混凝土重力坝抗震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前一批混凝土重力坝在我国西南部兴建与拟建,该地区地质条件复杂,属于地震多发区,且烈度较高,因而研究混凝土重力坝的地震破坏机理进而提出合理的抗震措施成为目前大坝抗震研究的热点。基于此本文开展了以下几点工作:
     (1)关于重力坝破坏评价指标的研究依然相对薄弱,本文考虑不同地基条件及边界条件,利用Abaqus软件,采用混凝土塑性损伤本构模型,计算了无质量线弹性地基模型下重力坝动力响应;接着考虑将坝体下部部分地基采用DP模型模拟,计算了重力坝动力响应;同时利用无限单元模拟无限地基影响,计算了重力坝动力响应,根据重力坝塑性损伤响应,提出了基于能量耗散的重力坝整体破坏评价指标
     (2)地震作用下重力坝损伤开裂成为影响大坝安全的关键因素。根据无质量地基模型下计算得到的坝体损伤部位及损伤程度,提出了不同的抗震配筋形式,利用钢筋混凝土嵌入式模型,计算了不同配筋方案下混凝土重力坝的地震响应,验证了在坝体薄弱部位进行抗震配筋的必要性与实用性。
     (3)新型复合材料的出现为重力坝抗震加固提供了一种新的途径。本文利用徐世娘团队研制出的超高韧性水泥基复合材料(UHTCC,Ultra High Toughness Cementitious Composites)置换混凝土重力坝表层混凝土,提出了三种方案加固混凝土重力坝抗震薄弱部位。考虑UHTCC单线性硬化本构模型及混凝土塑性损伤耦合本构,模拟了采用UHTCC加固后混凝土重力坝的动力响应并与加固前结果进行了对比验证该材料加固混凝土重力坝的有效性,使用UHTCC能够有效增强混凝土坝的整体安全性,提高大坝的抗震性能。
A number of concrete gravity dams are built or proposed in southwest China, where the geological conditions are cmoplex and the earthquake are common, the intensity of which are higher. Therefore it has become the research focus to analyze the seismic failure mechanism of concrete gravity dam and propose reasonable seismic measures.Based on these, several work is carried out as follows in this paper:
     (1) Damage evaluation about gravity dam is still relatively weak. The dynamic response of concrete gravity dam is simulated under massless linear elastic foundation conditions, plastic-damage model employed, using Abaqus software. And then calculate the reactions considering DP model describing foundation. The infinite elements are adopted to simulate dynamic response of the gravity dam.According to the plastic damage responses, the overall damage evaluation index based on the energy dissipation is presented.
     (2) Damage and Crack has become a key factor affecting the dam safety under seismic load. According to the damage part and degree under massless foundation model, different forms of seismic reinforcement are presented. Based on the embedded model of reinforced concrete, the seismic responses of concrete gravity dam are calculated under different reinforcement schemes. The consequences verifies the necessity and practicality arranging reinforcemen for seismic resistance at the weak parts of the dam
     (3) New composite materials provide a new way of strengthening concrete gravity dam. In this paper, the Ultra High Toughness Cementitious Composites (UHTCC), developed by Xu shilang team, is used to replace the surface concrte of dam and then present three schemes to reinforce seismic weak parts of concrete gravity dam. Simple linear hardening constitutive model for UHTCC and concrete plastic damage constitutive model are considered to simulate the dynamic response of concrete gravity dam reinforced with UHTCC. Comparing the results before and after reinforcement, it could be gotten that UHTCC in strengthening dam field is effective, which can enhance the overall safety of the concrete dam and improve the seismic performance of the dam.
引文
[1]王松涛,曹贤.现代抗震设计方法[M].北京:中国建筑工业出版社.1997.
    [2]Lysmer J,Richart F.E. T. Dynamic response of footings to vertical loadings [J]. T.Soil.Mech. Div.ASCE.1966,92(1):65-91.
