环洪泽湖区不同人类活动强度对湿地景观的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环洪泽湖区湿地是我国东部内陆大型淡水湖泊湿地群的重要组成部分,其湿地生态系统的极度脆弱性和强烈的人类干扰并存,在强市场经济信号的作用下,人类对于湿地景观的改造、重塑甚至破坏的强度和规模都空前的提高,这就导致环洪泽湖区湿地景观面积和生态功能都发生了不同的退化甚至消失,湿地生态系统的生态完整性不断流损,湿地生态信息不断丧失,加强对环洪泽湖区湿地的动态监测和研究至关重要。
     本次研究主要运用遥感和地理信息系统的空间分析和动态监测功能,对环洪泽湖区1988年~2006年间的人类活动强度的梯度演化和空间展布特征进行量化和表达,构建环洪泽湖区人类活动强度的函数表达,并从景观生态学的角度去探讨人类活动强度对环洪泽湖区湿地景观演化影响,包括湿地景观的空间构型和动态过程与人类活动强度的时空匹配性,主要集中在人类不同活动强度干扰胁迫下的湿地景观连通性、多样性和景观破碎度的变化,理解这种响应变化的内在规律及对应关系,辨识这种规律和对应关系的未来演化方向和强度,结论如下:
     (1)环洪泽湖区的湿地面积广阔且类型多样,湿地总面积达2926.84 km~2(2006年),主要的湿地类型有河渠、湖泊、沼泽、滩涂、水库和坑塘。其中,湖泊景观的面积最大,主要包括洪泽湖、高邮湖西北部、白马湖西部和天岗湖的东部地区,面积达到1351.32 km~2,占全区湿地景观面积的46.17%;其次分别为:沼泽和滩涂、河渠、水库、坑塘和人工养殖场。
     (2)1988~2006年环洪泽湖区湿地面积总体呈现先减后增的变动态势,1998年为2761 km~2,2000年减少到2731.32 km~2,2006年则为2926.84 km~2,这主要是由于人工湿地面积的增加,特别是人工河渠与水库、坑塘面积的增加,而湖泊、沼泽、滩涂等原生态面积则有较大幅度的减少。研究区湿地面积在未来还有进一步减少的趋势,2015年仅为2574.78 km~2,且各种湿地类型面积都有下降。
     (3)环洪泽湖区湿地景观的多样性在1.3左右,但是多样性有逐渐增加的趋势;景观均匀度与1比较接近,湿地景观分布状态趋于均匀分布,少数大嵌块体(湖泊)面积虽大但分布也相对分散;优势度指数总体呈下降的趋势,表明环洪泽湖区湿地景观单元数量比例失调,少数斑块面积大,并且斑块数量较少;景观总体上较为破碎,反映出人类活动对于整体景观的改造、重塑影响呈逐渐加强趋势。
     (4)不同人类活动强度样带的湿地景观表现呈现较好的规律性。随着区域人类活动强度的逐渐降低,1~10强度样区湿地面积和湿地景观嵌块体的平均面积在不断增加,湿地的密度也在不断的增加;与此同时,湿地的类型、湿地的多样性和湿地的连通性也呈增加趋势,而湿地的破碎度呈逐渐下降的趋势。
     (5)未来环洪泽湖区湿地的空间构型与总量将会发生更加剧烈的变动(2015年),主要的变动区域在洪泽湖北部成子湖一带,从不同湿地景观类型上看,河渠面积的增加区域相对分散,无明显增加区域;湖泊面积的缩减区域也主要是位于北部成子湖一带,面积缩减很大;沼泽和滩涂面积减少的部分,主要集中于盱眙县境内的陡湖和金湖县塔集镇的东北部高邮湖区域;要加强对泗阳县的成子湖、以及盱眙县的陡湖与高邮湖等湿地的关注,以防止这些地区的湿地出现大面积的退化趋势。
     (6)对泗洪西南部(国家级湿地保护区)、盱眙境内淮河入湖水道、三河以及二河等四个重要湿地区域的保护,是保持环洪泽湖区湿地景观连通性的重要举措,加强这些区域湿地的保护与优先整治修复,对于维持环洪泽湖区不同区域湿地间的信息交流、物质交换、能量流转以及维持区域湿地生态系统稳定性、提高湿地的自我维持能力具有重要的作用。
     针对研究发现的湿地演化规律及问题,运用景观生态规划的原理和方法对湿地退化严重的区域进行集中式重建和保护性恢复,给出景观恢复斑块的优先斑块和关键动作,以服务洪泽湖的湿地生态管理,也为国家湿地保护宏观战略的制定提供科学的信息支持。
Wetland Rimmed Hongze Lake is an importance part of large fresh water lake cluster in our country eastern inland, extreme weak and mightiness of Anthropogenic Activities of Wetland eco-system is both exist. Under the function of strong market economy signal, Mankind’reformation, re-mold even destructive strength and scales are both increased, this actions lead to area and ecosystem functions of Wetland in Hongze Lake rim happened to degeneration even disappear at different degree, Wetland eco-system’s integrity expensed continuously, ecosystem information loses continuously, it is importance to strengthen dynamic monitor and study the Wetland Rimmed Hongze Lake.
