面向智能移动机器人的定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传感器、计算机和人工智能等技术的不断发展,具有思维、感知和动作能力的地面智能移动机器人在军事、民用和科学研究中得到了广泛的应用。其发展对国防、社会、经济和科学技术具有重大的影响力,已成为各国高科技领域的战略性研究目标。地面智能移动机器人能够成功完成任务的一个基本条件是能够在其所处环境中进行自主导航,而自主导航就必然要求它们能够进行自主定位。本文主要针对面向智能移动机器人的定位技术进行相关研究,使地面智能移动机器人在各种复杂环境下具有很好的自定位能力,具体的研究内容包括以下几个方面:
     地面智能移动机器人定位系统的主要功能是能够精确地确定其在地球表面的参考位置,而坐标系统是描述地面智能移动机器人运动,处理观测数据和表达其位置的数学和物理基础,论文首先讨论了地面智能移动机器人定位中常用的坐标系统,深入研究了WGS-84空间直角坐标、WGS-84大地坐标、高斯平面直角坐标以及机器人平面直角坐标之间的相互转换关系。
     介绍了GPS载波相位基本观测方程,在此基础上推算了载波相位双差GPS的坐标解算模型。为了保证差分GPS技术在大区域范围内的定位精度,研究了基于虚拟参考站(VRS)的差分GPS技术,详细推算了虚拟参考站上的双差观测值和单差观测值的生成算法。
     针对基于差分GPS/DR的组合定位问题,提出了一种尺度无色变换扩展卡尔曼滤波(SUT-EKF)算法,由于差分GPS/DR组合定位系统中的状态方程是非线性的,并且观测方程是线性的特点,将SUT预测移动机器人位姿,利用EKF融合最新观测值更新机器人位姿,该算法在状态预测阶段避免了计算Jacobian矩阵,从而有效地减小了线性化对非线性系统误差的影响。
     提出了一种基于尺度无色变换和迭代扩展卡尔曼滤波(SUT-IEKF)的同时定位与地图创建(SLAM)算法。由于数据关联对机器人的定位精度起着至关重要的作用,尤其是基于EKF的SLAM算法对错误的数据关联非常敏感,一种基于多算法匹配(MAM)的数据关联方法被提出,该算法利用粒子采样技术,将移动机器人位姿和特征地图位置联合概率分布以多个等权的粒子表示,各粒子进行独立的同时定位与地图创建,在相同观测数据的基础上,采用不同的数据关联方法,将会得到不同的关联集合,最后计算各关联集合的交集并作为这一观测的数据关联结果。
     研究了一种混合滤波的SLAM算法,并利用统计理论对其进行一致性评估,该算法框架利用粒子滤波技术将机器人SLAM中的联合后验概率分布因式分解为机器人路径部分及以机器人路径为条件的地图部分,使滤波器变成低维滤波,能够有效地提高计算效率,采用约束的无色卡尔曼滤波(CUKF)算法并融合新的观测数据使提议分布更加接近后验概率分布,并且能够精确估计移动机器人的位姿,进而通过扩展卡尔曼滤波(EKF)算法更新特征地图的位置。
     研究了分布式的多机器人协作定位方法,利用分布式的无色卡尔曼滤波(UKF)算法融合各机器人提供的相对观测信息,获取机器人的精确位置。详细讨论基于分布式无色粒子滤波(UPF)的多机器人协作同时定位与地图创建(C-SLAM)方法,在机器人群中,每个机器人运行一个粒子滤波器。当机器人群中某个机器人无法探测到特征地图,则可以通过航位推算估计自身的位置,但其精度非常有限,为了提高其定位精度,它可以与其它能够观测到特征地图的机器人进行相对观测,如果他们能进行连续的相对观测并进行连续的相对信息的交换,从而构建虚拟观测量(VO),通过虚拟观测量进行C-SLAM,有效提高定位精度。
     本文最后对全文进行了总结,并对未来进一步工作指出了探索的方向。
With the development of sensor, computer and artificial intelligence, the ground intelligent mobile robot with idea, apperception and action capability has been used widely in the field of military affairs, civil and scientific research. Its development has imposing on the defense, society, and academy, and becomes the tactic research object of high technology of all countries. In order to finish tasks successfully, one of basic conditions for the ground intelligent mobile robot is the autonomous navigation in its environment and the autonomous navigation need to locate itself. This dissertation is focused on localization technology for the intelligent mobile robot, which makes the ground intelligent mobile robot have a better autonomous localization capability in all kinds of complex environment. The main content of this dissertation include the following aspects:
     The main function of the localization system for the ground intelligent mobile robot is to ascertain its referenced localization on the surface of earth. The coordinate system is the mathematics and physics foundation to describe the motion of ground intelligent mobile robot, deal with observation data and show its localization. The usual coordinate systems in ground intelligent mobile robot localization are discussed at first. The WGS-84 spacial orthogonal coordinate system, WGS-84 geodetic coordinate system, Gauss plane orthogonal coordinate system and robot plane orthogonal coordinate system can be translated with each other.
