圆锥壳体织物的设计与制作
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天以及高新技术的发展,纤维纺织技术的潜力逐渐被复合材料所利用,为了获得良好的力学性能和特殊的结构功能,研制开发了多种具有新型纺织结构的纤维立体织物。其中以三维编织纤维为增强体的整体复合材料结构,大大提高了其厚度方向的强度和抗冲击损伤性能,为先进复合材料应用开拓了新的领域,利于复合材料的整体净尺寸成型,并为制造复杂形状复合材料开辟了新的途径,提高了材料的结构性能,并降低复合材料的生产成本,因而倍受重视并获得了迅速的发展。
     论文首先通过采用原料丙纶完成了平面板状接结纬接结结构四层织物和三维正交结构十二层织物的设计和织造,并在两种厚重织物织造过程中解决了丙纶纱线的一些加工问题,如易勾丝、产生静电、起毛起球、纱线粘结等,同时分析了此过程中厚重织物的张力控制等问题;两种织物下机后比较了它们的经纬纱密度以及厚度,之后采用火棉胶将织物的结构固定,观察两种织物的截面结构图并分析了其实际与理论设计结构的差异及其产生的原因,通过测试在相同经纬密度情况下两种织物厚度以及单位面积质量并比较得到它们的体积密度,于万能材料试验机上测试两种结构织物的经纬向拉伸性能得到在相同外力作用下三维正交结构织物经纬向的形状保持性均较好,最后结合参考文献了解两种结构的其他性能比较情况,为本课题中制作的圆锥壳体织物选择了一种性能合适的结构。
     在圆锥壳体织物的设计和制作中,主要从其编织方式设计、组织结构设计、基本结构参数的设计(包括圆锥壳体织物的厚度设计、纱线排列密度设计以及密度均匀性设计)、添纱方案的设计、经纬纱线长度以及弹性元件长度的设计等方面作了详细的介绍;然后按照设计方案就圆锥壳体织物的起头挂纱、添加预加张力、开口、引纬和打纬以及逐次添纱等相关工艺和操作进行了一系列的研究和探索,得到一套合理且可行的上机工艺和技术。
     在将下机后圆锥壳体织物的结构固定后,通过测试各项参数如经纬纱线密度、织物厚度等并切取截面结构进行观察,最后将其与理论设计的各相关参数进行比较,结果表明,圆锥壳体织物的结构设计是合理的、制定的各项工艺参数是可行的、采取的操作技术是有效的,为以后采用高性能纤维进行相关的设计与制作有一定的指导作用。
Along with the development of aviation, spaceflight and new & high technology, the potential of textile fiber technology is gradually being used by the composite material, In order to obtain some well mechanics capabilities and special structure functions, people had researched and exploited many kinds of three-dimensional fabric with new textile structure. Take the three-dimensional braided textile preforms as to strengthen the substance like the whole composite material structure, greatly enhanced its thickness direction intensity and the anti-impact & damage performance, developed the new domain for the application of advanced composite material, benefited for the whole-shaping of the composite material, and opened the new way for making the complicated shape composite material, enhanced the structure performance of composite material, and reduced the cost of production in composite material, thus it is valued and obtained the rapid development.
     This paper first through used the polypropylene fiber to finish the design and preparation & weaving of the four-layer fabric with weft yarn bonder structure and the twelve-layer fabric with three-dimensional orthogonal structure, and resolved some processing problems of polypropylene yarn in the process of two kinds of thick & heavy fabrics, such as easily being pulled thread, producing static electricity, pilling and the yarn caking, etc. At the same time, the tension control problems in these two kinds of thick & heavy fabrics' weaving process were analyzed. After two kinds of fabrics got off the machine, their both wefts and warps density as well as thickness were compared. Then by fixing the structure of the fabrics with Collodion, the section structure drawings of both kinds of fabrics were observed. The reasons what the differences between the actual structure and the theoretical design structure were analyzed. Through testing two kinds of fabrics' thickness and the quality in unit area in the same thread count condition, their bulk density were obtained and compared. On the Universal Testing Machine, the weft &warp tensile capability of two kinds of structures fabrics were tested. From the tested results, the conclusion was that the three-dimensional orthogonal structure fabric had better shape maintenance be obtained and it was chosen as an appropriate performance structure for the manufactured cone-shaped shell fabric.
     In the design and manufacture of cone-shaped shell fabric, the design of braided mode, the organizational structure, the basic structure's parameters (including the cone-shaped shell fabric's thickness, the density in arrangement of yarns' and the uniformity of density etc), the yarns adding project, the length of weft &warp and the design of the elastic element's length were introduced mainly and detailedly. Then according to the design scheme, the operating technique how to hang yarns in beginning, to add the pre-tension, to shed, to insert and beating-up weft as well as to add yarns gradually and so on were studied serially. A set reasonable and feasible hands-on craft and technology were obtained.
