复合材料三维重构及力学性能的有限元数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料细观力学的核心任务是建立复合材料宏观性能及其组分和细观结构之间的定量关系。进行复合材料细观力学研究首先需要引入复合材料代表单元的概念(RVE)。目前的复合材料有限元细观力学研究绝大部分是建立在将增强相简化为球形,椭球或六面体等规则的几何形状的基础上,这种简化为复合材料的有限元细观力学理论体系的建立发挥了巨大的作用。但是对于微观结构非常复杂的颗粒增强,特别是增强相和基体发生了反应的复合材料,采用传统的有限元细观力学进行宏细观力学性能的分析,其结果就不一定十分正确。随着计算机科学技术的发展,特别是科学计算可视化技术的进步,复合材料的微观结构就可以运用科学计算可视化技术呈现在人们面前。三维重构技术很早以来就已经应用在医学领域,而且取得了很大的成功。但是在材料科学领域,起步较晚,尤其是国内更晚。即使在国外,采用三维重构技术获得材料的微观形貌,采用的也多是医学或者通用的软件,而针对材料科学领域开发的三维重构软件,还少之又少。
     本文基于这种现状,系统研究了复合材料科学的三维重构技术,并将其与复合材料有限元细观力学相结合,建立了基于真实微观结构的复合材料有限元细观力学模型,并将该模型预测的复合材料有效性能和基于规则几何体的复合材料有限元细观力学模型预测的有效性能进行了比较,结果表明本文建立的模型的预测结果更接近实验结果,且误差很小。
     本文具体做了以下工作:
     采用序列切片方法,获得了颗粒增强复合材料的序列显微图像,通过单轴拉伸实验获取了SiC/Al复合材料的应力-应变曲线。为了解决在高倍显微镜下获取的显微图像视野较小的问题,对复合材料显微图像进行了基于特征点提取的自动拼接。采用Harris算子和Canny算子提取两幅待配准显微图像的特征点,采用互相关方法获取得到相对应的特征点序列,然后进行基于特征点序列的SVD-ICP配准,确定精确的对应关系,拼接这两幅显微图像得到过渡光滑自然,达到无缝拼接要求的足够大的复合材料显微图像。
     研究了获取复合材料第二相颗粒轮廓的方法。利用小波多分辨率原理对复合材料第二相颗粒的边缘进行了检测,从高分辨率到低分辨率逐步搜索边缘,最后得出边缘位置准确的轮廓图。针对小波边缘检测方法获取的颗粒边缘不连续的缺点,在灰度复杂的金相显微照片中即使GVF Snake算法仍要求初始轮廓必须靠近颗粒边缘的情况下,提出了一种新的Snake初始轮廓的定义方法。该方法利用B样条插值和重采样技术,在利用小
The key assignment of composite micro-mechanics is to build the quantitative relation of various macro-performance and the microstructure. Traditionally simplified unit cell models based on the finite element analysis have been used to resolve micro-mechanics problems such as the prediction of the onset and growth of evolving damage in composite materials. While these models provide valuable insights into the microstructural processes, simple morphologies idealize actual microstructures for many engineering materials that bear little relationship to the actual stereographic features. However, for complicated composite, many work has shown that traditionally unit cell models tend to give unsatisfactory predictions for the mechanical response of particle reinforced materials. It is the central precept of materials science that microstructure influences the properties and performance of materials. For composite materials, the degree of property enhancement depends on morphological factors such as volume fraction, size, shape and spatial distribution of the reinforcements, in addition to the constituent material and interface properties. With the development of computer science, direct observations of three-dimensional microstructure are of interest. For opaque materials, 3D reconstruction from serial sectioning has been used in the past to obtain information concerning three-dimensional microstructural geometry. Currently There are few special software aim to the 3D reconstruction of material science.
    The aim of this paper is to study the key technologies in the 3D reconstruction for composite are studied systemically, and predict the effective properties based on the true microstructure.The calculating result shows that the data calculated by the 3D microstructure model are more accurate than the datas acquired from 3D spherical particles model and analytical model.
    With the serial sectioning method, the serial images of particle reinforced metal matrix composites are acquired and the strain-stress curve of SiC/Al composite is obtained by trial.
    To solve the problem that only very limited field of view is available got when highly magnifying lens are used in microscopes, Image mosaic is processed to align the serial images. A novel method is adopted to mosaic two SiC/Al microscopic images to avoid the drawbacks of the classical methods. Feature points are extracted by using Harris corner detector and filtered through Canny edge detector. A 40 × 40 feature template is chosen by sowing a seed in the
引文
40(9):427-729
    17 谢水生,王祖唐.金属塑形成形公布的有限元数值模拟.北京:冶金工业出版社,1997
    18 闫敦.纳米微米晶复合韧化细观力学研究.西安:西安建筑科技大学硕士研究生论文。2004.
    19 Bruzzzi M S, Mchugn P E, Rourke F O. Micromechanical modelling of the static and cyclic loading of an A12124-SiC MMC.International Journal of Plasticity, 2001, 17:565-599
    20 Aghdam M M, Pavie M J, Smith D J. Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. International Journal of Solids and Structures, 2001, 38:3905-3925