     The GPS carrier wave phasic observation function is introduced and based on which the double differential GPS coordinate computation model is deduced. In order to ensure differential GPS localizition precision in a large zone, the algorithm of differential GPS is researched based on virtual referene station (VRS). The single and double differential observation data on VRS is deduced detailedly.
     Aiming at the integrated localization issue based on differential GPS/DR, an algorithm based on scale unscented transformation and extended kalman filter (SUT-EKF) is presented. For the characteristic of nonlinear state equation and linear measurement equation in the integrated localization system based on differential GPS/DR, the robot location can be predicted by SUT and can be updated with new observations by EKF. The algorithm doesn't compute the Jacobian matrix, it can decrease effectively the error of nonlinear system brought by the linearization.
     An algorithm for simultaneous localization and mapping (SLAM) based on scale unscented transformation and iterative extended kalman filter (SUT-IEKF) is presented. Data association plays an important role in the precision of robot localization, especially, the algorithm of SLAM based on EKF is very frail to the wrong data association. A data association method based on multi algorithm matching is proposed. It uses equal weight particles to denote the joint probability distribution of the robot and feature map. Each of particles applies different data association algorithm and gets different data association set during SLAM, the intersecting set of all sets is taken as the objective set.
     An algorithm for SLAM based on combined filter is researched and use the statistic theory to evaluate the consistency. It decompose the joint posterior probability distribution into robot path part and feature map part through the particle filter, which make the filter become low dimensional filter and can improve the computational efficiency. The constrained unscented kalman filter (CUKF) make the proposal distribution much closer to the posterior probability distribution with new observations and the robot pose can be estimated accurately. The extended kalman filter (EKF) is used to update the feature map localization.
     The method about distributed multi robot cooperative localization is discussed. The accurate robot localization can be acquired using distributed unscented kalman filter (UKF) fused with other robots'relative observation information. An algorithm for cooperative simultaneous localization and mapping (C-SLAM) based on distributed unscent particle filter (UPF) is described. Each of robots runs an UPF. When one member of the team may not observe the landmarks, it can estimate its pose through dead-reckoning, but the precision is too limited. In order to improve the precision, a novel approach is to let the robot observe other robot with better landmarks observations and get the relative observations. Let they keep continuous relative observations and continuously exchange relative information. The robot can construct Virtual Observations (VO) with the relative observations and perform C-SLAM based on VO, which can improve effectively the localization precision.
     Finally, we summarize the general work of this dissertation and give a short outlook on possible future research.
引文
[1]Meyrowitz A L, Blidberg D R, Michelson R C. Autonomous vehicles. Proceedings of IEEE,1996,84(8):1147-1194
    [2]Nilsson N J. Shakey the robot. AI Center, SRI International,1984
    [3]Andresen F, Davis L. Visual algorithms for autonomous navigation. Proceedings of IEEE International Conference on Robotics and Automation,1985,856-861
    [4]Lowire J M. Autonomous land vehicle (ALV) preliminary road-following demonstration. Proceedings of SPIE Intelligent Robots and Computer Vision,1985
    [5]Lowire J M. Autonomous land vehicle program update:1987 update. Proceedings of SPIE Mobile Robot Conference,1986, Cambridge:MA
