民机复合材料增压舱段结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料在机身中的应用已成为新一代大型客机的设计发展趋势。本文基于CCAR25部等文件要求,参考NASA等机构的复合材料机身结构设计研究经验,开展了复合材料机身后段结构的综合设计分析工作,并对其中的典型结构细节进行了研究。本文的主要内容包括:
     (1)在国内首次完成了复合材料机身增压舱段的结构设计,设计过程中除满足适航条例要求外,还考虑了结构的工艺性因素。最终设计方案比金属方案减重约18.5%,可视面积增大了约10.5%。
     (2)发展了适用于复合材料机身结构的机械连接设计数值分析方法,包括整体-局部单钉模型和整体-局部结构模型分析方法。前者适用于构型及载荷复杂的连接结构,并可用于拉脱载荷失效分析与强度校核;后者可用于精细分析结构规整且载荷形式较为单一连接设计。
     (3)提出了复合材料机身结构中主要机械连接区域的构型方案,包括机身壁板的环向以及纵向连接等构型方案,并采用本文发展的多钉连接数值分析方法对上述构型方案进行了细节设计分析。
     (4)研究了复合材料加筋壁板中长桁关键结构细节及离散源损伤容限等问题。通过长桁终止端处采用缩短胶接界面长度的新型混合连接设计的机理研究及参数化分析,指出了该构型在拉伸载荷下提高起裂载荷的设计规律。通过压差载荷下帽型长桁缘条/蒙皮界面破坏的研究,发现内侧圆角处填充物与自由边处的树脂填充对界面初始破坏模式有明显影响;长桁截面参数对界面性能的影响很小。研究了机身壁板离散源损伤问题,分析了缘条/蒙皮间界面性能对蒙皮裂纹扩展和承载能力的影响。
     (5)建立了基于MPCM方法的常见复合材料工艺工时估算的修正模型,并编制了成本评估系统;通过对构件制造成本中的复杂性因素进行分析,研究了制造经济性对复合材料结构设计的影响规律,探讨了复合材料机身元构件工艺及布局方案选择的经济性原因;结合维修成本估算方法—Liebeck模型,对机身后段的两种设计方案进行了成本评估。
     (6)通过复合材料机身后段综合设计分析,发现了以下设计规律:机身壁板分缝除工艺条件及成本因素限制外,还应考虑载荷分布的影响;机身壁板的稳定性要求是结构尺寸设计的主要驱动因素;机械连接是结构静强度设计中的关键点;对于窄体客机的机身段应用复合材料时,并不一定具有成本优势;但若在同等舒适性条件下,长寿命(如9万飞行小时)的客机机身应用复合材料时将更具成本优势。
     (7)参考咨询通报AC20-107B等资料,规划了复合材料机身结构积木式验证试验,设计并参与完成了顶部壁板轴向拉伸试验,试验结果验证了本文的设计分析方法。
The application of composite materials in the fuselage has been the tendency for new generationlarge commercial aircraft. Based on CCAR25and other documentations, the integrated design andanalysis of composite fuselage aft section was carried out, and the design experience of researchinstitutions about composite fuselage structures was also referenced in this process,such as NASA.The typical detail structures in the fuselage were also studied. The main features for this paper werestated as follows:
     (1) Structure design of the composite pressurized fuselage section was completed firstly in China.The requirements of airworthiness regulations were met, and the manufacturability factor was alsoconsidered in the design process. The weight reduction of the final concept was18.5%, and the visiblearea was increased by10.5%compared with the metal concept.
     (2) The numerical analysis methods were developed for the mechanical joints of the compositefuselage structures, including global-local single fastener model and global-local structure model. Thefirst method was applicable to the joints with complex configurations and loads, and could be used forjoints failure analysis with pull off load. The second method could be used for precise analysis of thejoints with regular structures and a single load.
     (3) The configuration schemes of the mechanical joint structures were proposed, includinglongitudinal and transverse splices in the composite fuselage, and the detail structures in theseschemes were analyzed by the multiple-bolted joints analysis methods developed in this paper.
