Dirichl毗和N刘m川ll边值条件下空间或
    时空离散后,采用扰动的办法而非将相空间分解两个正交子空问的方法,证
    明了整体吸引子的存在性,给出了其与分割点无关的Hausdorff维数的上界估
    计;并将二个神经元细胞耦合 FitzHugll朴agumo模型推广到 n…三 2)神经元细
    胞耦合RtzH。吧l朴旭u;n。模型,并讨论了广义耦合*tm屹朴旭um。万程解的渐
    近行为,给出了其整体吸引子的存在性和Ha朋d扯咐维数估计;最后对离散耦
    合 FitzHugll-N。g。。。。。口万程也作类似白讨论。
This dissertation investigates both existence of traveling wave solutions for delayed reaction diffusion systems and lattice differential equations, and global attractor of spatially discretized FitzHugh-Nagumo equations with Dirichlet or Neumann boundary conditions.
    For delayed reaction diffusion systems, the existence of traveling wavefronts in diffusive and coorperative system with time delays is provided, firstly; the monotone iteration scheme, together with upper-lower solution technique, is applied to establish the existence of traveling wavefronts of delayed reaction diffusion systems with some zero diffusive coefficients. Secondly, Schauder fixed point theorem is applied to some operators to prove the existence of traveling wave solutions in a properly subset equipped with exponential decay norm, which is obtained from a pair of upper and lower solutions for delayed reaction diffusion systems with non-quasimonotoiiicity. Both positive diffusive coefficients and some zero diffusive coefficient cases are considered. Finally, for partial decoupling systems, such as competitive-cooperative model with time delay and delayed epidemic model, we employ the new cross-iteration method, together with Schauder fixed point theorem, to establish the existence of traveling wave solutions. Both partial quasi-monotonicity and partial non-quasimonotonicity cases are considered separately. Similar results are obtained for some delayed lattice differential equations and systems of delayed lattice differential equations.
    For diffusive Predator-Prey model without time delay, shooting argument is applied, together with unstable manifold theorem and LaSalle's Invariance Principle to prove the existence of traveling wave solutions in R4.
    For spatially discretized FitzHugh-Nagumo equations with Dirichlet boundary condition or Neumann boundary condition, the existence of global attractor and its Hausdorff dimensions are proved separately. The result shows that the upper bounded estimate is independent of the number of spatially partition. Similar results are obtained for spatial-temporal discretized FitzHugh-Nagumo equations and generalized coupled FitzHugh-Nagumo equations.
引文
[1] N. D. Alikakos, P. W. Bates and X. F. Chen, Periodic traveling waves and locating ossillating patterns in multidimensional domains, Trans. Amer. Math. Soc. , 351(1999) , 2777-2805.
    [2] A. R. A. Anderson and B. D. Sleemann, Wave front propagation and its failture in coupled systems of discrete bistable cells modelled by Fitzhugh-Nagumo dynamics, Inter. J. Bifurcation and chaos, 5,1(1995) , 63-74
    [3] C. Atkinson, G. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solutions for some nonlinear diffusion equations. SIAM J. Math. Anal, 12, 6(1981) , 880-892.
    [4] P. W. Bates and F. X. Chen, Periodic traveling waves for a nonlocal integro-differential model. Electronic J. of Differential Equations, 26 (1999) , 1-19.
    [5] J. Bell, Some threshold results for models of myelinated nerves, Math. Biosci. 54 (1981) , 181-190.
    [6] J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quart. Appl. Math. 42(1984) , 1-14.
    [7] P. C. Bressloff, Traveling waves and pules in a one dimensional newwork of excitablee integrate-and-fire neurons, J. Math. Biol. 40(2000) , 169-198.
    [8] N. F. Britton, Travelling wave front-solutions of a differential-difference equation arising in the modelling of myelinated nerve axon, in "Ordinary and Partial Differential Equations", eds. B. Sleeman and R. Jarvis, Lecture Notes in Math. 1151, Springer-Verlag, Berlin, 1984, pp. 77-89.
    [9] N. F. Britton, Reaction Diffusion Equations and Their Application to Biology, Academic Press. New York, 1986.