    21 Saraev D, Schmauder S. Finite element modelling of Al-SiCp metal matrix composites with particles aligned in stripes a 2D-3D comparison. International Journal of Plasticity, 2003, 19:733-747
    22 Ismar H, Schroter F.Three-dimensional finite element analysis of the mechanical behavior of cross-ply reinforced aluminum. Mechanics of Materials, 2000, 32:329-338
    23 Fang D N, Qi H, Tu S D. Elastic and plastic properties of metal-matrix composites: geometrical effects of particles.Computational Materials Science, 1996, 6(4): 303-309
    24 Chawla N, Deng X, Schnell D R M. Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites. Materials Science and Engineering A, 2006, 426:314-322
    25 Ganesh V V, Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation. Materials Science and Engineering A 2005, 391:342-353
    26 Chawla N, Sidhu R S, Ganesh V V. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites. Acta Materialia, 2006, 54 : 1541-1548
    27 Borbély A, Csikor F F, Zabler S, et al. Microstructure based three-dimensional finite element modeling of particulate reinforced metal-matrix composites. Materials Science and Engineering A, 2004, 387-389: 852-856
    28 Borbély A, Csikor F F, Zabler S, et al.Three-dimensional characterization of the microstrueture of a metal-matrix composite by holotomography. Materials Science and Engineering A, 2004, 367:40-50
    29 D 罗伯编著,项金钟,吴兴惠译.计算材料学.北京:化学工业出版社.2002
    30 刘国权.体视学在材料科学研究中的进展与展望.中国体视学与图像分析,1996,1(1):96-101
    31 Singh H, Gokhale A M. Visualization of three-dimensional microstructures. Materials Characterization, 2005, 54:21-29
    32 Li M, Ghost S, Richmond O, et al.Three dimensional characterization and modeling of particle reinforced metal matrix composites part I:Quantitative description of microstructural morphology. Materials Science and Engineering A, 1999, 265:153-173
    33 Wu K M, Inagawa Y, Enomoto M.Three-dimensional morphology of ferrite formed in association with inclusions in low-carbon steel.Material Characterization, 2004, 52:121-127
    34 余永宁,刘国权.体视学—组织定量分析的原理和应用.北京:冶金工业出版社,1989
    35 刘国权,刘胜新,黄启今等.金相学和材料显微组织定量分析技术.中国体视学与图像分析,2002,7(4):248-251
    36 王锋.复杂金相组织的形态学分析与程序设计.重庆:重庆大学硕士学位论文,2002.
    37 刘国权,张禹,秦湘阁等.材料显微组织三维观测与基于图像的模型研究.中国体视学与图像分析。2001,6(1):46-49
    38 秦国友.定量金相.成都:四川科学技术出版社,1987
    39 任怀亮.金相实验技术.北京:冶金工业出版社,1986
    40 Li.M, Ghosh S, Rouns T N, et al. Serial Sectioning Method in the Construction of 3-D Microstructures for Particle-Reinforced MMCs.Materiais Characterization, 1998, 41:81-95
    41 Wu K M, Enomoto M. Three-dimensional morphology of degenerate ferrite in an Fe-C-Mo alloy.Scripta Materialia, 2002, 46:569-574
    42 Hackenberg R E, Nordstrom D P, Shiflet G J. Morphology and three-dimensional structure of ferrite formed below the bay in an Fe-C-W alloy. Scripta Materialia, 2002, 47:357-361
    43 Kral M V, Spanos G.Three-dimensional analysis of proeutectoid cementite precipitates.Acta mater, 1999, 47(2):711-724
    44 Tewari A, Gokhale A M.Application of three-dimensional digital image processing for reconstruction of microstructural volume from serial sections. Material Characterization, 2000, 44:259-269
    45 Alkemper J, Voorhees P W. Three-dimensional characterization of dendritic microstructures. Acta Mater, 2001, 49:897-902
    46 Monnereau C, Vigens-Adler M.Optical tomography of real three-dimensional foams.Journal of Colloid and Interface Science, 1998, 202:45-53
    47 Maire E, Fazekas A, Salvo L, et al.X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems.Composites Science and Technology, 2003, 63:2431-2443
    48 Salvo L, Cioetens P, Maire E, et al. X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear Instruments and Methods in Physics Research B, 2003, 200:273-286
    49 Pangrle J, Zhang X D, Macosko C W, et al.Magnetic resonance imaging and micro-x-ray CT based three dimensional analysis of polyurethane foams.Polyurethanes Expo'98 Conference Proceedings, 1998: 230-253
    50 Clarke A R, Archenhold G, Davidson N C. A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Composites Science and Technology, 1995, 55 :75-91
    