     (4) The key structural details of the stringers and discrete source damage in the composite panelswere studied. The design rules of the novel combined joint design principle at stringer run-outs withreducing bond-line configurations under tensile load, were developed by mechanism and parametricanalysis. The failure analysis of the hat stringer flange/skin interface under the pressure load showedthat the failure models and debond load were relative to the filler in the inner corner and free flangeedge, and the parameters of the stringer cross section had little impact on the interface property. Theimpact of the flange/skin interface on load capacity and crack extension of the skin was studied by thediscrete source damage evolution analysis.
     (5) Based on MPCM, the time estimation models of the common composite materials processwere amended, and the cost estimation software was developed. The law of influence of manufacturing economy on composite structure design was studied by the complexity factors analysison the manufactory cost, and the economic reasons for selecting process and configuration of thecomposite fuselage structures were investigated. The cost of two design concepts on fuselage sectionwas evaluated with Liebeck model for maintenance cost estimation.
     (6) The design rules were discovered by the integrated design and analysis of the compositefuselage section, including that: the arc lengths of individual fuselage quadrants were limited not onlyby the processing capability and cost factors, but also by the load distribution of the section; thestability requirement was the primary design driver which determined the size of panels; themechanical joint was the key issue in the static strength design; the application of composite materialsin fuselage structures of narrow body aircraft did not necessarily have a cost advantage comparedwith metal materials; if the aircraft had a longer flight hours life(e.g.90000hrs,), the cost advantage ofcomposite materials used in the fuselage will be greater with the same comfort condition than metalmaterials.
     (7) The building block tests plane of the composite fuselage structures was drawn up referencingthe document AC20-107B and so on. The crown panel test under the axial load has been designedand completed. and the analysis methods used in the crown panel design process were verified by thetest result.
引文
[1] Randy T. China magic[EB/OL].[2006-11-09]. http://www.boeing.com/randy/archives/2006/11/china_magic.html.
    [2] Airbus company. More than3,000aircraft needed on the Chinese mainland in next20years[EB/OL].[2007-02-14]. http://www.airbus.com/newsevents/news-events-single/detail/more-than-3000-aircraft-needed-on-the-chinese-mainland-in-next-20-years/.
    [3]孙侠生,胡红东.国外民用飞机结构强度技术的发展思路研究[J].航空科学技术,2004,6:23-26.
    [4] Johnson R W, Thomson L W, Wilson R D. Study on utilization of advanced composites in fuselagestructures of large transports. NASA-CR-172406[R].1985.
    [5]沈真.复合材料飞机结构强度设计与验证概论[M].上海:上海交通大学出版社,2011.
    [6]波音公司.波音787飞机客舱特色[EB/OL].[2011-09-27]. http://58.83.135.182:85/productandservice/787/787passengercabin.html.
    [7]吉桂兴. ARJ21复合材料方向舵设计[D].南京航空航天大学,2004.
    [8]吕彬彬. T型尾翼跨声速复合材料颤振模型设计研究[D].南京航空航天大学,2010.
    [9]梁滨.航空级树脂基复合材料的低成本制造技术[J].材料导报,2009,7(23):77-80.
    [10]肖军,李勇,文立伟,等.树脂基复合材料自动铺放技术进展[J].中国材料进展,2009,28(6):28-32.
    [11] Mark D B. The "Apollo" of aeronautics: NASA's Aircraft Energy Efficiency Program,1973-1987[M]. Washington, DC: National Aeronautics and Space Administration,2010.
    [12] Griffin C F, Dunning E G. Development of an advanced composite aileron for the L-1011transportaircraft. NASA-CR-3517[R].1982.
    [13] Chovil D V, Harvey S T, Mccarty J E, et al. Advanced composite elevator for Boeing727aircraft.Volume1-Technical summary. NASA-CR-3290[R],1982.
    [14] Lehman G M, Purdy D M, Cominsky A, et al. Advanced composite rudders for DC-10aircraftdesign, manufacturing, and ground tests. NASA-CR-145068[R].1976.
    [15] Jackson A C. Advanced composite vertical fin for L-1011aircraft-design, manufacture, and test(Executive Summary). NASA-CR-3816[R].1984.
    [16] Aniversario R B, Harvey S T, Mccarty J E, et al. Design, ancillary testing, analysis and fabricationdata for the advanced composite stabilizer for Boeing737aircraft. Volume1-Technical summary.NASA-CR-3648[R],1983.