    [3]Wolf J. P., Somaini D. R. Approximate dynamic model of embedded foundation in time domain[J].Eng. and. Struc. Dynamic.1986,14:583-703.
    [4]Chopra A. K., Chakrabarti P, Dasgupta G. Dynamic stiffness matrix for visco-elasitc half-plane foundation [J]. Journal of engineering mechanics division,1976,102 (3): 497-514.
    [5]楼梦麟.粘弹性地基的动力刚度矩阵及坝基相互作用对水坝地震反应的影响[D].(博士学位论文).大连:大连理工大学,1984.
    [6]Course C. B., Jennings P. C. Soil-structure interaction during the san Fernando earthquake [J].BSSA.1975.65(1):13-36.
    [7]魏青槐.土-结构动力相互作用的CLONING有限单元法及其在地下结构分析中的应用[D].(博十学位论文).大连:大连理工大学,1995.
    [8]Wolf J. P., Darbe G. R. Dynamic stiffness matrix of soil by the boundary element method: embedded foundation [J]. Earthquake Engineering and Structural Dynamics.1984,12: 401-410.
    [9]杜修力,熊建国.波动问题的级数解边界元法[J].地震工程与工程振动.1988,8(1):39-49.
    [10]金峰,张楚汉,王光纶.结构-地基动力相互作用分析的有限元-边界元-无限边界元耦合模型[J].清华大学学报.1993,33(2):17-24.
    [11]Chongmin Song, Wolf J. P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering.1997,147(3-4):329-355.
    [12]Chongmin Song, Wolf J. P. Dynamic Stiffness of Unbounded Medium based on Damping Solvent Extraction [J]. Earthquake Engineering and Structural Dynamics.1994,23: 1235-1249.
    [13]Wolf J. P., Chongmin Song. Finite-Element Modelling of Unbounded Media [M]. Chichester, England and New York,Wiley,1996.
    [14]Kausel E. Local transmitting boundaries [J]. Journal of Engineering Mechanisc, ASCE. 1988,144(6):1011-1027.
    [15]关慧敏,廖振鹏.局部透射边界和叠加边界的精度分析与比较[J].力学学报.1994,26(3):303-311.
    [16]Wolf J. P., Chongmin Song. Doubly asymptotic multi-directional transmitting boundary for dynamic unbounded medium structure-interaction analysis [J]. Earthquake engineering and structure dynamics.1995,24:175-188.
    [17]Smith W. A non-reflecting plane boundary for wave propagation problems [J]. Journal of Com. Phys.1973,15:492-503.
    [18]Lysmer J., Kuhlemeyer R. L. Finite model for infinite media [J]. Journal of engineering mechanics divisions, ASCE.1969,95:377-392.
    [19]White W, Valliappan S, Lee I. K. United boundary for finite dynamic models [J]. Journal of engineering mechanics divisions,ASCE.1977,103(5):949-964.
    [20]Smith W. D. A nonreflecting plane boundary for wave propagation problems [J]. Journal of Com. Phys.1974,15:492-503.
    [21]Clatton R., Engquist B. Absorbing boundary conditions for acoustic and elasitc wave equations [J]. Bulletin of the seismlogical society of America.67:1529-1540.
    [22]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动.1982,2(1):1-11.
    [23]廖振鹏,黄孔亮,杨柏坡等.暂态波透射边界[J].中国科学.A辑,1984,6.
    [24]Bettess P, Zienkiewicz O.C. Diffraction and refraction of surface waves using finite and infinite elements [J]. International journal of numerical methods in engineering.1977,11(8):1271-1290.
    [25]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报.1986,26(3):51-63.
    [26]金峰,张楚汉,王光纶.结构地基相互作用的FE-BE-IBE耦合模型[J].清华大学学报.1993,33(2):17-24.