    [6]郭剑辉.移动机器人同时定位与地图创建方法研究.2008,南京理工大学:南京
    [7]Turk M A, Morganthaler D G, Gremban K D, et al. VITS-A vision system for autonomous land vehicle navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988,10(3):342-361
    [8]Herbet M, Kanade T. Outdoor scene analysis using range data. Proceedings of IEEE Conference on Robtics and Automation,1986:1426-1432
    [9]Dunlay T R, Steven B S. Parallel off-road perception processing on the autonomous land vehicle. Proceedings of SPIE Mobile Robots Ⅲ,1988:40-48
    [10]Dunlay R T, Morgenthaler D G. Obstacle avoidance on roadways using range data. Proceedings of SPIE on Mobile Robots,1986:110-116
    [11]Dunlay R T. Obstacle avoidance perception processing for the autonomous land vehicle. Proceedings of IEEE Conference on Robotics and Automation,1988:912-917
    [12]Sharma U K, Davis L S. Road following by an autonomous vehicle using range data. IEEE Transactions on Robotics and Automation,1988. RA-4(5):515-523
    [13]Nitao J J. Computer modeling:a structured light vision system for a Mars rover. In SPIE Vol.1195 Mobile Robots Ⅵ,1990:168-177
    [14]Croquist D. Development of a martian surface model for simulation of vehicle dynamic and mobility. In SPIE On Mobile Robots Ⅳ,1989:157-167
    [15]Larsen K L, Olson K. Intersection navigation for unmanned ground vehicles. In SPIE Vol 2738,1996:14-25
    [16]Balch T, Arkin R C. Communication in Reactive Multiagent Robotics System. Autonomous Robots,1994.1(1):27-52
    [17]Shoemaker C M, Bomstein J A. Overview of the Demo Ⅲ UGV program. In Part of the SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Technology,1998:202-211
    [18]Thrun S. Winning the DARPA Grand Challenge. Machine Learning:ECML 2006, Springer Berlin/Heidelberg
    [19]Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley:the robot that won the DARPA grand challenge. Journal of Field Robotics,2006,23(9):661-692
    [20]Urmson C, Ragusa C, Ray D, et al. A robust approach to high-speed navigation for unrehearsed desert terrain. Journal of Field Robotics,2006,23(8):467-508
    [21]Matthies L, Xiong Y, Hogg R, et al. A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems,2002,40(2-3):163-172
    [22]Goldberg S B, Maimone M W, Matthies L. Stereo vision and rover navigation software for planetary exploration. In Proceedings of the 2002 IEEE Aerospace Conference.2002: 5-2025-5-2036
    [23]Gregor R, Lutzeler M, Pellkofer M et al. EMS-Vision:A perceptual system for autonomous vehicles, Proceedings of the IEEE Intelligent Vehicles Symposium,2000: 52-57
    [24]Broggi A, Bertozzi M, Fascioli A, et al. Visual perception of obstacles and vehicles for platooning, IEEE Transactions on Intelligent Transportation Systems,2000,1(3): 164-176.
    [25]Broggi A, Bertozzi M, Fascioli A, etal. The ARGO autonomous vehicle's vision and control systems, International Journal of Intelligent Control and Systems 1999,3(4): 409-441.
    [26]Takahashi A, Asanuma, N. Introduction of HONDA ASV-2 (advanced safety vehicle-phrase 2). Proceedings of the IEEE Intelligent Vehicles Symposium,2000: 694-701.
    [27]杨晶东.移动机器人自主导航关键技术研究.2008,哈尔滨工业大学:哈尔滨
    [28]张朋飞,何克忠,欧阳正拄等.多功能室外智能移动机器人实验平台-THMR-Ⅴ机器人,2002,24(2):97-101.
    [29]王荣本,储江伟等.一种视觉导航的实用型AGV设计.机械工程学报,2002,38(11):135-138
    [30孙振平,安向京,贺汉根CITAVT-Ⅳ—视觉导航的自主车.机器人,2002,24(2):115-121
    [31]Li Q, Zheng N, Cheng H. Springrobot:a prototype autonomous vehicle and its algorithms for lane detection. IEEE Transactions on Intelligent Transportation Systems, 2004,5(4):300-308
    [32]Leanard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation,1991,7(3):376~382
    [33]武二永.基于视觉的机器人同时定位与地图构建.2007,浙江大学博士学位论文:杭州
    [34]Borenstein J, Feng L. Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation,1996,12(6):869~880
    [35]Borenstein J, Feng L. UMBmark:a method for measuring, comparing, and correcting dead-reckoning errors in mobile robots. Technical Report UM-MEAM-94-22, University of Michigan,1994