    [10] N. F. Britton, Spacially structures and periodic traveling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math.,50 (1990) , 1663-1688.
    [11] L. A. Bunimovich and Y. G. Sinai, Space-time chaos in couplerd map lattices, Nonlinearityl(1988) , 491-518.
    [12] J. W. Cahn, S.-N. Chow, and E. S. Van Vleck, Spatially discrete nonlinear diffusions, Rocky Mountain J. Math., 25 (1995) , 87-118.
    [13] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, Traveling wave solutions for systems of ODE's on a two-dimentional spatial lattice, SIAM J. Appl. Math., 59 (1998) , 455-493.
    [14] X. F. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Diff. Eqs. 2(1997) , 125-160.
    [15] H. Chi, J. Bell and B. Hassard, Numerical solutions of a nonlinear advanced-delay differential equation from nerve condition theory, J. Math. Biol. 24(1986) , 583-601.
    [16] S.-N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations 149 (1998) , 248-291.
    [17] S.-N. Chow and W. Shen, Stability and bifurcation of traveling wave solutions in coupled map lattices, J. Dynam. Syst. Appl., 4 (1995) , 1-26.
    [18] S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Dynamics of lattice differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996) , 1605-1621.
    [19] S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol. 17(1983) , 11-32.
    
    
    [20] S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4, Trans. Amer. Math. Soc. 286(1984) , 557-594.
    [21] S. Dunbar, Traveling wave solutions of diffusive predator-prey equations: periodic orbits and point-to periodic hertoclinic orbits, SIAM J. Appl. Math. 46(1986) , 1057-1078.
    [22] C. Elliott, A. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM. J. Numer. Analysis, 30,6(1993) , 1622-1663.
    [23] H. Engler, Relations between traveling wave solutions of quasilinear parabolic equations, Proc. of. Amer. Math. Soc., 93, 2(1985) , 297-302.
    [24] C. E. Elmer and E. S. Van Vleck, Computation of traveling waves for spatially discrete bistable reaction-diffusion equations, Appl Numer. Math., 20 (1996) , 157, 169.
    [25] G. Bard Ermentrout and J. Brycc Mclcod, Existence and uniqucnccss of traveling waves for a neural network. Proceedings of the Royal Society of Edinburgh, 123 A (1993) , 461-478.
    [26] T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction-diffusion systems, Physica D, 67 (1993) , 237-244.
    [27] P. C. Fife, Mathematical Aspects of Reaction and Diffusion Systems, Lecture Notes in Biomathe-matics, Vol. 28,Springer-Verlag, Berlin and New York, 1979.
    [28] R. A. Fisher, The wave of advance od advantageous gene, Ann. Eugen. 7 (1937) , 355-369.
    [29] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Dekker, New York, 1980.
    [30] R. Gardner, Existence and stability of traveling wave solutions of competition models: A degree theoretic approach, J. Differential Equations 44(1982) , 343-364.
    [31] R. Gardner, Existence of traveling wave solutions of predator-prey systems via the connection index, SIAM J. Appl. Math. 44(1984) , 56-79.
    [32] R. Gardner, Review on traveling wave solutions of parabolic systems by A. I. Volpert, V. A. Volpert and V. A. Volpert, Bull. Amer. Math. Soc. 32(1995) , 446-452.
    [33] S.A. Gourley and N. F. Britton, Instability of traveling wave solutions of a population model with nonlocal effects, IMA J. Appl. Math., 51 (1993) , 299-310.
    [34] S. A. Gourley and N. F. Britton, A preador-prey reaction diffusion system with nonlocal effects, J. Math. Biol., 34 (1996) , 297-333.
    [35] S. A. Gourley, Traveling fronts in the diffusive Nicholson's blowflies equation with ditributed delays, Mathematical and Computer Modelling, 32(2000) , No. 7-8, 843-853.
    [36] S. A. Gourley, Wave front solutions of a diffusive delay model for population of Daphnia magna, Comp. Math. Appl., 42 (2001) , No. 10-11, 1421-1430.
    [37] P. Grindrod and B. D. Sleeman, Weak traveling fronts for population models with density dependent dispersion, Math. Meth. in the Appl. Sci., 9(1987) , 576-586.