    51 Li M, Ghost S, Richmond O, et al.Three dimensional characterization and modeling of particle reinforced metal matrix composites part II: damage characterization.Materials Science and Engineering A, 1999, 266: 221-240
    
    52 Kral M V, Mangan M A, Spanos G. Three-dimensional analysis of microstructures.Materials Characterization, 2000, 45:17-23
    
    53 Yokomizo T, Enomoto M, Umezawa O, et al. Three-dimensional distribution, morphology, and nucleation site of intragranular ferrite formed in association with inclusions. Materials Science and Engineering A, 2003,344:261-267
    
    54 Liu G Q, Yu H B, Qin X GThree-dimensional grain topology-size relationships in a realmetallic polycrystal compared with theoretical models. Materials Science and Engineering A, 2002, 326:276-281
    
    55 Kuijpers N C W, Tirel J, Hanlon D N, et al.Quantification of the evolution of the 3D intermetallic structure in a 6005A aluminium alloy during a homogenisation treatment. Materials Characterization, 2002,48:379-392
    
    56 Dinnis M, Dahle A K, Taylor J A. Three-dimensional analysis of eutectic grains in hypoeutectic Al-Si alloys. Materials Science and Engineering A, 2005,392:440-448
    
    57 Sidhu R S, Chawla N. Three-dimensional microstructure characterization of Ag_3Sn intermetallics in Sn-rich solder by serial sectioning.Materials Characterization, 2004,52:225-230
    
    58 Chawla N, Ganesh V V, Wunsch B.Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites. Scripta Materialia, 2004, 51:161-165
    
    59 Marschallimge R.A method for three-dimensional reconstruction of macroscopic features in geological materials. Computers & Geosciences, 1998, 24(9): 875-883
    
    60 Inkson B J, Mulvihill M, Mobus G.3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Materialia, 2001, 45:753-758
    
    61 Tewari A, Gokhale A M. Estimation of three-dimensional grain size distribution from microstructural serial sections. Materials Characterization, 2001,46:329- 335
    
    62 Chawla N, Chawla K K. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. Journal of Material Science, 2006,41: 913-925
    
