颚式破碎机的运动学及动颚和机架的仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从一个破碎过程来说,破碎机破碎方式主要分为粗碎、中碎、细碎、磨矿等几种方式。颚式破碎机是主要的粗碎破碎机。颚式破碎机破碎方式主要是靠挤压破碎物料,因而破碎机的机架尺寸以及破碎腔的几何形状对破碎机的性能有决定性影响。
     本文以单颗粒破碎且单颗粒物料在破碎腔内经五次破碎从排料口排出为假设条件,在确定复摆颚式破碎机的工作参数后得到基本尺寸的基础上,以复摆颚式破碎机整机实体测绘模型为研究对象,在完成自顶向下(骨架设计)的整机参数化模型基础上,以单颗粒五次破碎的推导计算为依据,对整机参数化模型进行了重新再设计。针对此模型进行了运动学和动力学分析研究及优化,实现了复摆颚式破碎机的真正意义上的参数化设计,得到了运动学和动力学特性,对实际的设计生产工作起到指导意义。主要研究工作有以下几部分:
     1.用三维软件Pro/E在实体测绘模型基础上完成了整机的实体参数化建模工作。应用Pro/E的自顶向下设计(骨架设计)功能,实现了整机模型的参数传递、尺寸自动更改、模型的自动生成。基于单颗粒物料破碎理论得到的腔型尺寸更改复摆颚式破碎机的尺寸,建立了一个单颗粒破碎理论的破碎机仿真及优化的整机模型。
     2.对复摆颚式破碎机的整机模型进行了运动学仿真研究,对动颚齿面上的点进行了运动特性分析,基于动颚中上部水平行程特性小的想法,确定了动颚板上水平位移最小的位置和悬挂高度的合理选择。
     3.通过对主要工作参数的敏感度分析,确定了优化分析的目标函数,并进一步以曲柄长度最短和传动角最大为目标进行了多目标优化研究,以曲柄长度最小为目标进行了单目标优化,分别得到了机构尺寸优化的模型,为动力学研究奠定了基础。
     4.在此基础上,将复摆颚式破碎机的参数化模型通过Pro/E和ANSYS的接口导入到ANSYS。
     5.建立动颚和机架的受力模型,基于ANSYS进行静力学分析。
     6.为了寻求机构的固有频率,了解结构的振动特性,进行了动颚和机架的模态分析。
     7.由于复摆颚式破碎机的动颚在破碎过程中主要承受的是冲击载荷的作用,所以进行了其瞬态动力学分析,得到了动颚的动力特性。
     本论文所做工作实现了复摆颚式破碎机的运动仿真与优化设计,为实际生产工作提供了有效的理论依据,对于推动单颗粒物料破碎理论下的复摆颚式破碎机的定型和生产具有十分重要的意义。
From a broken process point of view, crusher divided into coarse, crushing, grinding, broken in several ways. The jaw crusher is mainly coarse crusher.Jaw crusher is broken by the main means extrusion material, so the frame size and broken crusher cavity of the geometry of the performance of the crusher have a decisive influence.
     Based on the single particle breaking and single particle materials in crushing cavity classic five broken from discharging from mouth to assume conditions, in determining the pendulum jaw crusher work parameters to get basic size after, on the basis of pendulum in the jaw crusher entity surveying and mapping model as the research object, in complete top-down (skeleton design) the parametric model based on the single grain five times the theoretical calculation of broken on the basis of the parametric model to design. According to this model the kinematics and dynamics analysis and optimization analysis, realize the pendulum jaw crusher on the true meaning of the parametric design, obtained the kinematic and dynamic characteristics of actual design production work have significance. The main research work has the following several parts:
     1. With3D software Pro/E of surveying and mapping in the entity model based on completed the entity of parameterized modeling work. Application Pro/E of top-down design (skeleton design) function, achieve the machine parameters of the model transfer, size automatically change of the model, automatic generation.