    [36]Barshan B, Durrant-White H F. Orientation estimate for mobile robots using gyroscopic Information. Proceedings of 1994 IEEE International Conference on Intelligent Robots and Systems (1ROS'94), Munchen, Germany,1994:1867~1874
    [37]Chong K S, Kleeman L. Sonar based map building for a mobile robot. In Proceedings of the 1997 IEEE International Conference on Robotics and Automation,1997:1700~1705
    [38]Louchene A, Bouguechal N E. Positioning errors consideration for indoor mobile robot design. Industrial Robot,2003,30(2):170~176
    [39]Borenstein J. Experimental results from internal odometry error correction with the OmniMate mobile robot. IEEE Transactions on Robotics and Automation,1998, 14(6):963~969
    [40]Borenstein J. Internal correction of dead-reckoning errors with the smart encoder trailer. In International Conference on Intelligent Robots and Systems (1ROS'94)-Advanced Robotic Systems and the Real World.Munich, Germany.1994:127~134
    [41]Goel P, Roumeliotis S I, Sukhatme G S. Robust localization using relative and absolute position estimates. In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems.1999:1134~1140
    [42]Borenstein J, Feng L Q. Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation,1996,12(6):869~880
    [43]张涛,杨殿阁,李克强等.车辆导航中带匹配度反馈的模糊地图匹配算法.清华大学学报(自然科学版),2009,49(2):277-280
    [44]Xiang Z Y, Liu J L. Initial localization for indoor mobile robots using a 2D laser range finder. In Proceeding of SPIE Vol.4573 mobile robot XVI, Douglas W. Gage, 2002:168-177
    [45]Xu Z Z, Liang R H, Liu J L. Global localization based on corner point.In IEEE
    International Symposium on Computational Intelligence in Robotics and Automation, 2003:843-847
    [46]张辉,渠瀛,海丹等.基于聚类匹配的移动机器人地图实时创建方法.计算机应用,2009,29(8):2116-2119
    [47]Lee J, Ko H. Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments. Pattern Recognition Letters,2008,14(29):1934-1940
    [48]刘萍萍,赵宏伟,藏雪柏等.移动机器人定位图像匹配的快速局部特征算法.仪器仪表学报,2009,30(8):1714-1719
    [49]Shimshoni I. On mobile robot localization from landmark bearings.IEEE Transactions on Robotics and Automation,2002,18(6):971~976
    [50]Betke M, Gurvits L. Mobile robot localization using landmarks. IEEE Transactions on Robotics and Automation,1997,13(2):251-263
    [51]李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述.机器人,2003,25(6):560~573
    [52]Kleeman L. Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. IEEE International Conference on Robotics and Automation,1992,2582-2587
    [53]Leonard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation,1991,7(3):376-382
    [54]张祥德,董再励等.基于测角的自主移动机器人定位算法.东北大学学报,2002,23(12):1143-1146
    [55]Kurazume R, Nagata S, Hirose S. Cooperative positioning with multiple robots. In Proceedings of the IEEE International Conference on Robotics and Automation,1994,2: 1250-1257
    [56]Kosaka A. Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. Computer Vision, Graphics, and Image Proeessing-Image Understanding,1992,56(3):271—329
    [57]Meng M, Kak A C. Mobile robot navigation using neural networks and nonmetrical environment models. IEEE Control Systems,1993:30-39
    [58]Meng M, Kak A C. NEURO-NAV:A neural networks based architecture for vision-guided mobile robot navigation using non-metrical models of the environment. In Proceedings IEEE International Conference Robotics and Automation,1993,750-757
    [59]Pan J, Pack D J, Kosaka A, et al. FUZZY-NAV:A vision-based robot navigation architecture using fuzzy inference for uncertainty-reasoning. In Proceedings IEEE World Congress Neural Networks,1995,602-607
    [60]Turk M A, Morganthaler D G. VITS-A vision system for autonomous land vehicle navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988, 10(3):342-361
    [61]Regensburger U, Graefe V. Visual recognition of obstacles on roads. In Proceedings IEEE International Conf. Intelligent Robots and Systems,1994,980-987
    [62]Graefe V. Vision for autonomous mobile robots. In Proceedings IEEE Workshop Advanced Motion Control,1992,57-64