    [27]吴健,金峰,张楚汉.无限地基阻尼辐射对溪洛渡拱坝地震响应的影响.岩土工程学报.200224(6):716-719.
    [28]Zhang C H, Jin F, Pekau 0. Time domain procedure of FE-BE-IBE coupling for seismc interaction of arch dams and canyons [J]. Earthquake Engineering and Structural Dynamics.1995,24:1651-1666.
    [29]Yan J Y, Zhang C H, Jin F. A coupling procedure of FE and SBFE for soil-structure interaciton in the time domain [J]. International journal for numerical methods in engineering.2004,59:1453-1471.
    [30]闫俊义.结构-地基动力相互作用的FE-SBFE时域耦合方法及工程应用[D].(博士学何论文).北京:清华大学,2004.
    [31]杜建国.基于SBFEM的大坝-库水-地基动力相互作用分析[D].(博十学位论文).大连:大连理工大学,2007.
    [32]李建波,陈建云,林皋.无限地基-结构动力相互作用分析的分区递归时域算法研究[J].工程力学.2005,22(5):88-96.
    [33]李建波.结构-地基动力相互作用的时域数值分析方法研究[D].(博士学位论文).大连:大连理工大学,2005.
    [34]钟红.拱坝-无限地基系统非线性地震超载分析[J].大连理工大学学报.2011,51(1):96-102.
    [35]杜修力,陈厚群,侯顺载.拱坝系统三维非线性地震波动分析[J].地震工程与工程振动.1996,16(3):40-47.
    [36]Pal N. Nonlinear earthquake response of concrete gravity dams. Report of Earthquake Engineering Research Center.University of California,Berkeley,1974.
    [37]Skrikerud P. E., Bachmann H. Discrete crack modeling for dynamically loaded, unreinforced concrete structures[J]. Earthquake Engineering and Structural Dynamics.1986,142(2):297-315.
    [38]Ei-Aidi B, Hall J. F. Nonliear earthquake response of concret gravity dams. I: modelling & II:behavior[J]. Earthquake Engineering and Structural Dynamics.1989, 18:837-851,852-865.
    [39]Vargas-Loil Li, Fenves G. L. Effecet of concrete cracking on the earthquake response of gravity dams[J]. Earthquake Engineering and Structural Dynamics.1989,18:575-592.
    [40]Bhattacharjee S. S., Leger P. Application of NLFM models to predict cracking in concrete gravity dams[J]. Journal of Structural Engineering, ASCE.1994,120(4):1255-127.
    [41]Bhattacharjee S. S., Leger P. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics.1993,22(11):991-1007.
    [42]Ayari L. M., Saouma V. E. A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks[J]. Engineering Fracture Mechanics.1990,35 (1-3):587-598.
    [43]Feltrin G, Wepf D. H. Bachmann H. Seismic cracking of concrete gravity dams[J]. Dam Engineering.1990,1(4):279-289.
    [44]Wepf D. H., Feltrin G, Bachmann H. Influence of time domain dam-reservoir interaction [J]. Earthquake Engineering and Structural Dynamics.1993,22,573-582.
    [45]Cevera M, Oliver J, Faria R. Seismic evalution of concrete dams via continuum damage models [J]. Earthquake Engineering and Structural Dynamics.1995,24:1225-1245.
    [46]Cevera M, Oliver J, Manzoli 0. A rate-dependent isotropic damage model for the seismic analysis of concrete dams[J]. Earthquake Engineering and Structural Dynamics.1996,25(9):987-1010.
    [47]Lee J, Fenves G. L. A plastic-damage concrete damage model for earthquake analysis of dams[J]. Earthquake Engineering and Structural Dynamics.1998,27 (9):937-956.
    [48]陈健云,李静,林皋.基于率性损伤模型的混凝土重力坝地震响应分析[J].哈尔滨工业大学学报.2005,5,629-636.
    [49]杜成斌,苏擎柱.混凝土坝地震动力损伤分析[J].工程力学.2003,20(5):170-173.