     This study mainly make use of the function of RS’s dynamic monitor and GIS’s space analysis to measure and express the gradient change of anthropogenic Activities and space distributes of Wetland during 1988~2006, composing function of anthropogenic Activities in Hongze Lake, discussing the Effects of anthropogenic activities on wetland landscape in Hongze Lake Rim from the angle of landscape eco-system at the same time, include space distributes, dynamic process and the degree of fit between time and space of Wetland. This study main discuss on changes of Wetland landscape connectivity, diversity, fragement, recognize the regulation and relation of this kind of changes, distinguish the evolve direction and strength in the future, the conclusion is as follows:
     (1)The area of Wetland Rimmed Hongze Lake is large and its type diverse, total area reaches to 2926.84 km~2 (2006), main Wetland type contain river, the lake, marsh, reservoir and pond. Among them, the area of lake landscape is the biggest, mainly include Hongze Lake, Gao You lake's the northwest, Baima lake's western, Tiangang lake's eastern, the area reach to 1351.32 km~2, take up 46.17% of the whole wetland area; the following is Marsh, river, reservoir, pond and artificial farm.
     (2) Wetland Rimmed Hongze Lake total present reduce first and increases behind in a mass during 1988~2006, 1998 is 2761 km~2, reduce to 2731.32 km~2 in 2000, 2006 is 2926.84 km~2, this mainly because is that artificial wetland is increment, especially the artificial river and reservoir, but lake and marsh trending descende.The Wetland Rimmed Hongze Lake is still trends further decrease in the future, only 2574.78 km~2 in 2015, and various wetland types are all descending.
     (3)The Wetland landscape diversity Index is about 1.3, landscape diversity leve locat on inferior Medium, but landscape diversity Index has the trend of gradual increment; Evenness Index approach to 1, Wetland distributing is tended to even distribute, although few big pattern’s area(lake) is large so its distribution is adjective; preponderant Index present trend to descendent totally, indicate the wetland landscape proportion is out of tune, few pattern’s areas are big, but the number is small; wetland landscape is break up in a mass, reflect anthropogenic activities’s effection on wetland landscape is strengthen.
     (4) Along with the intension of anthropogenic activities reduce gradually in district, wetland area and average area of the pattern is increasing from 1 to 10, wetland density is increasing too, Meanwhile, the type of wetland, wetland diversity index and wetland connection index are also increase, but the wetland break up degree present the trend of descendent gradually.The different strength transect present better regulation.
     (5) Wetland that is rimmed Hongze Lake will take place more violent fluctuation In the future, the main fluctuation district locat in Chengzi lake which is in north of Hongze lake, from angle of all kinds Wetland, river’s area is increasing small and not concentrated; The lake area descends district mainly is be located in the north of Hongze lake; The area of marsh and pool decend a lot and mainly concentrates in Dou lake in Xuyi county and shore northeastern Gaoyou lake's district in the town at the county of Xuyi;The concern wanted to strengthen the abrupt lake to the becoming of Si sun county son lake, and the county of Xuyi and Gaoyou lake etc. wetly keeps these regions from appearing wetly the degeneration trend of big area.
     (6)The southwestern of Sihong county (national wetland sanctuary), Xu yi inshore Huaihe river go into lake waterway, three and two river is important district to keep the wetland connection Hongze lake area, strengthen these the district wetland protect is important to maintenance Hongze lake rim’s information exchanges, material commutation and energy of flow to turn and maintain district wetly eco-system stability and the ego maintenance ability.