    63 Marschallinger R.3-D Reconstruction and Volume Modelling of the Grain Fabric of Geological Materials. Phys Chem Earth, 1998, 3:267-271
    64 秦绪佳.医学图像三维重建及可视化技术研究.大连:大连理工大学博士学位论文,2001
    65 Wolfsdorf T L, Bender W H, Voorhees P W. The morphology of high volume fraction solid-liquid mixtures:An application of microstructural tomography. Acta mater, 1997, 6:2279-2295
    66 Baxter S C, Hossain M I, Graham L L.Micromechanics based random material property fields for particulate reinforced composites.International Journal of Solids and Structrues, 2001, 38:9209-9220
    67 Sundararaghavan V, Zabaras N.Classification and reconstruction of three-dimensional microstructures using support vector machines. Computational Materials Science, 2005, 32:223-239
    68 Shah Z H, Gokhale A M. Digital image analysis and microstructure modeling tools for microstructure sensitive design of materials. International Journal of Plasticity, 2004, 20:1347-1370
    69 崔朝英.SiC/Al复合材料的制备方法及研究方向.沈阳电力高等专科学校学报.2002,4(3):53-55
    70 肖伯律,张维玉,左涛.热处理对15%SiCp/2009Al复合材料力学性能与断裂行为的影响.宇航材料工艺,2005,3:34-37
    71 Cui Y, Geng L, Yao Z K. A New Advance in the Development of Highperformance SiCp/Al Composites. Journal of Material Science and Technology, 1997, 13:227-229
    72 欧阳柳章,罗承萍,隋贤栋等.SiCp/Al复合材料的制造及新动向.铸造.2000,49(1):17-20
    73 肖伯律,左涛,张维玉等.高能球磨制备15%SiC/2009Al复合材料的微观组织与断裂行为.稀有金属.2005,29(1):1-5
    74 陈建,潘复生,刘天模.Al/SiC界面结合机制的研究现状.轻金属.2000,9:52-54
    75 樊建中,石力开,姚忠凯等.SiCp/Al复合材料的界面状况特征研究.党嘉立主编.世纪之交复合材料的现状与发展—全国第十届复合材料学术会议论文集.长沙:湖南科学技术出版社,263
    76 Eekschlager A, Han W, Bohm H J, A unit cell model for brittle fracture of particles embedded in a ductile matrix. Computational Materials Science, 2002, 25:85-91
    77 Segurado J, lorea J L. A numerical approximation to the elastic properties of sphere-reinforced composites. Journal of the Mechanics and Physics of Solids, 2002, 50:2107-2121
    78 Bohm H J, Eekschlager A, Han W. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Computational Materials Science, 2002, 25:42-53
    79 Gonzalez C, Segurado J, LLorca J.Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenizationmodels. Journal of the Mechanics and Physics of Solids. 2004, 52:1573-1593
    80 Leon L, Mishnaevsky J.Three-dimensional numerical testing of microstructures of particle reinforced composites.Acta Materialia, 2004, 52:4177-4188
    81 聂生东,司京玉.医学显微图像自动拼接的方法研究.中国生物医学工程学报,2005,24(2):173-178
    82 Beck J C, Murrau J A, Willows A O D, et al.Computer-assisted visualizations of neural networks: expanding the field of view using seamless confocal montaging. Journal of Neuroscience Methods, 2000, 98(2): 155-163
    83 Harris C, Stephens M. A combined corner and edge detector. 4th Vision Conference, 1988:147-151
    84 冈萨雷斯.数字图像处理.北京:电子工业出版社.2003
    85 Frederik M, Collignon A, Vandermeulen D, et al.Multimodality Image Registration by Maximization of Mutual Information. IEEE Transactions on Medical Imaging, 1997, 16(2): 187-198
    86 Woods R P, Grafton S T, Holmes C J, et al. Automated Image Registration: General Methods and Intrasubject, Intramodality Validation.Journal of computer assisted tomography, 1998, 22(1): 139-152
    87 Philippe T, Ruttimann U E, Michael U, et al. A Pyramid Approach to Subpixel Registration Based on Intensity.IEEE Transactions on Image Processing, 1998, 7(1):27-41
    88 Liu Y H. Improving ICP with easy implementation for free-form surface matching. Pattern Recognition, 2004, 37:211-226
    89 Cao Z J, Pan S Y, Li R, et al.Registration of medical images using an interpolated closest point transform method and validation. Medical Image Analysis, 2004, 8:421-427
    90 Williams J, Bennamoun M. Simultaneous Registration of Multiple Corresponding Point Sets. Computer Vision and Image Understanding, 2001, 81:117-142
    91 Rohr K, Stiehl H S, Sprengel R, et al. Landmark-based elastic registration using approximating thin-plate splines. IEEE Ttansactions on Medical Imaging, 2001, 20(6):526-534
    92 Haikel S A, Mohamed K. Multi-resolution image registration using multi-class Hausdorff fraction. Pattern Recongnition Letters, 2002, 23:279-286
    93 Arun K S, Huang T S, Blostein S D.Least-Squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):698-700
    94 Michel A A, Frank P F, Terry M P.An algorithmic overview of surface regist.Medical Image Analysis, 2000, 4:201-217
    95 张二虎,卞正中,张燕等.基于ICP和SVD的视网膜图像特征点配准算法.小型微型计算机统,2004,28(10):1811-1813
    96 Besl P J, Mckay N D.A method for registration 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256
    97 杨福生.小波变换的工程分析与应用.北京:科学出版社,1999.
    98 Mallat S, Hwang W L. Singularity detection and processing with wavelets.IEEE Transactions on Information Theory, 1992, 38(2):617-643
    99 纪凤欣.基于断层图像的几何重建理论与技术研究.大连:大连理工大学博士论文,2001