    [17] Stephens C O. Advanced composite vertical stabilizer for DC-10transport aircraft. NASA-CR-172780[R],1979.
    [18] John G, Davis Jr. Overview of the ACT program. N95-28463[R].1995.
    [19] Baron W, Leger K. Composites affordability initiative-Phase I: Concept design maturation.AIAA-1998-1874[R].1998.
    [20] Butler B. Composites affordability initiative. AIAA-2000-1379[R].2000.
    [21] Russell D J. Composites affordability initiative [J]. Advanced materials&processes,2007,165(6):29-32.
    [22] European commission. Technology application to the near term business goals and objectives ofthe aerospace industry (TANGO)[DB/OL].[2001-01-31]. http://ec.europa.eu/research/growth/aeronautics-days/pdf/posters/tango3.pdf
    [23] Vincendon M. TANGO: Low cost light weight structure [J]. Air&Space Europe,2001,3(3):122-125.
    [24] Fiedler L, Barre S, Molina I, et al. TANGO composite fuselage platform[J]. SAMPE Journal,2003,39(1):581-590.
    [25] European commission. Advanced Low-Cost Aircraft Structures (ALCAS)[DB/OL].[2012-02-20].http://ec.europa.eu/research/transport/projects/items/alcast_en.htm.
    [26] Martin D G. Advanced Low Cost Aircraft Structures [DB/OL].(2011-03-30).[2011-05-05].http://www.cdti.es/recursos/doc/eventosCDTI/Aerodays2011/5D5.pdf
    [27] Brooks W A Jr, Dow M B. Service evaluation of aircraft composite structural components.NASA-TM-X-71944[R].1973.
    [28] Dexter H B. Long-term environmental effects and flight service evaluation of composite materials.NASA-TM-89067[R].1987.
    [29] Dexter H B. Flight service environmental effects on composite materials and structures [J].Advanced Performance Materials,1994,1(1):51-85.
    [30] Coggeshall R L. Boeing NASA composite components flight service evaluation. NASA-CR-181898[R].1989.
    [31]陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):605-610.
    [32] Grimshaw M N, Grant C G, Diza J M L. Advanced technology tape laying for affordablemanufacturing of large composite structures[C]//46th International SAMPE Symposium. Longbeach, CA.2001:2484-2494.
    [33] Anderson, R L, Grant, C G. Advanced fiber placement of composite fuselage structures.N93-30864[R].1993.
    [34] Markus A, Thrash P, Rohwer K. Progress in manufacturing large primary aircraft structures usingthe stitching/RTM process. N95-29050[R].1995.
    [35] Wippich-Dienhart R, Bitzes M, Tyahla T. Design and test of full-scale VARTM integrally stiffenedCAI cockpit tub. AIAA-2004-1625.2004.
    [36] Loos A C, MacRae J D. Resin film infusion (RFI) process simulation of complex wing structures.Proceedings of the Fifth NASA/DoD advanced composites technology conference,NASA-CP-3294[R].1994,1(2):811-833.
    [37] Gutowski T G. Advanced composite manufacturing [M]. New York: John Wiley&Sons Inc.,1997.
    [38] Mabson G E, Ilcewicz L B, Graesser D L, et al. Cost optimization software for transport aircraftdesign evaluation (COSTADE)-Overview. NASA-CR-4736[R],1996.
    [39] Galorath company. Case study: Implementing a process and estimation tool to ensure engineers areprepared[EB/OL].[2006]. http://www.galorath.com/index.php/library/abstract/northrop-grumman-integrated-systems.
    [40] Dow M B. The ACEE program and basic composites research at Langley Research Center (1975to1986)-Summary and bibliography. NASA-RP-1177[R].1987.
    [41] Johnson RW. Pressure containment and damage tolerance in fuselage structure [A]. Boeingcommercial airplane company. ACEE composite structures technology [C]. NASA-CR-172358.1984.
    [42] Smith P J, Thomson L W, Wilson R D. Development of pressure containment and damagetolerance technology for composite fuselage structures in large transport Aircraft.NASA-CR-3996[R].1986.