     Based on the regulation and problem, make use of principle and method of landscape ecosystem programming to concentrated reconstruction and resumptive protection in the degeneration serious district, put forward to advise about spot piece and key action. This action will service Hongze lake of wetland ecosystem manage, also support information that macroscopic strategy for nation of wetland protect.
引文
[1]林巧莺,林广发,陈志鸿等. 1993~2003年厦门市湿地动态变化及其驱动因素分析[J].湿地科学,2006,4(4):288-303.
    [2]余瑞林,周葆华,刘承良.安庆沿江湿地景观格局变化及其驱动力[J].长江流域资源与环境,2009,18(6):522-527.
    [3]璞励杰,周峰,彭补拙.长江三角洲地区县域耕地变化驱动要素研究----以原锡山市为例[J].南京大学学报(自然科学), 2002,38(6):779-885.
    [4] Brinson M M,Malvarez A I.Temperate freshwater wetlands:types,status,and threats[J].Environ Conserv,2002,29(2):115-133.
    [5]刘红玉,李玉凤,曹晓等.我国湿地景观研究现状、存在的问题与发展方向[J].地理学报,2009,64(11):1394-1401.
    [6]牛振国,宫鹏,程晓等.中国湿地初步遥感制图及相关地理特征分析[J].中国科学D辑:地球科学,2009,39(2):188-203.
    [7]傅伯杰,周国逸,白永飞等.中国主要陆地生态系统服务功能与生态安全[J].地球科学进展,2009,24(6):571-575.
    [8]衷平,杨志峰,崔保山等.公路对湿地的生态效应及其反馈的研究进展[J].湿地科学, 2009,7(1):89-98.
    [9]傅伯杰,陈利顶,马克明等.景观生态学原理及应用[M].北京:科学出版社,2001.
    [10]刘恩峰,侯伟,崔莉等.南四湖湿地景观格局变化及原因分析[J].湿地科学,2009, 7(3):261-265.
    [11]郭跃东,何艳芬.松嫩平原湿地动态变化及其驱动力研究[J].湿地科学,2005,3(1): 54-59.
    [12]张东水,兰樟仁,邱荣祖.闽江口湿地遥感影像最佳景观观察尺度的选择[J].遥感信息,2006,4:30-32.
    [13]布仁仓,李秀珍,胡远满等.尺度分析对景观格局指标的影响[J].应用生态学报,2003, 14(12):2181-2186.
    [14]叶正伟.淮河洪泽湖洪涝灾害特征与成灾本底机理分析[J].水土保持研究,2006, 13(4):90-92.
    [15]杨庆萍,王苏,王睿.洪泽湖枯水年比较及与ENSO事件关系[J].气象科学,2002, 22(1):113-118.
    [16]阮仁宗,冯学智,肖鹏峰等.洪泽湖天然湿地的长期变化研究[J].南京林业大学学报(自然科学版),2005,29(4):57-160.
    [17]翟水晶,胡维平,钱谊.江苏泗洪洪泽湖湿地自然保护区生态服务功能价值评估[J].生态与农村环境学报,2008,24(1):24-28.
    [18] Mitsch W J and Gosselink J G. Wetlands[M]. New York, Van Nostrand Reinhold,1993, 1-43.
    [19] Rebecca R S,et al. Wetlands Ecology and Management[J]. Ecological Economic,1993, 2(4):171-17.
    [20] Townsend P A, Walsh S J. Remote Sensing of Forested Wetlands: Application of Multitemporal and Multispectral Satellite Imagery to Determine Plant Community Composition and Structure in Southeastern USA[J]. Plant Ecology,2001,157: 129-149.
    [21] Kelly N M. Changes to the Landscape Pattern of Coastal North Carolina Wetlands Under the Clean Water Act, 1984-1992[J]. Landscape Ecology,2001,16:3-16.
    [22] Munyati C. Wetland Change Detection on the Kafue Flats,Zambia, by Classification of A Multitemporal Remote Sensing Image Dataset[J]. Int J Remote Sensing,2000, 21(9):1787-1806.