    [38] 郭柏灵,无穷维动力系统(上、下册),国防工业出版社,北京,1998.
    [39] B. L. Guo and Q. S. Chang, Attractors and dimensions for discretizations of a generalized Ginzburg-Landau equation. J. Partial Differential Equation 9 (1996) , no. 4, 365-383.
    [40] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
    [41] D. Hankerson and B. Zinner, Wave fronts for a cooperative triangonal system of differential equations, J. Dynamics and Differential Equations 5 (1993) , 359-373.
    
    
    [42] P. Hartman, Ordinary Differential Equations. Wiley, New York, 1973
    [43] M. A. Herrero, Thermal waves in absorbing media, J. Differential equations 74(1988); 218-233.
    [44] Y. Hosono, Traveling wave solutions for some density dependent diffusion equations, Japan J. Appl.Math.,3(1986), 163-196.
    [45] Y. Hosono, Traveling waves for some biological systems with density dependent diffusion, Japan J. Appl. Math., 4(1987), 297-359
    [46] Y. Hosono and B. Ilyas, Existence of traveling waves with any positive speed for a diffusive epidemic model, Nonlin. World 1(1994), 277-290.
    [47] Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Mathematical Models and Methods in Applied Sciences, 7(1995), 935-966.
    [48] 黄建华,一类反应扩散方程组的整体吸引子,数学季刊,1(2001),33-37
    [49] J. H. Huang and G. Lu, Global attractor of a spatially discretized reaction diffusion equations with Hamiltonian structure, Ann. Diff. Eqs, 14, 2(1998), 185-195.
    [50] 黄建华、路钢,具有空间哈密顿结构的反应扩散方程组的离散整体吸引子,数学研究与评论,2(2000),213-214.
    [51] 黄建华、路钢,空间离散FitzHugh-Nagumo方程和双稳反应扩散方程组的渐近行为,应用数学,13,4(2000),40-45.
    [52] 黄建华,路钢,离散FitzHugh-Nagumo方程的整体吸引子和维数,数学物理学报,21,3(2001),296-302.
    [53] 黄建华、路钢,时空离散FitzHugh-Nagumo方程解的渐近行为,数学杂志,4(2002)
    [54] J. H. Huang, G. Lu and S. G. Ruan, Existence of Traveling Wave Solutions for a Diffusive predator-prey Model, Submitted to J. Math. Biol..
    [55] J.H. Huang, G. Lu and S. G. Ruan, Traveling wave solutions in systems of delayed lattice differential equations with partial decoupling, Submitted.
    [56] J. H. Huang, G. Lu and J. Wu, Traveling wave solution of delayed reaction diffusion systems with some zero-diffusive coefficients, Preprint.
    [57] J. H. Huang, G. Lu and X. Zou, Traveling wave solution in systems of delayed lattice differential equations, Preprint.
    [58] J. H. Huang, L. Wang and X. Zou, Existence of traveling wave solutions of delayed reaction diffusion systems with partial decoupling, Submitted.
    [59] J. H. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays,J. Math. Anal. Appl., (Accepted).
    [60] J. H. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion system without monotonicity, Discrete and Continuous Dynamical Systems, (Accepted).
    [61] J. H. Huang and X. Zou, Existence of traveling wavefronts of delayed lattice differential eqautions, Submitted.
    [62] C. H. Hsu, S. S. Lin and W. X. Shen, Traveling waves in cellular neural networks, International Journal of Bifurcation and chaos, 9, 7(1999), 1307-1319.
    [63] C.-H. Hsu and S. S.Lin, Existence and multiplicity of traveling wave in a lattice dynamical system, J. of differential equations 164 (2000), 431-450.
    [64] M. R. Jiang and B. L. Guo, Attractors for discretization of Ginzburg-Landau-BBM equations. J. Comput. Math. 19 (2001), no. 2, 195-204.
    
    
    [65] A. Kallen, P. Arcuri,and J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol. 116 (1985) , 377-393.
    [66] A. Kolmogorov, I. Petrovskii, and N. S. Piskunov, Etude de 1'equation de le diffusion avec croissance de la quantite de mateere et son application a un probleme biologique, Moscow Univ. Bull. 1(1937) , 1-25.