    [43] Watts D J. Joints and cutouts in fuselage structures[C]. Douglas aircraft company. ACEEcomposite structures technology [A]. NASA-CR-172359.1984.
    [44] Watts D J, Sumida P T, Bunin B L, et al. A study of the utilization of advanced composites infuselage structures of commercial aircraft. NASA-CR-172405[R].1985.
    [45] Black J B, Fox B R, Linton K A. Development of composites technology for joints and cutouts infuselage structure of large transport aircraft. NASA-CR-190175[R].1985.
    [46] Jackson A C. Impact dynamics and acoustic transmission in fuselage structures [A]. Lockheedcompany. ACEE composite structures technology [C]. NASA-CR-172360.1984.
    [47] Jackson A C, Balena F J, LaBarge W L, et al. Transport composite fuselage technology-Impactdynamics and acoustic transmission. NASA-CR-4035[R].1986.
    [48] Jackson A C, Campion M C, Pei G. Study of utilization of advanced composites in fuselagestructures of large transports. NASA-CR-l72404[R].1984.
    [49] Ilcewicz L B, Smith P J, Hanson C T, et al. Advanced technology composite fuselage-Programoverview. NASA-CR-4734[R].1997.
    [50] Chen V, Hawley A, Klotzsche M, et al. Composites technology for transport primary structure.N93-30431[R].1991.
    [51] Jackson A C, Barrie R E, Chu R L. Textile composite fuselage structures development.N95-29033[R].1993.
    [52] Willden K, Metschan S, Grant C, et al. Composite fuselage crown panel manufacturing technology.N95-28474[R].1992.
    [53] Polland D R, Finn S R, Griess K H, et al. Global cost and weight evaluation of fuselage side paneldesign concepts. NASA-CR-4730[R].1997.
    [54] Flynn B W, Morris M R, Metschan S L, et al. Global cost and weight evaluation of fuselage keeldesign concepts. N95-28840[R].1993.
    [55] Ilcewicz L B, Walker T H, Willden K S, et al. Application of a Design-Build-Team approach tolow cost and weight composite fuselage structure. NASA-CR-4418[R].1991.
    [56] Walker T H, Minguet P J, Flynn B W, et al. Advanced technology composite fuselage-Structuralperformance. NASA-CR-4732[R].1997.
    [57] Flynn B W, Bodine J B, Dopker B, et al. Advanced technology composite fuselage-Repair anddamage assessment supporting maintenance. NASA-CR-4733[R].1997.
    [58]中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001.
    [59]孙聪,王向明.飞机结构典型故障分析与设计改进[M].北京:航空工业出版社,2007.
    [60]张震.一种分析复合材料多螺栓连接件受力的数值解析方法[D].西安:西北工业大学,2007.
    [61] Rutman A, Viisoreanu A, Parady Jr J. A. Fasteners modeling for MSC.Nastran finite elementanalysis. AIAA-2000-5585[R].2000.
    [62] Ekh J, Schon J. Finite element modeling and optimization of load transfer in multi-fastener jointsusing structural elements [J]. Composite Structures,2008,82(2):245–256.
    [63] Friberg M. Fastener load distribution and interlaminar stresses in composite laminates [D].Stockholm: Royal Institute of Technology,2000.
    [64] Gray P J, McCarthy C T. A highly efficient user-defined finite element for load distributionanalysis of large-scale bolted composite structures [J]. Composites Science and Technology,2011,71(12):1517–1527.
    [65] Zhao M Y, Yang L, Wan X P. Load distribution in composite multifastener joints [J]. Computers&Structures,1995,60(2):337-342.
    [66]宋恩鹏,刘文珽,谢鸣九等.刚度比对复合材料多钉连接钉载分配影响研究[J].飞机设计.2005,12(4):29-32.
    [67] McCarthy M A, McCarthy C T, Padhi G S. A simple method for determining the effects ofbolt-hole clearance on load distribution in single column multi-bolt composite joints [J].Composite Structures,2006,73(1):78-57.
    [68] Ekh J, Schon J. Load transfer in multirow, single shear, composite-to-aluminum lap joints [J].Composites Science and Technology,2006,66(7-8):875–885.
    [69] Hart-Smith L J. Bolted joints in graphite composite. NASA-TR-144899[R].1976.