    [23] Maing J K, Marsh S E. Assessment of Environmental Impacts of River Basin Development on the Riverine Forests of Eastern Kenya Using Multi-temporal Satellite Data[J].Int J Remote Sensing,2001,22(14): 2701-2729.
    [24] Sader S A, Ahl D, Liou W S. Accuracy of Landsat-TM and GIS Rule-Based Methods for Forest Wetland Classification in Maine[J]. Remote Sensing of Environment, 1995,53:133-144.
    [25]凌成星,张怀清.林辉.利用混合水体指数模型(CIWI)提取滨海湿地水体信息[J].长江流域资源与环境,2010,19(2):152-157.
    [26] McFEETERS S K.The use of normalized difference water index(NDWI)in the delineation of open water features[J].International journal of remote sensing, 1996,17(7):1425-1432.
    [27] Committee on Characterization of Wetlands, Water Science and Technology Board,Board on Environmental Studies et al.Wetlands: Characteristics and Boundaries[D]. Washington, D.C.: National Academy Press,1995.
    [28] LutzTischendor.f Landscape indices predict ecological processes consistently [J].LandscapeEcology,2001,16:235-254.
    [29] Turner K.R. Management and Valuation of an Environmental Sensitive area, Norfolk Brood land England Case study[J]. Environmental Management,1988,12(2):23-30.
    [30] Janssen M R, Brooner W. Accuracy assessment of satellite derived land-cover data: a review[J]. Photogrammertric Engineering and Remote Sensing,1994,60 (4):419-426.
    [31] Batty M,Xie Y,Sun Z.Modeling urban dynamics throughGIS-based cellular automata[J].Computer,Environmental and Urban Systems,1999,23:1-29.
    [32] BARREDO J I,KASANKO M,MCCORMICK N,et al. Modelling dynamic spatial processes: Simulation of urban future scenarios through cellular automata[J]. Landscape Urban Plan-ning,2003,64(3):145-160.
    [33] Smith N, Dennis W. The restructuring of geographical scale: coalescence and fragmentation of the northern core region[J].Economic Geography,1987, 63: 160-182.
    [34] Jang JSR.ANFIS:Adaptive-Network-Based Fuzzy Inference System,IEEE Transaction on System, Man, and Cybernetics,1993,23(3):665-685.
    [35] VERBURG P H,SOEPBOER W,VELDKAMP A,et al. Modeling the spatial dynamics of regional land use:the CLUE-S model[J].Environmental Management,2002,30(3): 391-405.
    [36]徐琪.湿地农田生态系统的特点及其调节[J].生态学杂志,1989,8(3):8-13.
    [37]王飞.论湿地及其保护和利用[J].自然资源学报,1990,5(4):297-303.
    [38]丁晶晶,王磊,季永华等.江苏省盐城海岸带湿地景观格局变化研究[J].湿地科学,2009, 7(3):202-207.
    [39]郭丽英,王道龙,邱建军.环渤海区域土地利用景观格局变化分析[J].资源科学,2009, 31(12):2144-2149.
    [40]李文龙,王晶,郭述茂.玛曲沼泽湿地景观格局变化研究及驱动力分析[J].草业科学, 2009,26(8): 57-62.
    [41]梁守真,李仁东,许国鹏.洞庭湖区湿地景观变化分析[J].中国生态农业学报,2007,15 (6):171-174.
    [42]刘红玉,李兆富.三江平原典型湿地流域水文情势变化过程及其影响因素分析[J].自然资源学报,2005, 20(4):493-494.
    [43]仇恒佳,卞新民.环太湖景观生态格局变化研究——以苏州市吴中区为例[J].长江流域资源与环境,2006,15(1):81-85.
    [44]中科院长春地理研究所沼泽研究室.自然环境变化与合理开发利用的初步探讨[J].地理科学,1981,36(1):33-46.
    [45] Shaw SP, Fredine CG. Wetlands of the United States:TheirExtent and Value forWaterfowl and OtherW ild-life[M]. Washington DC: United States Departmentof theInterior, Fish and Wildlife Service, 1971.
    [46] Mitsch WJ, Gosselink JG. Wetlands. 3rd Ed[M]. NewYork: JohnW iley& Sons, 2000.
    [47] Cowardin LM, CarterV, GoletFC,et al. Classification of Wetlands and Deep Water Habitats of the United States[M]. Washington, DC: Fish and W ildlife Service Publication, 1979.