     2. The pendulum of jaw crusher model of the kinematics simulation research, to move the jaw tooth surfaces at the motion characteristics analysis, based on the dynamic jaw level characteristics of small trip idea, determine the dynamic jaw plate on the position of the minimum displacement levels and hang the reasonable selection of height.
     3. Through the main parameters of sensitivity analysis, the optimization analysis to determine the objective function, and further to crank shortest length and transmission Angle on the objective of maximizing the multi-objective optimization study to crank length on the target of minimizing the single objective optimization are obtained in institutions size optimization of model, which establishes the foundation for dynamics.
     4. On this basis, the pendulum will jaw crusher parameterization models through the Pro/E and ANSYS interface imported into the AN SYS.
     5. Build dynamic jaws and the stress of the frame model, based on ANSYS static analysis of learning.
     6. In order to seek the inherent agency the natural frequency of the organization, and to learn the vibration of the structure characteristics, the dynamic jaws and frame of modal analysis.
     7. Because pendulum jaw crusher dynamic jaw broken in the main process of the bear is the role of the impact load, so the its transient dynamic analysis, the dynamic jaw got of the dynamic properties.
     This paper has realized the pendulum jaw crusher movement simulation and optimization design, for practical production work to provide effective theory basis for promoting single grain materials under the theory of the pendulum broken jaw crusher finalize the design and production has the very vital significance.
引文
[1]郎宝贤,郎世平.破碎机[M].北京:冶金工业出版社,2008,1-65.
    [2]罗红萍.双腔颚式破碎机动力学研究及结构优化[D].长沙:中南大学,2006.
    [3]李磊.颚式破碎机能耗和齿板结构参数研究[D].长沙:中南大学,2009.
    [4]Sobhan Kumar Garmaik. Computer Aided Design of Jaw crusher [D]. Rourkela: National Institute of Technology,2010.
    [5]Bharule Ajay Suresh. Computer Aided Design and Analysis of Swing Jaw Plate of Jaw Crusher [D]. Rourkela: National Institute of Technology,2009.
    [6]宋建蓉,吴军.颚式破碎机运动特性研究[J].机械制造研究,2009,38(3):63-64,74.
    [7]傅彩明.新型颚式破碎机动态设计研究[D].北京:北京科技大学,2007.
    [8]夏晓鸥,孙锡波,唐威等.料层粉碎、多碎少磨与惯性圆锥破碎机[J].金属矿山,2009,(7):79-84.
    [9]廖汉元,孔建益,钮国辉.腭式破碎机[M].北京:机械工业出版社,1998,1-170.
    [10]周恩浦.矿山机械(选矿机械部分)[M].北京:冶金工业出版社,1979,1-41.
    [11]A. Refahi, J. Aghazadeh Mohandesi, B. Rezai. Discrete Element Modeling for Predicting Breakage Behavior and Fracture Energy of a Single Particle in a Jaw Crusher[J]. International Journal of Mineral Processing,2010,94:83-91.
    [12]张柱,杨云川,晋艳娟.单颗粒破碎机理分析[J].太原科技大学学报,2005,26(4):306-308.
    [13]张珂.复摆颚式破碎机有限元优化研究[D].成都:西华大学,2009.
    [14]张峰.新型外动颚颚式破碎机理论分析与试验研究[D].北京:北京科技大学,2006.
    [15]聂周荣.复摆颚式破碎机运动学与动力学系统仿真研究[D].赣州:江西理工大学,2005.
    [16]董书革,饶绮麟,郎平振.基于物理规划理论的外动颚式破碎机偏好设计[J].有色金属,2010,62(3):131-136.
    [17]罗红萍.复摆颚式破碎机破碎腔有效破碎空间的研究[J].矿山机械,2010,38(5):73-77.
    [18]金玉萍,罗延新.颚式破碎机的结构改进设计[J].矿山机械,2009,37(2):59-61.
    [19]杨银燕.利用AutoCAD作图获取复摆颚式破碎机动颚行程值的方法[J].机械与电子,2009,(9):78-80.