    [63]王玲.未知环境中基于相对观测量的多机器人合作定位研究.2006,国防科学技术大学:长沙
    [64]项志宇.基于激光雷达的移动机器人障碍检测和自定位.2002,浙江大学博士学位论文:杭州
    [65]董再励,王光辉,田彦涛等.自主移动机器人激光全局定位系统研究.机器人,2000,22(3):207~210
    [66]Hoppen P, Knieriemen T, Puttkmaer E V. Laser-radar based mapping and navigation for autonomous mobile robot. In Proceedings of the IEEE International Conference on Robotics and Automation,1990,948—953
    [67]Buchberger M, Jorg K W, Von Puttkamer E. Laser radar and sonar based world modeling and motion control for fast obstacle avoidance of the autonomous mobile robot MOBOT-Ⅳ. Proceedings of the IEEE International Conference on Robotics and Automation,1993,534-540
    [68]Borthwick S, Stevens M, Durrant-Whyte H F. Position estimation and tracking using optical range data. Proceedings of the IEEE/RS J International Conference on Intelligent Robots and Systems,1993,2172—2177
    [69]Vandopre J, Xu H, Van Burssel H, Aertbelien E. Positioning of the mobile robot LiAS using natural landmarks and a 2D range finder. In Proceedings of the IEEE International Conefernce on Multisensor Fusion and Integration for Intelligent Systems, Washington, DC,1996,257-264
    [70]Jenseflt P. Approaches to mobile robot localization in indoor environments.2001, PhD thesis, Royal Institute of Technology, Stockholm:Sweden
    [71]厉茂海,洪炳熔.移动机器人的概率定位方法研究进展.机器人,2005,27(4):380-384
    [72]Jensfelt P. Approaches to mobile robot localization in indoor environments.2001, PhD thesis, Sweden Royal Institute of Technology
    [73]Burgard W, Derr A, Fox D. Integrating global position estimation and position tracking for mobile robots:the dynamic Markov localization approach. In Proc. IEEE/RSJ International Conference on Intelligent Robots and System,1998:730-735
    [74]Wu Q, Bell D A, et al. Rough computational methods on reducing cost of computation in Markov localization for mobile robots. In Proceedings the 4th World Congress on Intelligence Control and Automation,2002:1226-1230
    [75]Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking. IEEE Transactions on Signal Processing,2002,50(2):425-437
    [76]刘国良,强文义.移动机器人信息融合技术研究.哈尔滨工业大学学报,2003,35(7):802-805
    [77]Negenborn R. Robot localization and kalman filters. Dutch Utrecht University,2003
    [78]Gutmann J S, Weigel T, Nebel B. A fast, accurate, and robust method for self-localization in polygonal environments using laser range finders. Advanced Robotics Journal,2001, 14(8):651-667
    [79]Locchi L, Mastrantuono D, Nardi D. A probabilistic approach to Hough localization. In International Conference on Robotics and Automation, Seoul, Korea,2001:4250-4255
    [80]Leonard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation,1991,7(3):376-382
    [81]Jensfelt P, Christensen H I. Laser based pose tracking. In proceedings of IEEE International Conference on Robotics and Automation,1999:2994-3000
    [82]Wada M, Yoon K S, Hashimoto H. High accuracy road vehicle state estimation using extended Kalman filter. In Proceedings of 3rd IEEE International Conference on Intelligent Transportation Systems,2000:282-287
    [83]吴伟.基于二维地图匹配的机器人定位关键技术研究.2006,东北大学博士学位论文:长春
    [84]王玲,邵金鑫,万建伟.基于相对观测量的多机器人定位.国防科技大学学报,2006,28(2):67-72
    [85]Guivant J,Nebot E. Compressed filter for real time implementation of simultaneous localization and map building. In Aarne Halme, Raja Chatila, and Erwin Prassler, editors, International Conference on Field and Service Robots,2001:309-314
    [86]Leonard J L, Carpenter R N, and Feder.H.J.S. Stochatic mapping using forward look sonar. Robotica,2001,19:467-480
    [87]Smith R C, Cheesman P. On the representation of spatial uncertainty. The International Journal of Robotics Research,1986,5(4):56-68
    [88]Durrant-Whyte H. Uncertain geometry in robotics. IEEE Transactions Robot Automation, 1988,4(1):23-31
    [89]Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics. In I.J. Cox and G.T. Wilfon, editors, Autonomous Robot Vehicles, Springer-Verlag,1990: 167-193.