    [70] Zhang K, Ueng C E S. Stress around a pin-loaded hole in orthotropic plates with arbitrary loadingdirection [J]. Composite Structures,1985,3(2):119-143.
    [71] Randy D, Ricardo L. Hierachic modeling of fastened structural connections [C]//Proceedings ofInternational Conference on Structural Integrity and Failure SIF2006. Sydney, Australia,2006.
    [72] Gray P J, McCarthy C T. A global bolted joint model for finite element analysis of loaddistributions in multi-bolt composite joints [J]. Composites Part B,2010,41(4):317-325.
    [73] Labeas G N, Belesis S D, Diamantakos I, et al. Adaptative progressive damage modeling forlarge-scale composite structures [J]. International Journal of Damage Mechanics,2012,21(3):441-462.
    [74]陈向明,柴亚南,沈真.自定义粘接元接触技术在复合材料连接强度分析中的应用[J].复合材料学报,2011,28(6):230-236.
    [75] Yamada S E, Sun C T. Analysis of laminate strength and its distribution [J]. Journal of CompositeMaterials,1978,12(3):275-284.
    [76] Whitney J M, Nuismer R J. Stress fracture criteria for laminated composites containing stressconcentration [J]. Journal of Composite Materials,1974,8(3):253-265.
    [77] Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics,1980,47(2):329-335.
    [78] Pinho S T, Davila C G, Camanho P P, et al. Failure models and criteria for FRP under in-plane orthree-dimensional stress states including shear non-linearity. NASA-TM-213530[R].2005.
    [79] Shokrieh M M, Lessard L B. Progressive Fatigue Damage Modeling of Composite Materials, PartI: Modeling [J]. Journal of Composite Materials,2000,34(13):1056-1080.
    [80] Chang F K, Chang K Y. A progressive damage model for laminated composites containing stressconcentrations [J]. Journal of Composite Materials,1987,21(9):834-855.
    [81] Tan S C. A progressive failure model for composite laminates containing openings [J]. Journal ofComposite Materials,1991,25(5):556-577.
    [82] Rosales-Iriarte F, Fellows N A, Durodola J F. Failure prediction in carbon composites subjected tobearing versus bypass loading [J]. Journal of Composite Materials,2012,46(15):1859-1878.
    [83] Maimi P, Camanho P P, Mayugo J A, et al. A continuum damage model for composite laminates:Part I-Constitutive model [J]. Mechanics of Materials,2007,39(10):897-908.
    [84] Lapczyk I, Hurtado J A. Progressive damage modeling in fiber-reinforced materials [J].Composites Part A,2007,38(11):2333-2341.
    [85] Van Der Meer F P, Sluys L J. Continuum models for the analysis of progressive failure incomposite laminates [J]. Journal of Composite Materials,2009,43(20):2131-2156.
    [86]中国民用航空局. CCA-25-R4,运输类飞机适航标准[S].2011.
    [87] Smith P J, Bodine J B, Preuss C H, et al. Design, analysis, and fabrication of a pressure box testfixture for tension damage tolerance testing of curved fuselage panels. N95-28840[R],1995.
    [88] FAA. AC20-107B, Composite aircraft structure [S].2009.
    [89] Poe C C. Tensile strength of composite sheet with unidirectional stringers and crack-like damage[A]. ACEE composite structure technology-Review of selected NASA research on compositematerial and structures, NASA-CP-2321[C],1984.
    [90] Graesser D L, Tuttle M E. Damage tolerance design of composite structures. AIAA-CP-1497[R].1994.
    [91] Dopker B, Murphy D P, Ilcewicz L, et al. Damage tolerance analysis of composite transportfuselage structure. AIAA-CP-1406[R].1994.
    [92] Coats T W. A progressive damage methodology for residual strength predictions of center-cracktension composite panels. NASA-CR-201590[R].1996.
    [93] Sleight D W, Knight N F Jr, Wang J T. Evaluation of a progressive failure analysis methodologyfor laminated composite structures. AIAA-1997-1187[R].1997.
    [94] Wang J T, Lotts C G, Sleight D W. Analysis of discrete source damage progression in a tensionstiffened composite panel. AIAA-99-1336[R].1999.