    [50]杜荣强.混凝土静动弹塑性损伤模型及其在大坝分析中的应用[D].(博士学位论文).大连:大连理工大学,2006.
    [51]徐艳杰,张楚汉,金峰,王光纶.拱坝横向配筋的非线性地震反应分析模型[J].清华大学学报(自然科学版).2002,42(11):1541-1543,1547.
    [52]陈观福,张楚汉,徐艳杰,金峰,王光纶.拱坝横缝配筋与混凝土相互作用研究[J].工程力学.2002,19(3):15,16-19.
    [53]陈观福,徐艳杰,张楚汉.强震区高拱坝横缝配筋抗震措施[J].清华大学学报(自然科学版).2003,43(2):266-269.
    [54]陈观福,张楚汉,徐艳杰.强震区高拱坝跨横缝钢筋的局部变形分析[J].水力发电.2004,30(1):27-29.
    [55]陈观福,张楚汉,徐艳杰.小湾拱坝跨横缝抗震钢筋的影响因素分析.水力发电.2005,70-72.
    [56]郭永刚,涂劲,陈厚群.抗震配筋对高拱坝抗震性能的影响[J].水利学报.2004,35(3):01-06.
    [57]潘坚文,龙渝川,张楚汉.高拱坝强震开裂与配筋效果研究[J].水利学报.2007,38(8):926-932.
    [58]沈怀志,潘坚文,金峰,张楚汉.混凝土坝坝体配筋抗震措施研究[J].水利学报.2007,38(1):38-45.
    [59]龙渝川,龙渝川,龙渝川.钢筋混凝土相互作用效应的钢筋刚化模拟[J].清华大学学报(自然科学版).2007,47(6):793-796.
    [60]龙渝川,龙渝川,龙渝川.钢筋混凝土嵌入式滑移模型[J].工程力学.2007,24(增刊Ⅰ):41-45.
    [61]艾亿谋,杜成斌,洪永文,孙立国.混凝土坝抗震加固中钢筋混凝土的动力本构模型[J].水利学报.2009,40(3):289-295.
    [62]Ngo D., Scordelis A. Finite element analysis of reinforced concrete beams [J], J. Am. Concr. Inst.1967,64:152-163.
    [63]Keuser M, Mehlhorn G. Finite element models for bond problems [J]. Journal of structure Engineering.1987,113(10):2160-2173.
    [64]Kwak, H., Filippou F. A new reinforcing steel model with bond slip [J]. Structure Engineering and Mechanics.1995,3(4):299-312.
    [65]Monti G. Spacone E. Reinforced concrete fiber beam element with bond-slip [J].Journal of Structure Engineering.2000,126(6):654-661.
    [66]Lin C. S., Scordelis A. C. Nonlinear analysis of RC shells of general form [J]. Journal of Structure and Divisions.1975,101(3):523-538.
    [67]Gilbert R.I., Warner R. F. Tension stiffening in reinforced concrete slabs [J]. Journal of Structure and Divisions.1978,104(12):1885-1900.
    [68]龙渝川,张楚汉,迟福东,周元德.混凝土重力坝抗震配筋加固措施的效果研究[J].水力发电学报.2008,27(4):77-82.
    [69]迟世春,林皋.拱坝的动力控制研究[J].世界地震工程.2002,18(1):1-8.
    [70]郭永刚,涂劲,陈厚群.高拱坝伸缩横缝间布设阻尼器对坝体地震反应影响的研究[J].世界地震工程.2003,19(3):44-49.
    [71]郭永刚,涂劲,高凤龙.非线性子结构方法中实现对结构抗震措施阻尼器的数值模拟[J].计算力学学报.2005,22(4):447-452.
    [72]王品江,王进廷,周元德,金峰,徐艳杰.强震区高拱坝抗震措施比较[J].水利水电科技进展.2006,26(4):15-20.