    [67] J. P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math. 47 (1987) , 556-572.
    [68] Y. Kuang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, Boston, 1993.
    [69] K. Q. Lan and J. Wu, Traveling wavefronts of reaction diffusion equations without delays or Multiple delays, Preprint.
    [70] 李开泰、吴建华,耦合FitzHugh-Nagumo组的初边值问题,数学年刊A辑,21(2) ,2000,207-216.
    [71] Y. Li and D. W. McLaughlin, Homoclinic orbits and chaos in discretized pertured NSL system: Part I. Homoclinic orbits, J. Nonlinear Sci. 7(1997) , 211-269.
    [72] Y. Li and S. Wiggins, Homoclinic orbits and chaos in discretized pertured NSL system: Part Ⅱ. Symbolic dynamics, J. Nonlinear Sci.7(1997) , 315-370.
    [73] S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations 171(2001) , 294-314.
    [74] J. Mallet-Paret, Spatial patterns, spatial chaos, and traveling waves in lattice differential equations, in "Stochastic and Spatial Structures of Dynamical Systems", eds. S. J. van Strien and S. M. Verduyn Lunel, North-Holland, Amsterdam, 1996, pp. 105-129.
    [75] J. Mallet-Paret, The Predholm alternative for functional-differential equations of mixed type, J. Dynam. Differential Equations 11 (1999) , 1-47.
    [76] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations 11 (1999) , 49-127.
    [77] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1974.
    [78] K. Mischaikow and V. Hutson, Traveling waves for mutualist species, SIAM, J. Math. Anal. 24(1993) , 987-1008.
    [79] J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.
    [80] V. I. Nekorkin, V. B. Kazantsev, S. Morfu, J. M. Bilbault, and P. Marquie, Theoretical and experimental study of two discrete coupled Nagumo chains, Phys. Rev. E 64 (2001) , 036602.
    [81] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press, 1992.
    [82] D. J. Pinto and G. Bard Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I Traveling Fronts and Puleses, SIAM J. Appl. Math., 62(2001) , No.l, 206-225.
    [83] M. Qian, W. X. Qin, S. Zhu, one dimensional global attractor for discretization of the damped drive Sine-Gordon equation, Nonlinear Analysis, 34(1998) , 941-951.
    [84] M. Qian, W.-X. Qin, G. X. Wang and S. Zhu, Unbounded one-dimensional global attractor for the damped sine-Gordon equation. J. Nonlinear Sci.,10(4) , 2000, 417-432.
    [85] 钱敏、秦文新,耦合sine-Gordon方程的渐进行为,数学年刊A辑,20,1(1999) ,101-108;
    [86] W. X. Qin, Unbounded attractors for maps. Nonlinear Anal. (TMA) 36, 1(1999) , 63-70.
    [87] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge Univ. Press, 1991.
    [88] S. G. Ruan, Turing instability and traveling waves in diffusive plankton models with delayed nutrient
    
    recycling, IMA J. Appl. Math., 61, 1 (1998),.15-32
    [89] K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc. 302 (1987), 587-615.
    [90] F. E. Smith, Population dynamics in Dalphnia Magna, Ecology 44 (1963), 651-663.
    [91] H. L. Smith and H. R. Thieme, Monotone semofiow in scalar non-quasimonotone functional differ-ential equations, J. Math. Anal. Appl., 150(1990), 289-306.
    [92] H. L. Smith and H. R. Thieme, Strongly order preserving semifiows generated by functional differ-ential equations, J. Differential Equations, 93(1991), 332-363.
    [93] H. L. Smith and X.Q. Zhao, Global asymptotic stability of traveling waves in delayed reaction diffusion equations, SIAM J. Math. Anal., 31, 3(2000), 514-534.
    [94] J. W.-H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structure-I. Traveling wave fronts on unbounded domains, Proc. Royal Soc. London, Set. A, 457(2001),1841-1853.
    [95] J. W.-H. So and X. Zou, Traveling waves for the diffusive Nicholson's blowflies equation, Appl.Math. Compt. 122 (2001), 385-392.