    [95]矫桂琼,杜凯,杨成鹏,等.含离散源损伤复合材料加筋板的压缩特性[J].航空学报,2007,28(6):1383-1388.
    [96] Lia L, Jia P R, Jiao G Q. A computational investigation of the stiffened composite panel withdiscrete-source damage [J]. Procedia Engineering,2012,31:528-533.
    [97] Falzon B G, Davies G A O. The behavior of compressively loaded stiffener runout specimens–Part I: Experiments [J]. Journal of Composite Materials,2003,37(5):381-400.
    [98] Cosentino E, Weaver P M. Approximate non-linear analysis method for debonding ofskin/stringer composite assemblies [J]. AIAA Journal,2008,46(5):1144-1159.
    [99] Cosentino E, Weaver P M. A non-linear analytical approach for preliminary sizing of discretecomposite stringer terminations [J]. AIAA Journal,2009,47(3):606-617.
    [100]周凯华,陈普会,柴亚南.复合材料加筋板长桁终止端失效机制[J].复合材料学报,2012,29(6):212-218.
    [101] Falzon B G, Davies G A O, Greenhalgh E. Failure of thick-skinned stiffener runout sectionsloaded in uniaxial compression[J]. Composite Structures,2001,53(2):223-233.
    [102] Falzon B G, Hitchings D. The behavior of compressively loaded stiffener runout specimens—Part II: Finite element analysis [J]. Journal of Composite Materials,2003,37(6):481–501.
    [103] Faggiani A, Falzon B G. Numerical analysis of stiffener runout sections [J]. Applied CompositeMaterials,2007,14(2):145–158.
    [104] Ambur D R, Starnes J H Jr, Davila C G, et al. Response of composite panels with stiffnessgradients due to stiffener terminations and cutouts. AIAA-97-1368[R],1997.
    [105] Jegley D C. Parametric study of the behavior of graphite/epoxy panels with stiffener terminations[J]. Journal of Aircraft,1999,36(6):1048-1054.
    [106] Greenhalgh E, Garcia M H. Fracture mechanics and failure processes at stiffener run-outs inpolymer matrix composite stiffened elements [J]. Composites Part A,2004,35(12):1447–1458.
    [107] Cosentino E, Weaver P. Prebuckling and buckling of asymmetrically laminated composite panelswith stringer run-outs [J]. AIAA Journal,2009,47(10):2284-2297.
    [108] Hart-Smith L J. Design methodology for bonded-bolted composite joints. AFWAL-TR-3154[R],Douglas Aircraft Company,1982.
    [109] Imperiale V A, Cosentino E, Weaver P M, et al. Compound joint: a novel design principle toimprove strain allowables of FRP composite stringer run-outs [J]. Composites Part A,2010,41(4):521-531.
    [110] Theotokoglou E E, Moan T. Experimental and numerical study of composite T-Joints [J]. Journalof Composite Materials,1996,30(2):190-209.
    [111] Apalak M K, Gunes R, Turaman M O, et al. Thermal and geometrically non-linear stressanalyses of an adhesively bonded composite tee joint [J]. Composites Part A,2003,34(2):135-150.
    [112] Vijayaraju K, Mangalgiri P D, Dattaguru B. Experimental study of failure and failure progressionin T-stiffened skins [J]. Composite Structures,2004,64(2):227-234.
    [113]赵丽滨,彭雷,张建宇,等.复合材料π接头拉伸力学性能的实验和计算研究[J].复合材料学报,2009,26(2):181-186.
    [114]朱亮,崔浩,李玉龙,等.含缺陷复合材料T型接头失效数值分析[J].航空学报,2012,33(2):287-296.
    [115] Jackson A C, Barrio R E, Shah B M, et al. Advanced textile applications for primary for aircraftstructure. N94-33135[R],1994.
    [116] Bertolini J, Castanié B, Barrau J J, et al. An experimental and numerical study on omega stringerdebonding [J]. Composite Structures,2008,86(1-3):233-242.
    [117]孙晶晶,张晓晶,宫占峰等.复合材料帽型筋条脱粘的失效机理分析[J].航空学报,2013,34(7):1616-1626.