    [20]仲梁维,顾德仁,陈康民等.颚式破碎机数字化开发平台[J].金属矿山,2007,(4):62-65.
    [21]齐忠华.复摆颚式破碎机动颚齿板的运动轨迹及其对齿板寿命的影响[J].选煤技术,2006,(3):17-18.
    [22]初明智.复摆颚式破碎机的动颚行程计算[J].机械工程与自动化,2005,(1):63-64.
    [23]韩春明.复摆颚式破碎机的改造[J].有色冶金节能,2003,20(1):53-55.
    [24]M. Lindqvist, C.M. Evertsson. Liner Wear in Jaw Crushers [J]. Minerals Engineering, 2003,16:1-12.
    [25]戴少生,王旦容,臧人立等.PEXD型倒悬挂细碎颚式破碎机的研制[J].水泥,2003,(11):31-34.
    [26]母福生,双腔颚式破碎机的研究[J].矿冶工程.1997,(3):24-26.
    [27]席平原.复摆腭式破碎机腔型的优化设计[J].连云港化工高专学报,1997,3(3):17-18,22.
    [28]赵端品,李显文,彭晓明.颚式破碎机的新腔形[J].化工矿山技术,1996,25(4):58-59.
    [29]郭亚兵,李宝钧.复摆颚式破碎机综合优化[J].太原重型机械学院学报,1992,13(4):107-118.
    [30]R.B. DeDiemar. New Concepts in Jaw Crusher Technology[J]. Minerals Engineering, 1990,3(2):67-74.
    [31]黄大明,蒋顺梅,杨春兰.肘板固定支承点位置对动颚行程特征值的影响研究[J].机械设计与制造,2011,(1):226-238.(P10)
    [32]王国鹏.多参数可调节控制式复摆颚式破碎机基本特征研究[D].太原:太原理工大学,2007.
    [33]秦志钰,单志辅,徐希民.复摆颚式破碎机机构预优化方法[J].太原重型机械学院学报,1992,1(2):56-62.
    [34]高慧琴,张君彩,冯运.机械原理[M].北京:国防工业出版社,2009,53-67.
    [35]Sun Haibin, Liu Tingting. Analysis of Instantaneous Center of Zero Acceleration of Rigid Body in Planar Motion [J].Modern Applied Science,2009,3(4):191-195.
    [36]张继春,徐斌等Pro/ENGNEER Wildfire结构分析[M].北京:机械工业出版社,2004.
    [37]樊广军,张星星.基于AutuCAD的参数化破碎机CAD系统的开发.湖南有色属,2000,5.
    [38]袁力鹏,李秀云.新型双齿辊高强力破碎机的研制[J].煤矿现代化,2005(1):56-77.
    [39]www.retsch.com/dl.php-jaw, crushers for primary size reduction.
    [40]董书革,饶绮麟.粉碎机构学研究的内容和发展前景[J].中国工程科学,2006,8(4):89-92.
    [41]张珂,刘佳男,杨昌明.复摆颚式破碎机运动仿真及有限元分析[J],煤矿机械,2008,29(10):69-71.
    [42]A. Cazzania,L. Mongiov,T. Frenez. Dynamic finite element analysis of interceptive devices for falling rocks. International Journal of Rock Mechanics & Mining Sciences,2002,(39):303-321.
    [43]www.metsominerals.com, Nordberg C Series Jaw Crushers.
    [44]母福生,龚姚腾.双腔颚式破碎机破碎力的研究.南方冶金学院学报,2002,(5)
    [45]Cao, Jinxi, Rong, Xingfu; Yang, Shichun.Jaw plate kinematical analysis for single toggle jaw crusher design. International Technology and Innovation Conference,2006, p 62-66.
    [46]杨荣柏,谢月云,钟华针.机械结构分析的有限元法[M].华中理工大学出版社,1989.
    [47]赵汝嘉.机械结构有限元分析[M].西安交通大学出版社,1900.
    [48]沈阳重型机械厂.国外破碎粉磨设备发展概况与结构计算[M].机械工业出版社,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700