    [90]Leonard J.J and Durrant-Whyte. H.F. Directed Sonar Navigation. Kluwer Academic Press,1992
    [91]Rencken W D. Concurrent localization and map building for mobile robots using ultrasonic sensors. In Proceedings IEEE International Workshop on Intelligent Robots and Systems (IROS),1993:2129-2197
    [92]Durrant-Whyte H, Rye D, Nebot E. Localization of automatic guided vehicles. The 7th International Symposium Robotics Research,1996.613~625
    [93]Csorba M. Simultaneous localization and map building. PhD thesis, University of Oxford, 1997
    [94]Csorba M, Durrant-Whyte H F. New approach to simultaneous localization and map building. In Proceedings of SPIE Navigation and Control Technologies for Unmanned Systems, Orlando,1996:26-36
    [95]Hollerbach J, Koditscheck D. Robotics research. The 9th International Symposium (ISRR'99). Springer Verlag,2000
    [96]Castellanos J A, Martnez J M, Neira J, Tardos J D. Experiments in multisensor mobile robot localization and map building. In Third IFAC Symposium on Intelligent Autonomous Vehicles,1998:173-178
    [97]Castellanos J A, Tardos J D, Schmidt G. Building a global map of the environment of a mobile robot:The importance of correlations. In IEEE International Conference on Robotics and Automation,1997:1053-1059
    [98]Leonard J J, Feder H J S. A computational efficient method for large-scale concurrent mapping and localisation. In J. Hollerbach and D. Koditscheck, editors, Robotics Research, The Ninth International Symposium (ISRR'99), Springer Verlag,2000: 169-176
    [99]Guivant J, Nebot E, Baiker S. Localization and map building using laser range sensors in outdoor applications. Journal of Robotic Systems,2000,17(10):565-583
    [100]Williams S B, Newman P, Dissanayake G, Durrant-Whyte H. Autonomous underwater simultaneous localisation and map building. In Proc. IEEE International Conference on Robotics and Automation (ICRA), San Francisco, USA, April 2000:1793-1798
    [101]Bailey T, Nieto J, Guivant J, Stevens M, Nebot E. Consistency of the EKF-SLAM
    algorithm. IEEE/RSJ International Conference on Intelligent Robots and Systems,2006: 3562-3568
    [102]Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation,2001,17(3):242-257
    [103]Dissanayake M, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001,17(3):229-241
    [104]Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems. Proceeding of the American Control Conference, Seattle, Washington, 1995:1628-1632
    [105]Julier S J. The scaled unscented transformation. Proceedings of the American Control Conference, Anchorage, AK,2002:4555-4559
    [106]Julier S J, Uhlmann J K. A new extension of the kalman filter to nonlinear systems. Proceeding of the SPIE (vol.3068), Bellingham, WA, USA:SPIE,1997:182-193
    [107]Wan E A, Merwe V D R. The unscented kalman filter for nonlinear estimation. Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control (AS-SPCC), Lake Louise, Alta., Canada,2000:153-158
    [108]Dellaert F, Fox D, Burgard W, et al. Monte Carlo localization for mobile robots.Proceedings of the 1999 IEEE International Conference on Robotics and Automation,1999:1322-1328
    [109]Koller D, Fratkina R. Using learning for approximation in stochastic processes. Proceedings of 1998 ICML, Stanford, CA, USA,1998
    [110]Kwok C, Fox D, Meila M. Adaptive real-time particle filters for robot localization. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Washington DC,2003:2836-2841
    [111]Thrun S, Fox D, Burgard W. Monte Carlo localization with mixture proposal distribution. Proceedings of AAAI-2000, Austin,2000
    [112]Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo localization for mobile robots. Artificial Intelligence,2001,128:99-141
    [113]Murphy K. Bayesian map learning in dynamic environments. In Advances in Neural Information Processing Systems (NIPS),2000:1015-1021
    [114]Doucet A, Freitas N de, Murphy K, et al. Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,2000:176-183
    [115]Montemerlo M, Thrun S, Koller D, et al. FastSLAM 2.0:an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. Proceedings of the International Conference on Artificial Intelligence, California, CA, USA:IJCAI,2003.1151-1156