    [118]苏淼.飞机设计手册,第22册技术经济设计[M].北京:航空工业出版社,2001.
    [119] Niazi A, Dai J S, Balabani S, et al. Product cost estimation: Technique classication andmethodology review[J]. Journal of Manufacturing Science and Engineering, Transactions of theASME,2006,128(2):563-575.
    [120] Berrnet N, Wakeman, M D, Bourban P E, et al. An integrated cost and consolidation model forcommingled yarn based composites. Composites Part A,2002,33(4):495~506.
    [121] Rohani M, Dean E B. Toward manufacturing and cost considerations in multidisciplinary aircraftdesign [C]//37thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference. Salt Lake City:[s. n.],1996:453-468.
    [122] Zaloom V, Miller C. A review of cost estimating for advanced composite materials applications[J]. Engineering Costs and Production Economics,1982,7(1):81-86.
    [123] Meyer P L. Estimating aircraft airframe tooling cost: An alternative to DAPCA III.AFIT/GCA/LSQ/88S-6[R],1988.
    [124] PRICE Corp. PRICE H fundamentals course material [M]. New Jersey: Price Systems L.L.C,2004:7-36.
    [125] NASA. Parametric cost estimating handbook. http://www.jsc.nasa.gov/bu2/pcehg.html.
    [126] Gutowski T G, Houl T D, Dillon G, et al. Development of a theoretical cost model for advancedcomposite fabrication[J]. Composites Manufacturing,1994,5(4):231-239.
    [127] Leblanc D J, Kokawa A, Bettner T, et al. Advanced composite cost estimating manual. Volume I.AFFDL-TR-76-87-VOL-1[R], California: Northrop Corporation,1976.
    [128] Leblanc D J, Kokawa A, Bettner T, et al. Advanced composite cost estimating manual. Volume II.AFFDL-TR-76-87-VOL-2[R], California: Northrop Corporation,1976.
    [129] Ramkumar R L, Dewhurst P, Saha S K. Manufacturing cost model for composites [A]//Proceeding of the23rdInternational SAMPE Technical Conference [C].1991:982-994.
    [130] Tse M. Design cost model for advanced composite structures [D]. Massachusetts Institute ofTechnology,1992.
    [131] Kim C E. Composites cost modeling: Complexity [D]. Massachusetts Institute of Technology,1993.
    [132] Polgar K C. Simplified time estimation for basic machining operations [D]. MassachusettsInstitute of Technology,1994.
    [133] Neor E T. Adaptive framework for estimating fabrication time [D]. Massachusetts Institute ofTechnology,1995.
    [134] Ilcewicz L B, Mabson G E, S. L. Metschan, et al. Cost optimization software for transportaircraft design evaluation (COSTADE)-Cost design methods. NASA-CR-4737[R],1996.
    [135] Land I B. Design and manufacture of advanced composite aircraft structures using automatedtow placement [D]. Massachusetts Institute of Technology,1996.
    [136]Tuttle M E, Zabinsky Z B. Methodologies for optimal design of composite fuselage crown panels.AIAA-CP-94-1493[R],1994.
    [137] Pas J W. WEB based cost estimation models for the manufacturing of advanced composites [D].Massachusetts Institute of Technology,2001.
    [138] Haffner S M. Cost modeling and design for manufacturing guidelines for advanced compositefabrication [D]. Massachusetts Institute of Technology,2002.
    [139]刘玲,张博明,王殿富,等.热压釜成型工艺工时估算的理论模型[J].复合材料学报,2004,21(3):146-150.
    [140]叶金蕊,张博明.热压釜成型复合材料波纹梁工艺工时估算[J].复合材料学报,2009,26(1):65-73.
    [141]叶强,陈普会,柴亚楠.复合材料结构制造成本分析模型及其应用[D].南京航空航天大学,2008.
    [142] Godwin E W, Matthews F L. A review of the strength of joints in fiber-reinforced plastics: Part1.Mechanically fastened joints [J]. Composites,1980,11(3):155-160.
    [143]中国航空研究院.复合材料连接手册[M].北京:航空工业出版社,1994.