    [96] M. M. Tang and P. C. Fife, Propagation fronts in competing species equations with diffusion, Arch. Ration. Mech. Anal. 73 (1978), 69-77.
    [97] 汤燕斌,竞争扩散系统行波解的存在性和稳定性,华中理工大学博士学位论文,1996.
    [98] R. Teman, Infinite Dimensional Dynamical Systems in Mechanics and Physics, New York, Springer-verlag, 1988.
    [99] J. H. van Vuuren, The existence of traveling plane waves in a general class of competition-diffusion systems, IMA J Appl. Math. 55 (1995), 135-148.
    [100] A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems, Translations of mathematical monographs Vol. 140, Amer. math. Soc., Providence, 1994.
    [101] 王明新,抛物型方程的初边值问题,科学出版社,北京,1993.
    [102] G. X. Wang and S. Zhu, Dimension of the global attractor for the discretized damped Sine-Gordon equation, Appl. Math. Comput. 117 (2001), 257-265.
    [103] P. X. Weng, J. Wu and H.X. Huang, Traveling waves and asymptotic speed of propagation for a lattice models with age-structure and interaction, Preprint.
    [104] P. X. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural networks, to appear in Inter. J. Bifurcation and Chaos.
    [105] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.
    [106] J. Wu and X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice functional differential equations, J. Differential. Equations, 135(2), 1997. 315-357.
    [107] J. Wu and X. Zou, Traveling wave fronts of reaction diffusion systems with delay, J Dynam. Diff. Eqns., 13(3), 2001. 651-687.
    [108] 吴建华,耦合Fitzhugh-Nagumo方程的整体吸引子及维数估计,西安交通大学学报,32(2),1998,74-77.
    [109] Y. P. Wu, Traveling waves for a class of cross-diffusion systems with small parameters, J. Dif-ferentail equations 123(1995), 1-34.
    
    
    [110] Y. P. Wu, Stability of traveling waves for a cross-diffusion model, J. Math. Anal Appl. 215 (1997) , No. 2, 388-414.
    [111] E. Zeidler, Nonlinear Functional Analysis and its Applications, I, Fixed-point Theorems, Springer-Verlag, New York, New York, 1986.
    [112] X. Q. Zhao and W. D. Wang, Fisher wave for an epidemic model, Preprint, (2001) .
    [113] B. Zinner, Stability of traveling wave fronts for the discrete Nagumo equation. SIAM J.Math. Anal. 22(1991) , 1016-1020.
    [114] B. Zinner, Existence of traveling wave front solutions for the discrete Nagumo equation, J. Differential equations 96 (1992) , 1-27.
    [115] B. Zinner, G. Harris and W. Hudson, traveling wave fronts for the discrete Fisher's equation, J. Differential Equations 105 (1993) , 46-62.
    [116] X. Zou, Traveling wave fronts in spatially discrete reaction-diffusion equations on higher-dimensional lattices, in Proceedings of the Third Mississippi State Conference on Differential Equations and Computational Simulations, pp. 211-221 (electronic), Electron. J. Differ. Eqn. Conf. 1 (1998) .
    [117] X. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, (Preprint)
    [118] X. Zou and J. Wu, Existence of traveling wavefronts in delayed reaction-diffusion system via monotone iteration method, Proc. Amer. Math. Soc. 125(1997) , 2589-2598.
    [119] X. Zou and J. Wu, Local existence and stability of periodic traveling waves of lattice functional-differential equations, Canad. Appl. Math. Quart. 6 (1998) , 397-418.
    [120] 叶其孝、李正元,反应扩散方程引论,科学出版社,北京,1985.
    [121] Y. Yan, Attractors and dimensions for discretizations of a weakly damped Schrodinger equation and Sine-Gordon equations, Nonlinear Analysis, 20, 12(1993) , 1417-1452.
    [122] Y. Yan, Attractors and error estimates for discretizations of incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 33(4) , 1996. 1451-1472.
    [123] Y. Yan, Dimensions of attractors for discretizations for Navier-Stokes equations. J. Dynam. Differential Equations, 4(2) 1992. 275-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700