    [116]Montemerlo M, Thrun S, Koller D, et al. FastSLAM:A factored solution to the simultaneous localization and mapping problem. Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada,2002.593-598
    [117]郭剑辉,赵春霞,陆剑峰,et al. Rao-Blackwellised粒子滤波SLAM的一致性研究.系统仿真学报,2008,20(23):6401-6405
    [118]Bailey T, Nieto J, Nebot E. Consistency of the FastSLAM algorithm. Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA: IEEE,2006,424-429
    [119]Klaas M, Freitas N de, Doucet A. Toward practical N2 Monte Carlo:The marginal particle filter. Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, UK:AUAI,2005:308-315
    [120]Leonard J J, Feder H J S. Decoupled stochastic mapping. IEEE Journal of Oceanic Engineering,2001:561-571
    [121]Williams S B, Dissanayake G, Durrant-Whyte H. An efficient approach to the Simultaneous Localization and Mapping problem. IEEE International Conference on Robotics and Automation,2002,406-411
    [122]Chong K S, Kleeman L. Large scale sonarray mapping using multiple connected local maps. Field and Service Robotics,1997:507-514
    [123]Eustice R, Walter M, Leonard J. Sparse extended information filters:insights into sparsification. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.3281-3288
    [124]Liu Y F, Thrun S. Results for outdoor-SLAM using sparse extended information filters. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan,2003,1227-1233
    [125]董海巍,陈卫东.基于稀疏化的快速扩展信息滤波SLAM算法.机器人,2008,30(3):193~200
    [126]Wijesoma W S, Perera L D L, Adams M D. Toward multidimensional assignment data association in robot localization and mapping. IEEE Transactions on Robotics, April 2006,22(2):350-365
    [127]Bailey T. Mobile Robot Localization and Mapping in Extensive Outdoor Environments. The doctoral thesis of Sydney University,2002
    [128]Neira J, Tardos J D. Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation,2001,17(6):890-897
    [129]Davey S J. Simultaneous Localization and map building using the probabilistic multi-hypothesis tracker. IEEE Transactions on Robotics,2007,23(2):271-280
    [130]Nieto J, Guivant J, Nebot E, et al. Real time data association for FastSLAM. IEEE International Conference on Robotics and Automation, Taipei, Taiwan,2003,412-418
    [131]Perera L D L, Wijesoma W S, Adams M D. Data association in dynamic environments using a sliding window of temporal measurement frames. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Alberta, Canada,2005.753-758
    [132]Chong K S, Kleeman L. Mobile robot map building from an advanced sonar array and accurate odometry. International Journal of Robotics Research,1999,18(1):20-36
    [133]Leonard J J, Durrant-Whyte H F, Cox I J. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research,1992,11(4):286-298
    [134]Aycard O, Charpillet F, Fohr D, Mari J F. Place learning and recognition using hidden markov models. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,1997,1741-1747
    [135]Simmons R, Koenig S. Probabilistic robot navigation in partially observable environments. International Joint Conference on Artificial Intelligence,1995: 1080-1087
    [136]周忠谟,易杰军,周琪.GPS卫星测量原理与应用.第2版.北京:测绘出版社,2002
    [137]朱华统,杨元喜,吕志平.GPS坐标系统的变换.北京:测绘出版社,1994
    [138]岳建平.工程测量.北京:科学出版社,2006
    [139]孔祥元,郭际明,刘宗泉.大地测量学基础.武汉:武汉大学出版社,2001
    [140]廖向前,邓强,黄顺吉.GPS与电子地图的坐标匹配问题研究.系统工程与电子技术,1998,11:78-81
    [141]冯宝红,王庆,万德钧.GPS车载导航中的坐标转换.中国惯性技术学报,2002,1O(6):29-33
    [142]刘基余.GPS卫星导航定位原理与方法.北京:科学出版社,2003
    [143]潘树国,王庆,王慧青.基于VRS的GPS实时差分研究与测试.电子测量与仪器学报,2006,20(6):21-25
    [144]喻国荣,王庆,彭慧.多参考站网络的虚拟观测值生成算法.东南大学学报(自然科
    学版),2007,37(6):1113-1116
    [145]Wei E H, Chai H, Liu J N, et al. On the generation algorithm of VRS virtual observations. Geo-spatial Information Science,2007,10(2):91-95
    [146]Wanninger L. Virtual Reference Stations (VRS). GPS Solutions,2003(7):143-144
    [147]Hu G R, Khoo V, Pong G, Choi L. Performance of singapore integrated multiple reference station network (SIMRSN) for RTK positioning. GPS solutions,2002 (6):65-71
    [148]陈树新.GPS整周模糊度动态确定的算法及性能研究.2002,西北工业大学:西安
    [149]罗孝文,欧吉坤.中长基线GPS网络RTK模糊度快速解算的一种新方法.武汉大学学报(信息科学版),2007,32(2):156-159
    [150]Han S. Carrier phase-based long-range GPS kinematic positioning. The University of New South Wales, Sydney, Australia,1997
    [151]Huang J H, Tan H S. A low-order DGPS-based vehicle positioning system under urban environment. IEEE/ASME Transactions on Mechatronics,2006,11(5):567-575