     After the cone-shaped shell fabric got-off the machine, its structure was fixed also with Collodion. Through tested the parameters such as warp and weft density, thickness and so on, observed the section structure, took the actual parameter compared with the correlation parameter of theoretical design, the results indicated that the design of cone-shaped shell fabric's structure was reasonable, each constituted technical parameter was feasible, and the adoptive manipulation technique was effective. All this means that if using high performance textile fibers, the correlative design and manufacture method can be carried on in the future.
引文
[1]道德锟,吴以心,李兴国.立体织物与复合材料[M].第一版.上海:中国纺织大学出社,1998:8
    [2]林莉.纤维立体织物的发展与市场[J].江苏科技信息产业前沿,2004,(10):17-18
    [3]汪蔚,祝成炎.三维机织物的组织结构与设计[J].浙江工程学院学报,2001,18(4):197-200
    [4]王元昌.三维织物的设计与织制[J].上海纺织科技,2000,28(6):43-44
    [5]SUN Ying,KANG Yi-lan.Yarn Architecture Analysis of Two-step 3D Braided Composites[J].Journal of Donghua University(Eng.Ed),2005,22(3):126-131
    [6]J.Quinn,R.McIlhagger,A.T.McIlhagger.A modified system for design and analysis of 3D woven preforms[J].Composites,2003,34:503-509
    [7]黄故.三维机织骨架材料的研究[J].天津纺织工学院学报,1997,16(5):89-93
    [8]WU Xiao-qing,LI Jia-lu,R Ajit shenoi,WANG Ri-wei.Filling Simulation of Three-dimensional braided Composite[J].Journal of Donghua University(Eng.Ed),2005,22(4):109-113
    [9]谈蔚.三维机织物的性能特征和常规设计[J].《国外丝绸》,2003,(6):3-6
    [10]甘应进,傅宏俊,陈东生.3D机织物的织造与力学性能测试[J].吉林工学院学报,2000,21(4):6-9
    [11]杨歆,顾平.三维织物成型方法概述[J].上海丝绸,2000,(4):12-14
    [12]祝成炎.3D立体机织物及其复合材料[J].丝绸,2005,(1):44-47
    [13]Yunsong Luo,Lihua Lv,Baozhong Sun,Yiping Qiu,Bohong Gu.Transverse inpact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites[J].Composite Structures,2006,(8)
    [14]J.P.Quinn,B.J.Hill,R.McIlhagger.An integrated design system for the manufacture and analysis of 3-D woven performs[J].Composites,2001,(32):911-914
    [15]S.Chou,H-E.Chen.The weaving methods of three-dimensional fabrics of advanced composite materials[J].Composite Structures,1995,33:159-172
    [16]Ryuta Kamiya,Bryan A,Cheeseman,Peter Proper,Tsu-WeiChou.Some recent advances in the fabrication and design of three-dimensional textile perfornls:a review[J].Composites Science and Technology,2000,60:33-37
    [17]孙红霞,黄故.三维织物的织造新技术[J].河北纺织,2005,(4):29-33
    [18]V.R.Aitharaju,R.C.Averill.Three dimensional properties of woven-fabric composites[J].Composites Science and Technology,1999,59:1901-1911
    [19]周立民,郭名霞.酸性乳胶用于丙纶织物涂层整理的研究[J].产业用纺织品,2002,(2)39-41
    [20]DING Xin,YI Hong-lei.Representation of 3D Woven Structures by Parametric Method[J].Journal of Donghua University(Eng.Ed),2005,22(1):22-25
    [21]顾平.多重纬角连锁三维机织物结构设计[J].上海纺织科技,2002,30(4):24-26
    [22]郭兴峰,王瑞,黄故,房昕.接结经纱对三维正交机织物结构的影响[J].纺织学报,2005,26(1):56-58
    [23]董伟锋,肖军,李勇,吴海桥,张立泉.2.5维编织复合材料弹性性能的理论研究[J].南京航空航天大学学报,2005,37(5):659-663