    100 章国宝,叶桦,陈维南.基于正交小波变换的多尺度边缘提取.中国图像图形学报,1998,3(8):651-654
    101 施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社,2001
    102 Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision. 1987, 1(4):321-331
    103 Cohen L D. On active contour models and balloons.CVGIP:Image Understand. 1991, 53(2):211-218
    104 Caselles V, Catte F, ColIT, et al.A geometric model for active contours in image processing.Numerische Mathematik. 1993, 66(1):1-31
    105 Xu C Y, Prince J L.Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processng, 1998, 7(3):359-369
    106 Xu C Y; Prince J L.Gradient vector flow:a new extemal force for snake. IEEE Proceedings Conference on Computer Vision and Pattern Recognition (CVPR'97):66-71
    107 Caselles V, Kimmel R, Sapiro G. On geodesic active contours.International Journal of Computer Vision, 1997, 22(1):61-79
    108 朱心雄等.自由曲线曲面造型技术.北京:科学出版社,1999
    109 仵大伟.船体曲面表达与三维船舶设计研究.大连:大连理工大学博士论文,2002
    110 Wang X F, Cheng F H, Barsky B A. Energy and B-spline interproximation.Computer aided design, 1997, 29(7):485-496
    111 Wu W Y.An adaptive method for detecting dominant points.Pattern Recognition. 2003, 36:2231-2237
    112 Wu W Y. Dominant point detection using adaptive bending value.Image and Vision Computing. 2003, 21:517-525.
    113 叶铭,于力牛,王成焘.目标组织轮廓的三次非均匀B样条逼近.上海交通大学学报,2003,37(5):729-733
    114 Hu M K.Visual pattern recognition by moment invariants.IEEE Transactions on Information Theory, 1962, 8(2): 179-187
    115 Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP: Graphical Models and Image Processing 1992, 54(5):438-460
    116 Alpert N M, Bradshaw J F, Kennedy D, et al.The principal axis transformation-a method for image registration. Journal of nuclear medicine, 1990, 31:1717-1722
    117 Dai X L, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2351-2362
    118 Anand R, James S D. Matching point features using mutual information. IEEE Transactions on Medical Imaging.2001, 2(6): 1-10
    119 张二虎,卞正中.基于最火熵和互信息最大化的特征点配准算法.计算机研究与发展,2004,41(7):1194-1198
    120 Anand R, Haili C, James S D. Rigid point feature registration using mutual information.1999, 3(4):425-440
    121 Osher S, Sethian J A. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 1988, 79(1): 12-49
    122 Sethian J A. Level Set Methods and Fast Marching Methods.Cambridge University Press, 1999
    123 Appleton B, Talbot H. Globally Optimal Geodesic Active Contours. Journal of Mathematical Imaging and Vision, 2005, 23:67-86
    124 Sagiv C, Sochen N, Zeevi YY. Geodesic Active Contours Applied to Texture Feature. LNCS 2106, 2001:344-352
    125 Liu H F, Chen Y, Ho H P, et al.Geodesic Active Contours with Adaptive Neighboring Influence. MICCAI (2)2005:741-748
    126 Dalsteinsson A, Sethian J. A fast level set method for propagating interface.Journal of Computational Physics, 1995, 118:269-277
    127 Chopp D L. Computing minimal surfaces via Level Set curvature flow. Journal of Computational Physic, 1993, 106:77-91
    128 Sethian J A. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 1996, 93(4): 1591-1595
    129 刘新.几何变形模型分析以及在医学图像分割中的应用研究.山东青岛:青岛大学,2006
    130 Montgomery K, Ross M. Improvements in semiautomated serial-section reconstruction and visualization of neural tissue from TEM images.SPIE Electronic Imaging, 3D Microscopy conference proceedings. 1994;2184(1):264-267
    131 Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces. Journal of Computer Physics, 1995, 118(2):269~277
    132 Chan T, Vese L.Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266—277
    133 Zhao H, Chart T, Merriman B, et al. A variational level set approach to multiphase motion.Journal of Computational Physics, 1996, 127:179-185
    134 Boehm W.Inserting new knots into B-spline curves.Computer Aided Design, 1980, 12(4): 199-201
    135 Boehm W, Prautzsch H. The insertion algorithm.Computer Aided Design, 1985, 17(2):58-59
    136 Piegl L A, Tiller W. Reducing control points in surface interpolation.IEEE Computer Graphics and Applications, 2000, 9:70-74
    137 Park H. Lofted B-spline surface interpolation by linearly constrained energy minimization. Computer Aided Design.2003, 35:1261-1268
    138 金泉,覃继宁,张荻,等.颗粒和纤维混杂增强复合材料力学性能的三维有限元模拟.复合材料学报,2006,23(2):14-20
    139 邸海涛.关于刚体图像与非刚体图像的配准.西安:西安电子科技大学
    140 Schroeder V, Gilbert C J, Ritchie R O, et al. Failure phenomena in two-dimensional multi-fibre model composites:5.A finite element study.Composites Part A, 1998, 29(9):1121-1135
    141 Lorca J L, Segurado J.Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites. Materials Science and Engineering A, 2004, 364:267-274
    142 Prokop R J, Reeves A P. A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition. 1992, 54(5): 438-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700