    [152]Qi H H, Moore J B. Direct kalman filtering approach for GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):687-693
    [153]Huang J, Tan H S. DGPS/INS-based vehicle positioning with novel DGPS noise processing. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA,2006,3966-3971
    [154]Ragel B, Farooq M. DGPS aided INS navigation for AUV. The 47th IEEE International Midwest Symposium on Circuits and Systems,2004:407-410
    [155]Julier SJ, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE,2004,92(3):401-422
    [156]Ashokaraj I, Tsourdos A, Silson P, et al. Sensor based robot localization and navigation: Using interval analysis and unscented kalman filter. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2004, Sendai, Japan,7-12
    [157]厉茂海,洪炳熔.移动机器人同时定位与地图创建的一种新方法.南京理工大学学报(自然科学版),2006,30(3):303-305
    [158]Thrun S, Fox D, Burgard W. Probabilistic algorithms and the interactive museum tour-guide robot Minerva. The International Journal of Robotics Research,2000,19(11): 972-999
    [159]Thrun S, Burgard W,Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots. Autonomous Robots,1998,5 (3-4):253-271
    [160]Castellanos J A,Neira J, Tardos J D. Multisensor fusion for simultaneous localization
    and map building. IEEE Trans on Robotics and Automation,2001,17 (6):908-914
    [161]Tim B. Mobile robot localisation and mapping in extensive outdoor environments. Australian Centre for Field Robotics, University of Sydney,2002
    [162]Zhang S, Xie L H, Adams M. An efficient data association approach to simultaneous localization and map building. IEEE International Conference on Robotics and Automation,2004(1):854-859
    [163]郭剑辉,赵春霞,石杏喜.一种改进的联合相容SLAM数据关联方法.仪器仪表学报,2008,29(11):2260-2265
    [164]黄庆成,洪炳熔,厉茂海等.基于主动环形闭合约束的移动机器人分层同时定位和地图创建.计算机研究与发展,2007,44(4):636-642
    [165]厉茂海,洪炳熔,罗荣华.用改进的Rao-Blackwellized粒子滤波器实现移动机器人同时定位和地图.吉林大学学报(工学版),2007,37(2):401-406
    [166]姚剑敏.粒子滤波跟踪方法研究.2004,中国科学院长春光学精密机械与物理研究所:长春
    [167]Liu J S, Chen R. Sequential monte carlo methods for dynamic systems. Journal of the American Statistical Association,1998,93:1032-1044
    [168]Kitagawa G. Monte carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics,1996,5(1):1-25
    [169]Wang X, Zhang H. A UPF-UKF framework for SLAM. IEEE International Conference on Robotics and Automation Roma:2007,1664-1669
    [170]郭剑辉,赵春霞.一种新的粒子滤波SLAM算法.计算机研究与发展,2008,45(5):853-860
    [171]石杏喜,赵春霞,郭剑辉.基于PF/CUKF/EKF的移动机器人SLAM框架算法.电子学报,2009,37(8):1865-1868
    [172]Simon D, Tien L C. Kalman filtering with state equality constraints. IEEE Transactions on Aerospace and Electronic Systems,2002,38(1):128-136
    [173]Fox D, Burgard W, Kruppa H, Thrun S. Collaborative multi-robot localization. In Proceedings of the German Conference on Artificial Intelligence,1999
    [174]Fox D, Burgard W, Kruppa H, Thrun S. A probabilistic approach to collaborative multi-robot localization. Autonomous Robots,2000,3(8):325-344
    [175]Howard A, Mataric M J, Sukhatme G S. Localization for mobile robot teams using maximum likelihood estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,2002,434-459
    [176]王玲,刘云辉,万建伟等.基于相对方位的多机器人合作定位算法.传感技术学报, 2007,20(4):794-799
    [177]石朝侠.基于多机器人协作的未知环境下路径探索研究.2007,哈尔滨工业大学:哈尔滨
    [178]方丹辉,丁秋峰,龙晓林.基于网络模型的多机器人编队优化研究.武汉理工大学学报(信息与管理工程版),2008,30(6):865-868
    [179]陈卫东,顾冬雷,席裕庚.基于多模式交互的多移动机器人分布式合作系统.自动化学报,2004,30(5):671-678
    [180]张卫星,陈卫东.基于WLAN的多机器人信息交互与行为协调.机器人,2004,26(3):226-231
    [181]王醒策,张汝波,顾国昌.多机器人动态编队的强化学习算法研究.计算机研究与发展,2003,40(10):1444-1450
    [182]Mourikis A I, Roumeliotis S I. Predicting the performance of cooperative simultaneous localization and mapping(C-SLAM). The International Journal of Robotics Research, 25(12),2006,1273-1286
    [183]Fenwick J W, Newman P M, Leonard J J. Cooperative concurrent mapping and localization. Proceedings of the IEEE international conference on robotics and automation,2002,1810-1817
    [184]Thrun S, Burgard W, Fox D. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. Proceedings of the IEEE International conference on robotics and automation,2000,321-328
    [185]Fox D. Distributed multi-robot exploration and mapping. Proceedings of the 2nd Canadian conference on computer and robot vision,2005,1325-1339
    [186]苑晶,黄亚楼,陶通等.基于局部子地图方法的多机器人主动同时定位与地图创建.机器人,2009,31(2):97-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700