    [24]张立泉,张建钟,郭洪伟.大尺寸2.5 D中空织物织造技术的研究[J].玻璃纤维,2004,(6):8-10
    [25]J.Ivens,P.Debaere,C.McGoldrick,Verpoest,P.vander,V.leuten.2.5D fabrics for delamination resistant composite structures[J].Department of Metallurgy and Materials Engineering at K U Leuven,2003,28(2)
    [26]汪蔚.玻璃纤维三维机织物增强复合材料棒材的研制与其拉伸性能研究[J].产业用纺织品,2002,(12):12-15
    [27]王元昌,萧荣,薛卫.几种三维机织物的上机设计[J].棉纺织技术,2001,29(4):37-40
    [28]郭兴峰,刘春阳,王瑞,李风强.圆环形织物的织造原理与设计[J].纺织学报,2006,27(1):12-15
    [29]易洪雷,丁辛.三维板状机织预成形件的设计与试织[J].棉纺织技术,2003,31(5):23-27
    [30]黄晓梅.管状三维织物的组织结构与织造工艺[J].纺织学报,2002,23(4):51-52
    [31]郝志坚,徐良平,郭兴峰.锥形管状预成型机织物的织造方法研究[J].产业用纺织品,2005,(12):23-25
    [32]陶肖明,冼杏娟,高冠勋.纺织结构复合材料[M].第一版.北京:科学出版社,2001:3
    [33]林益明,杨宝宁.三维编织复合材料在卫星支架的应用[J],航天器工程,2002,11(2):29-33
    [34]蔡陛霞.织物结构与设计[M].第三版.北京:中国纺织出版社,2004:3
    [35]卜佳仙,崔建伟.三维多向结构预形件的织造加工技术[J].产业用纺织品,1999,109(17):9-12
    [36]唐鑫馀.三维机织结构在织造过程中的理论与实践[J].玻璃纤维,2004,(1):20-23
    [37]田伟,祝成炎.玻璃纤维/丙纶混杂3D机织物及其复合材料的研制[J].产业用纺织品,21(159):6-9
    [38]黄晓梅.三维机织物的结构设计与织造[J].南通工学院学报,2004,3(1):49-51
    [39]V.R.Aitharaju,R.C.Averill.Three dimensional properties of woven-fabric composites[J].Composites Science and Technology,1999,59:1901-1911
    [40]Zuo-Rong Chen,Lin Ye,A micromechanical compaction model for woven fabric preforms[J].Composites Science and Technology,2006,3263-3272
    [41]易洪雷,叶伟,王利红,段湘华.管状机织预型件的结构设计与织造技术[J].纺织学报,2002,23(3):171-172
    [42]焦亚男,李嘉禄.异制件用三维编织复合材料的拉伸性能[J].纺织学报,2006, 27(9):1-4
    [43]陈楠梁.多轴向经编增强复合材料拉伸性能的研究[J].东华大学学报,2001,27(2):99-101
    [44]朱建勋.三维编织锥体织物的减纱技术[J].中国工程科学,2006,8(3):66-69
    [45]翔天.弹头护身服——详析弹道导弹的整流罩[J].兵工科技,2006,(9):41-44
    [46]曹宜英,薛少林.复合材料用三维编织物的现状与发展[J].《陕西纺织》,2002,56(4):32-34
    [47]林益明,杨宝宁.三维编织复合材料在卫星支架的应用[J].航天器工程,2002,11(4):29-33
    [48]朱建勋.三维编织锥体织物的减纱技术[J].中国工程科学,2006,8(3):66-69
    [49]刘海文,郭锦坤,刘丹凤.田字形立体机织物的研究及织造[J].棉纺织技术,2005,3(2):79-81
    [50]祝成炎,田伟,申小宏.横向变截面立体机织结构及其组织设计[J].浙江工程学院学报,2003,20(3):160-163
    [51]周媛,谢雁,刘新民,潘炯玺.增韧增强PP复合材料的研究[J].合成树脂及塑料,2005,22(2):11-14
    [52]周立民,胡仁智.丙纶织物涂层整理的研究[J].产业用纺织品,2001,19(125):30-31
    [53]刘海文,耿立秋,刘广平,赵英,贾立霞,张雪晶.3D多层圆管预制件的织制[J].毛纺科技,2005,(7):46-48
    [54]张国辉.多层织物的组织分析[J].现代纺织技术,2002,10(4):37-40
    [55]黄晓梅.三维机织物的结构设计与织造[J].南通工学院学报,2004,3(1):49-51
    [56]董敬贵.有梭织机织造蜂窝状三维织物[J].上海纺织科技,2006,34(3):45-47
    [57]黄故.现代纺织复合材料[M].第一版.北京:中国纺织出版社,2000:1
    [58]祝成炎.非平面状3D结构织物及其织造技术综述.浙江工程学院学报[J],2000,17(2):75-79
    [59]王静.三维机织热塑性复合材料的拉伸性能测试与分析[J].玻璃钢/复合材料,2005,(3):24-26
    [60]Baozhong Sun,Bohong Gu,Xin Ding.Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates[J].Polymer Testing,2005,447-454
    [61]焦亚男,李嘉禄.异制件用三维编织复合材料的拉伸性能[J].纺织学报,2006,27(9):1-4
    [62]张立泉,张建钟,郭洪伟.大尺寸2.5 D中空织物织造技术的研究[J].玻璃纤维,2004,(6):8-10
    [63]彭淑静,郭兴峰,陈和春[J].圆环形机织布的织造与设计[J].天津工业大学学报,2005,24(4):18-20
    [64]刘海文,郭锦坤,刘丹凤.田字形立体机织物的研究及织造[J].棉纺织技术,2005,3(2):79-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700