    [144] Hibbit, Karlsson and Sorensen Inc. ABAQUS/Standard User’s Manual, version6.10[M]. USA,Rhode Island: Hibbit, Karlsson and Sorensen Inc.,2010.
    [145]牛春匀.实用飞机结构应力分析及尺寸设计[M].北京:航空工业出版社,2009.
    [146]孙彦鹏.复合材料/金属混合夹层结构干涉连接技术研究[D].南京航空航天大学,2011.
    [147] Stanley W F, McCarthy M A, Lawlor V P. Measurement of load distribution in multi-bolt,composite joints, in the presence of varying clearances [J]. Journal of Plastics, Rubber andComposites,2002,31(9):412-418.
    [148]陈向明.自定义粘接元接触技术及其在复合材料连接强度分析中的应用[D].中国航空研究院,2011.
    [149]赵美英.复合材料机械连接失效分析及强度影响因素[D].西安:西北工业大学,2006.
    [150] Camanho P P, Matthews F L. Strength prediction of bolted joints in graphite/epoxy compositelaminate [J]. Composites Part B,2002,33(7):521-529.
    [151] Catalanottia G, Camanhoa P P, Ghysb P, et al. Experimental and numerical study of fastenerpull-through failure in GFRP laminates [J]. Composite Structures,2011,94(1):239-245.
    [152]谢鸣九.影响复合材料机械连接强度的因素研究[R].中国飞机强度研究所, Q/12S-9101-69.
    [153] Banbury A, Kelly D W. A study of fastener pull-through failure of composite laminates. Part I:Experimental [J]. Composite Structures,1999,45(4):241-254.
    [154]牛春匀.实用飞机结构工程设计[M].北京:航空工业出版社,2008.
    [155]钱一彬,钟小丹,陈普会,等.复合材料机身壁板的纵向连接设计与失效分析[J].航空学报,2012,33(8):1427-1433.
    [156] Turon A, Camanho P P, Costa J, et al. A damage model for the simulation of delamination inadvanced composites under variable-mode loading [J]. Mechanics of Materials,2006,38(11):1072-1089.
    [157]陈普会,柴亚南.整体复合材料结构失效分析的粘聚区模型[J].南京航空航天大学学报,2008,40(4):442-446.
    [158] Turon A, Davila C G, Camanho P P, et al. An engineering solution for mesh size effects in thesimulation of delamination using cohesive zone models [J]. Mechanics of Materials,2007,71(10):1665-1682.
    [159] Turon A, Camanho P P, Costa J, et al. Accurate simulation of delamination growth undermixed-mode loading using cohesive elements: Definition of interlaminar strengths and elasticstiffness [J]. Composite Structures,2010,92(8):1857-1864.
    [160] Ye Q, Chen P H. Prediction of the cohesive strength for numerically simulating compositedelamination via CZM-based FEM [J]. Composites Part B,2011,42(5):1076-1083.
    [161] Giddings P F, Kim H A, Salo A I T, et al. Modelling of piezoelectrically actuated bistablecomposites[J]. Materials Letters,2011,65(9):1261-1263.
    [162]陶梅贞主编.现代飞机结构综合设计[M].西安:西北工业大学出版社,2001.
    [163]王志瑾,姚卫星.飞机结构设计[M].北京:国防工业出版社,2007.
    [164]冯元生主编.飞机结构的分析与先进设计原理[M].西安:西北工业大学出版社,1991.
    [165]牛春匀.实用飞机复合材料结构设计与制造[M].北京:航空工业出版社,2010.
    [166]马占永.飞机设计手册,第2册标准和标准件(下)[M].北京:航空工业出版社,2005.
    [167] Kar A M. A cost modeling approach using learning curves to study the evolution of technology[D]. Massachusetts Institute of Technology,2007.
    [168]胡挺,吴立军. CATIA二次开发技术基础[M].北京:电子工业出版社,2006.
    [169] Liebeck R H, Andrastek D A, Chau J, et al. Advanced subsonic airplane design&economicstudies. NASA-CR-195443[R],1995.
    [170]李晓勇,叶叶沛,李晨.商用喷气式飞机DMC分析模型应用研究[J].民用飞机设计与研究,2012,2(108):22-27.
    [171] Boeing company. E-fixture, US7246527B2[P].2007-07-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700