    [73]罗秉艳,徐艳杰,王光纶.大岗山拱坝考虑阻尼器抗震措施的非线性动力反应分析[J].水利发电学报.2007,26(1):67-70.
    [74]王娜丽,钟红,林皋.FRP片材表面加固混凝土重力坝坝踵抗震性能数值模拟[J].水利水电技术.2011,42(2):12-16.
    [75]Kaplan F. M. J. Amer. Concrete Inst.1961(58):591-610.
    [76]Hillborg A, Modeer M, Petersson P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research.1976,6,773-782.
    [77]Loland K. E. Concrete damage model for load-response estimation of concrete [J]. Cement and Concrete Research.1980,10:392-492.
    [78]Mazars J. Existence of a critical strain energy release rate for concrete [J]. In Proc of I.C. F.1977,4:1205-1209.
    [79]Dominguez J. Boundary elements in dynamics [M]. Southampton:Computational Mechanics Publications,1993.
    [80]Deeks A.J., Randolph M. F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics.1994,120(1):25-42.
    [81]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报.2006,28(9):1070-1075.
    [82]Bazant Z P, Oh B H. Crack band theory for fracture of concrete [J]. Materials and Structures.1983,16(93):155-177.
    [83]Pramono E, Willam K. Fracture energy-based plasticity formulation of plain concrete [J].Journal of Engineering and Mechanics, ASCE.1989,115(6):1183-1203.
    [84]Karsan I. D., Jirsa J.0. Behavior of concrete under compressive loadings [J]. Journal of Structure and Divisions, ASCE.1969,95(12):2535-2563.
    [85]陈厚群.坝址地震动输入机制探讨[J].水利学报.2006,12(12):1417-1423.
    [86]黄胜,陈卫忠,伍国军,郭小红,乔春江.地下工程抗震分析中地震动输入方法研究[J].岩石力学与工程学报.2010,29(6):1254-1262.
    [87]沈怀至.基于性能的混凝土坝-地基系统地震破损分析与风险评价[D].(博士学位论文).北 京:清华大学,2007.
    [88]范书立,陈明阳,陈健云,柴换成.基于能量耗散碾压混凝土重力坝地震损伤分析[J].振动与冲击.2011.30(4):272-275.
    [89]Nilson A. H. Internal measurements of bond slip [J]. Journal of American Concrete Institute.1971,69(7):439-441.
    [90]Jinno Y, Fujii S, Morita S. Bar size effect on bond characteristics with splitting of surrounding concrete. Summaries of Technical Papers of Annual Meeting, AIJ.1986, 747-754.
    [91]Morita S. Material modeling for finite element analysis of reinforced concrete-recent development in Japan, Report of 2nd Japan-U. S. seminar on finite element analysis of reinforced concrete, New York, Publication by JCI.1991,107-24.
    [92]Maekawa K, Pimaninas A, Okamura H. Nonlinear mechanics of reinforced concrete [M]. New York, NY, USA:Spon Press,2003.
    [93]SL191-2008,水工混凝土结构设计规范[S].
    [94]Tsukamono M. Toughness of fiber concrete[J]. Darmstadt Concrete:Annual Journal on Concrete and Concrete Structures.1990,5:215-225.
    [95]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.
    [96]ACI221R-01. Control of cracks in concrete structures[S].
    [97]Comite Euro-International du Beton (CEB). CEB-FIP model code for concrete structures [R]. Paris Comite Euro-International du Beton (CEB),1978:348.
    [98]CCES01-2004混凝土耐久性设计与施工指南[S].
    [99]Maalej M, Li V. C. Introduction of strain hardening engineered cementitious composites in the design of reinforced concrete flexural members for improved durability [J]. Structural Journal, ACI.1995,92(2):167-176.
    [100]李贺东.超高韧性水泥基复合材料试验研究[D].(博士学位论文).大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700