    [48] RamsarConvention Bureau. Proceedings of the 4th Meeting of the Conference of Contracting Parties[M].Gland:Ramsar Convention Bureau, 1991.
    [49] BrinsonMM. A hydrogeomorphic classification forwetlands[J]. Wetlands Research Program Technical Report,VicksburgMS, 1993: 1-24.
    [50]牛明香,赵庚星,李尊英.南四湖湿地遥感信息分区分层提取研究[J].地理与地理信息科学,2004,20(2):45-52.
    [51]吴运军,张树文,包春红.基于TM光谱特征的沼泽地定量提取模式研究[J].湿地科学,2005,3(3):205-209.
    [52]江辉,周文斌,刘瑶.鄱阳湖湿地遥感分类研究及应用[J].遥感技术与应用,2008,23(6):648-652.
    [53]李忠新.图像镶嵌理论及若干算法研究[D].南京:南京理工大学,2000:34-45.
    [54]扬帆.基于RS和GIS的辽东湾滨海湿地景观动态变化研究[D].大连:大连海事大学,2007:20-21.
    [55]张笑楠,王克林,张明阳等.人类活动影响下喀斯特区域景观格局梯度分析[J].长江流域资源与环境,2009,18(12):1187-1192.
    [56]胡志斌,何兴元,李月辉等.人类活动影响下岷江上游景观变化分析[J].生态学杂志2007,26(5): 700-705。
    [57] http://news.qq.com/a/20101104/000129.htm.
    [58]汤国安,杨昕. Arcgis地理信息系统空间分析[M].北京:科学出版社.
    [59]曾和平,赵敏慧,杨树华等.香格里拉纳西族与汉族聚居区的景观生态格局对比研究[J].环境科学研究2007,20(6): 56-60.
    [60]陈利顶,傅伯杰,王军.黄土丘陵区典型小流域土地利用变化研究[J].地理科学,2001,21(1): 46-51.
    [61] Tobler W A. A Computer Movie Simulating Urban Growth in the Detroit Region [J].Economic Geography,1970,46(2):234-240.
    [62] Cliff A, Ord J. Spatial processes: models and applications[M].London: Pion,1981.
    [63]马克平,刘玉明.生物多样性的测度方法[J].生物多样性,1994,2(4): 231-239.
    [64]傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报,1996,63(5):583-594.
    [65]傅伯杰,陈利顶,马克明等.景观生态学原理及应用[M].北京:科学出版社,2001.
    [66]熊春妮,魏虹,兰明娟.重庆市都市区绿地景观的连通性[J].生态学报,2008,28(5): 2237-2244.
    [67]吴桂平,曾永年,冯学智等. CLUE-S模型的改进与土地利用变化动态模拟[J].地理研究,2010,29(3): 460-470.
    [68]张永民,赵士洞, P.H.Verburg.基于CLUE-S模型及其在奈曼旗土地利用时空动态变化模拟中的应用[J].自然资源学报,2003,18(3): 310-318.
    [69]张学儒.基于CLUE-S模型的唐山海岸带土地利用变化情景模拟[D].河北:河北师范大学,2008:44-45.
    [70]董世魁,刘世梁,邵新庆等.恢复生态学[M].北京:高等教育出版社,2009.
    [71]姜明,武海涛吕宪国等.湿地生态廊道设计的理论、模式及实践--以三江平原浓江河湿地生态廊道为例[J].湿地科学,2009,7(2): 99-105.
    [72]孔博,邓伟,陶和平等.基于多尺度遥感影像分割方法的湿地生态廊道设计[J].生态学杂志,2010,29(2):407-412.
    [73]科学技术部中国农村技术开发中心.农村环境整治与生态修复[M].北京:中国农业科学技术出版社,2007.
    [74]唐剑.洪泽湖南部冬春季鸟类群落研究[D].南京:南京林业大学,2007: 21-23.
    [75]黄文几,黄正一,温业新.洪泽湖、高宝湖雁形目鸟类初步调查报告.中国动物学会主编.见:中国动物学会三十周年学术讨论会论文摘要汇编[A].北京:科学出版社,1965:233.
    [76]钱国桢,徐宏发.绿翅鸭和琵嘴鸭的换羽及其静止代谢率[J].动物学报,1986,32(1):68-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700